D-MATH Modular Forms HS 15
Prof. Ozlem Imamoglu

Solutions 7

1. Let z € H and consider the ©-function defined by
Imz+n|?
0.(t) = Z e ™y

forall ¢ > 0.

a) Show that ©, satisfies the functional equation ©.(t) = 10, (1) .

Proof:
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where () indicates that we applied the Poisson summation formula.

Forall s € (1, 00), let
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b) Check that E(vz,s) = E(z,s) for all v € I" and show that

E*(z,5) = /OOO (@Z(t)—1)t8%

Solution: Let 7/ € T, then the collection of elements vy’ where ~ runs through a sy-
stem of coset representatives for I'oo\I" is also a system of coset representatives for that
quotient, hence F(v'z,s) = F(z, s) and this holds for all y/ € T".

Observe that \ )
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where in (%) we applied the second transformation property of Mellin transforms that
we proved in exercise 2b of problem set 5.

¢) Show that £*(z, s) has a meromorphic continuation to the whole complex s-plane with
single poles at s = 0 and s = 1 with residues -1 and 1 respectively. Finally, prove the
functional equation E*(z,1 — s) = E*(z, s).

Solution : We decompose the integral representation of £*(z, s) into the sum of the two
integrals

1 oo
Bz 5) = /O (@Z(t)—1)tsit+/l (@Z(t)—ms%

Observe that the first integral is analytic for s € (1, co) while the second integral is entire



in that fundamental strip. For the first integral, we have
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Again, the first integral is entire in s and it follows that E*(z, s) has a meromorphic
continuation with poles at s = 0,1 and E*(z,1 — s) = E*(z, s).
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2. Let ¢ : H — C be an analytic function such that ¢(vz) = ¢(z) forall v € T" and p(z) =

O (y=¢) as y — oo for all C > 0. Such a function has a Fourier expansion of the form
©(2) = 3 cz Pn(y)e*™ where ¢, (y) = fol o(z + iy)e 2™y, Set

Ap(s) = m°T(5)2¢(25)M(p0)(s — 1)
forall s € (1, 00).

a) Show that M (¢p)(s) is indeed well-defined on the fundamental strip (0, co) and that it
is bounded in every vertical strip strictly contained in (0, c0).

Proof: First of all, we show that a I"-invariant function ¢ that decays rapidly in the cusp
as described above, is a bounded function. By invariance, ¢ can be seen as a function on
the closure F of the standard fundamental domain for I'. Now,

F=Fn{y<chuFniy>0)).

For any positive constant C, the first component defines a compact region on which ¢ is
then necessarily bounded. We can choose C sufficiently large so that (o, which is rapidly
decaying as y — 00, is also bounded on the second component.

Then ¢y (y fo o(z +iy)e~ 2™ dz is also bounded and rapidly decaying in the cusp.

Lets € (a, b), a vertical strip strictly contained in the fundamental strip (0, co). Then
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where we chose M such that |¢o(y)| < y~°~" whenever y > M.




b) Check that A, has the following integral representation

Ao(s) = (o, B (L9)) = /F () E™ (2, 5)dp(2)

where F denotes a fundamental domain for I'.

Solution: Note that it suffices to show that M (¢g)(s — 1) = (¢, E(-, s)). And indeed,

Migo)s=1) & [ & [ / (aig)do Y — / o2y du(z),

where Foo = {z € H: z € [0, 1]} One can choose a collection of representatives (c;)
such that Foo = Uper \r a~LF. Then

p(2)y’dp(z) = o(2)y°du(z)
/}—w ae%.;\l“ /al}—
= 2)Im(az)’du(z) = ©(2)E(z,s)du(z).
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¢) Prove that A, has a meromorphic continuation to the whole complex plane with simple
poles at s = 0 and s = 1 with residues F [ ¢(2)du(z). It is bounded in any vertical
strip (that does not contain a pole) and satisfies the functional equation

Ap(s) = Ap(1 —s).

N.B. This is the simplest case of the Rankin—Selberg method.

Proof: By the assumptions on ¢ and ex lc), A, is analytic for s # 0,1, where it ad-
mits simple poles, coming from the simple poles of E*(z, s). We can conclude that it is
moreover bounded on vertical strips from part a) of this exercise. Finally,

Res(hy) = [ Rest"(s)o(duz) = [ ole)duto)

s=1

and by the functional equation from Ic) Res(A,)(1) = —Res(A,)(0).

Let f =Y anq" € Sp(T') and g = >_ buq™ € My, (T) and set ¢ = fgy*. We define

L(fxg,s) = 20(2s—2k+2)) anbyn?,
n>1
A(fxg,s) = 7712m) T(s)['(s — k+ 1)L(f x g,5).

For simplicity, we will assume that b,, = b,, for all n.

The L-series L(f X g, s) is called the Rankin—Selberg convolution of f and g.



d) Check that ¢ satisfies the same properties as the function ¢ at the beginning of the exer-
cise. Show that for all s € (0, c0)

M(o)(s) = (4m) "0+ k) S anbun =+,

n>1

Solution: Clearly ¢ is analytic. Since f is a cusp form, f(z) = O(y~°) as y — oo for
any C' > 0. In particular, let f(z) = O(y~¢~*) also holds. The function g is a modular
form and therefore g(z) = O(1), hence ¢(z) = O(y~) as y — oo. Finally,
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We compute
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forall s € (k/2 4 2, 00). We finally show that this actually holds on the strip (0, co).

We assume that the sum doesn’t converge absolutely anymore for Re(s) < o and choose
o maximally. By contradiction we assume that o > 0. Note that the equality still holds
fors e< o+ %, oo > forall N > 0. Also note that Im(s) doesn’t matter for the absolute
convergence. Since the sum doesn’t converge absolutely for Re(s) < o we can (wlog)
assume that the following series diverges as N — oc:

SN = Z anan_(‘ﬂ'%“ﬂ

n>1

But on the other hand we have:
1 1
Sy = (47T)U+%+k11 <O‘ + N + k> M(po(y))(o + N)

Which converges for N — oo to (47)° T+ (0 + k) M(¢o(y)) (o) € C (as shown before).
This gives a contradiction. Hence the formula holds for s €< 0, co >.




e) Prove that A(f x g, s) has a meromorphic continuation to the whole complex plane with
simple poles at s = k and s = k — 1 with residues +(f, g). It is bounded in any vertical
strip (that does not contain a pole) and satisfies the functional equation

A(f xg,8) = Af xg,2k—1-—35).

Hint: Show first that Ag(s) = A(f x g,s + kK —1).

Proof: By the definitions,

k-1 anbn
A(f xgos+h—1) = 720200 (s + k= 1) ;1 T
and
Asls) = 77T(5)2¢(25) M(o)(5 — 1)
2 Pt 4s+k71

T (dm)stRhLl gkl Afxgs+k—1) = A(fxg,s+k—-1)

forall s € (1, 00). Now we can derive the statement from the meromorphic continuation
of A4 and its properties established in exercise 2c.

. The MacDonald—Bessel function is given by
o0
Ks(y) = 1/ efg(tJr%)tS@
2 Jo t

forall y > 0, s € C. It is entire as a function in s and decays rapidly as y — co. Moreover,
one can show by a change of variable that K(y) = K_s(y).

a) Set
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foralla € R, s € (1/2,00). Prove that
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If a = 0, then the inner integral is equal to /7 e~ tt~1/2
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Hence

Let s € (1,00) and consider the Fourier expansion E*(z,s) = Y, .7 an(y, s)e*™™* with
coefficients

ao(y,s) = 2A(2s)y° +2A(2s —1)y' ™
an(ya 8) = 4\/37|n|8_1/201725(|n|)K5—1/2(27T|n|y)
where A(s) = 7/2T(s/2)((s).

b) Prove that each coefficient a,(y, s), n # 0, has an analytical continuation to an entire
function and satisfies the functional equation

an(y,s) = an(y,1 —s).

Proof: Each a,(y,s), n # 0, is entire, since K(y) and o(|n|) are entire. To show the
functional equation, we first compute
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Show that A(s) has a meromorphic continuation to the whole complex plane with simple
poles at s = 0, 1 with residues F1, and that it satisfies the functional equation

A(s) = A(1 —s).

Proof: It follows from exercises 3b and 1c that the constant term a(y, s) has a meromor-
phic continuation to the whole complex plane, with poles at s = 0, 1, residues 1 and
functional equation ag(y, s) = ap(y, 1 — s).

If we observe that
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A(s) =

where y1,y2 € Rs are distinct. Now A(s) has a meromorphic continuation, and is
analytic outside of s = 0, 1, 2. Moreover, from the functional equation for ag, one has

A(s)y* 4+ A(s = Dy' ™/ = A2 —s)y' 2+ A(1 = s)y°
or equivalently,
A(s) —A(1—5s) = (A(2—5)—A(s— 1)) y'.

The latter equality can only be true if A(s) = A(1 — s).

To compute the residue at s = 0, we choose y; = y and y2 = —vy,

v () o
E{:egA(s) = 4<y) = —1.

It follows from then functional equation that the residue at s = 1 is then = +1. Finally,
choosing for A(s) y1 = y2 = y, we note that s = 2 is a removable singularity.




4.

a) Let w € C. Show that:

Proof:
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b) Use task 3b, ¢) and 4a) to show that:
AE* (-, w), ) :== M (E*(iy,

Hint: Show and use the following fact:
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Since the Mellin transformation is linear we only need to compute
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