
Numerical Methods for CSE
Autumn term 2009

Prof. R. Hiptmair

Makeup Examination
August 19th, 2010

Problem 1: Kronecker product (30 points)

We consider the MATLAB expression

y = kron(A,B)*x, (1)

for n× n dense real matrices stored in A and B, and a column vector x of length n2, n ∈ N.

a) (5 points) What is the asymptotic complexity of the evaluation of this MATLAB ex-
pression in terms of the problem size parameter n?

b) (15 points) Devise an efficient MATLAB function

function y = kronmult(A,B,x)

that is algebraically equivalent to the expression (1) above, but enjoys a better asymp-
totic complexity.

c) (5 points) What is the asymptotic complexity of your implementation of kronmult in
terms of the problem size parameter n? Explain your answer.

d) (5 points) What is the asymptotic (in terms of n) complexity of your version of kronmult,
if A and B contain sparse n× n diagonal matrices.

Problem 2: Linear least squares problem (20 points)

Input data are two vectors z, c ∈ Rn, n ∈ N, of measured data. You are expected to
compute the two numbers α∗, β∗ ∈ R such that

(α∗, β∗) = argmin
α,β∈R

‖Tα,βz− c‖2 , (2)

with tridiagonal matrix

Tα,β =


α β 0 . . . 0

β α
. . . . . .

...

0
. . . . . . . . . 0

...
. . . . . . α β

0 . . . 0 β α

 ∈ Rn,n .

1



a) (10 points) Reformulate (2) as a linear least squares problem in the standard form

x∗ = argmin
x∈Rk

‖Ax− b‖2

with a suitable matrix A ∈ Rm,k, m, k ∈ N, and vectors b ∈ Rm, x ∈ Rk.

b) (10 points) Write a MATLAB function

function [alpha,beta] = lsqest(z,c)

that computes the values of α∗ and β∗ according to (2), when z, c pass the vectors z
and c.

Hint. You may use MATLAB’s \-operator for solving a linear least squares problem.
For z = (1, 2, . . . , 10)T , c = (10, 9, 8, . . . , 1)T your code should give α∗ ≈ −0.4211,
β∗ ≈ 0.5789.

Problem 3: Speed of convergence of CG (20 points)

The following is known about the matrix A ∈ Rn,n:

• (A)i,i = 5 for all 1 ≤ i ≤ n,

• |(A)i,j| ≤ 1 for all 1 ≤ i < j ≤ n,

• A is symmetric and positive definite (s.p.d.),

• each row of A has at most four non-zero entries.

We consider a linear system of equations

Ax = b ∈ Rn . (3)

a) (7 points) Appeal to the Gershgorin circle theorem (Lemma 5.1.3 in the lecture material)
to find bounds for the largest and smallest eigenvalue of A.

b) (6 points) The (non-preconditioned) conjugate gradient method (CG) is applied to solve
(3). Give a reasonably sharp bound for the number of CG-steps it takes to reduce the
A-norm (energy norm) of the error of the iterates by a factor of 106.

c) (7 points) Give a general bound (in terms of n and accurate in leading order) of the
number of elementary operations (additions/subtractions and multiplications/divisions)
that have to be executed in each CG-step.

Problem 4: “Quadrature of the circle” (40 points)

Given a smooth function f : [−1, 1] 7→ R, Gaussian quadrature shall be used to approximate
the integral

I(f) :=

∫ 1

−1

√
1− t2f(t) dt . (4)

A MATLAB routine [x,w]=gaussquad(n) that computes the nodes (vector x) and weights
(vector w) of n-point Gaussian quadrature on [−1, 1] is supplied in the file gaussquad.m.

2



a) (12 points) For f ≡ 1 the integral value is π/2, half of the area of the unit disk. Write
a MATLAB routine

function plotgausserr

that creates a log-log plot of the quadrature error versus the number n ∈ {1, . . . , 30} of
quadrature points, when Gaussian quadrature on [−1, 1] is used to evaluate the integral
for f = 1 right away. What kind of convergence do you observe?

Hint: The requested error plot may look like that depicted in Figure 1.

10
0

10
1

10
2

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

number n of quadrature nodes

qu
ad

ra
tu

re
 e

rr
or

Figure 1: Quadrature error for Gaussian quadrature applied to (4) with f ≡ 1.

b) (8 points) The file circquad.m contains the following MATLAB function

1 function I = circquad(f,n)

2 % Numerical quadrature for
1∫
−1

√
1− t2f(t) dt

3 g = @(s) 2*s.^2.* sqrt (2-s.^2) .*(f(s.^2 -1)+f(1-s.^2));
4 [x,w]= gaussquad(n)

5 I = 0.5*dot(w,g(0.5*(x+1)));

Write a MATLAB function

function plotIerr

that creates a lin-log plot of the quadrature error of cricquad versus the number n of
quadrature points for f = 1 and n ∈ {1, . . . , 10}. What kind of convergence do you
observe?

Hint: Your plot may look like that displayed in Figure 2.

3



1 2 3 4 5 6 7 8 9 10
10

−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

number of points n

qu
ad

ra
tu

re
 e

rr
or

Figure 2: Quadrature error for circquad

c) (10 points) Obviously, circquad applies Gaussian quadrature to the integral∫ 1

0

2x2
√

2− x2
(
f(x2 − 1) + f(1− x2)

)
dx . (5)

Show in detail that (4) and (5) give the same value for every f .

d) (10 points) Explain why circquad achieves a much better accuracy with the same
number of f -evaluations compared to straightforward Gaussian quadrature applied to
(4).

Problem 5: SVD of a circulant matrix (25 points)

The circulant matrix

C :=



u0 u1 u2 · · · · · · un−1

un−1 u0
. . . un−2

un−2
. . . . . .

...
...

...
. . .

...

u2
. . . . . . u1

u1 u2 . . . · · · un−1 u0


∈ Rn,n

is defined by the generating vector u := (u0, . . . , un−1)
T ∈ Rn.

4



a) (15 points) Implement an efficient MATLAB function

s = svcirc(u)

that computes the sorted singular values of the circulant matrix C, when supplied with
the generating vector u.

Hint: Remember that the columns of the Fourier matrix provide a complete orthogonal
basis of eigenvectors for any circulant matrix.

Hint: sort(x,’descend’) sorts the vector x in descending order.

b) (5 points) Write a MATLAB test routine

function svcirctest(u)

that uses the built-in MATLAB function svd() to validate the correctness of your
implementation of svcirc by plotting the absolute error of the singular values over
their index for a random generating vector u ∈ R10.

Hint: A circulant matrix can be built by the MATLAB command gallery(’circul’,u).

c) (5 points) What is the asymptotic complexity of svcirc in terms of the problem size
parameter n?

Problem 6: Solving an implicit ODE (40 points)

For a Lipschitz continuous function g : [0,∞] 7→ [0,∞], we consider the scalar implicit
initial value problem

ẏeẏ = g(y) , y(0) = y0 > 0 . (6)

a) (20 points) Write a MATLAB function

function fy = impoderhs(g,y)

that uses Newton’s method to evaluate the right hand side f of the ODE ẏ = f(y) that
is equivalent to the ODE of (6).

Use log(g(y)) as initial guess and stop the iteration, once the relative size of the Newton
correction is below 10−6.

Hint: A (hidden) reference implementation of impoderhs is given in MATLAB function
impoderhs ref (in the file impoderhs ref.p, which serves exactly the same purpose
an .m-file, but conceals the source code).

b) (10 points) Design a MATLAB function

function [t,y] = odeimpl(g,T,y0)

that uses the MATLAB standard integrator ode45 with absolute tolerance 10−7 and
relative tolerance 10−5 to solve (6) on [0, T ]. The return values are those of ode45.

c) (10 points) Write a MATLAB function

function plotivpsol

that solves the initial value problem (6) for the concrete g(y) = y
1+y2

and y0 = 1
2

over

the time interval [0, 4]. Plot both y(t) and ẏ(t) in one chart.

Hint: Your solution should look like the plot shown in Figure 3.

5



0 0.5 1 1.5 2 2.5 3 3.5 4
0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

t

 

 
y(t)
dy/dt(t)

Figure 3: Solution of IVP of Problem 6(c)

6


