Makeup Examination

August 19 ${ }^{\text {th }}, 2010$

Problem 1: Kronecker product (30 points)

We consider the MATLAB expression

$$
\begin{equation*}
\mathrm{y}=\operatorname{kron}(\mathrm{A}, \mathrm{~B}) * \mathrm{x}, \tag{1}
\end{equation*}
$$

for $n \times n$ dense real matrices stored in A and B , and a column vector x of length $n^{2}, n \in \mathbb{N}$.
a) ($\mathbf{5}$ points) What is the asymptotic complexity of the evaluation of this MATLAB expression in terms of the problem size parameter n ?
b) ($\mathbf{1 5}$ points) Devise an efficient MATLAB function

$$
\text { function } y=k r o n m u l t(A, B, x)
$$

that is algebraically equivalent to the expression (1) above, but enjoys a better asymptotic complexity.
c) (5 points) What is the asymptotic complexity of your implementation of kronmult in terms of the problem size parameter n ? Explain your answer.
d) (5 points) What is the asymptotic (in terms of n) complexity of your version of kronmult, if A and B contain sparse $n \times n$ diagonal matrices.

Problem 2: Linear least squares problem (20 points)

Input data are two vectors $\mathbf{z}, \mathbf{c} \in \mathbb{R}^{n}, n \in \mathbb{N}$, of measured data. You are expected to compute the two numbers $\alpha^{*}, \beta^{*} \in \mathbb{R}$ such that

$$
\begin{equation*}
\left(\alpha^{*}, \beta^{*}\right)=\underset{\alpha, \beta \in \mathbb{R}}{\operatorname{argmin}}\left\|\mathbf{T}_{\alpha, \beta} \mathbf{z}-\mathbf{c}\right\|_{2}, \tag{2}
\end{equation*}
$$

with tridiagonal matrix

$$
\mathbf{T}_{\alpha, \beta}=\left(\begin{array}{ccccc}
\alpha & \beta & 0 & \ldots & 0 \\
\beta & \alpha & \ddots & \ddots & \vdots \\
0 & \ddots & \ddots & \ddots & 0 \\
\vdots & \ddots & \ddots & \alpha & \beta \\
0 & \ldots & 0 & \beta & \alpha
\end{array}\right) \in \mathbb{R}^{n, n}
$$

a) (10 points) Reformulate (2) as a linear least squares problem in the standard form

$$
\mathbf{x}^{*}=\underset{\mathbf{x} \in \mathbb{R}^{k}}{\operatorname{argmin}}\|\mathbf{A} \mathbf{x}-\mathbf{b}\|_{2}
$$

with a suitable matrix $\mathbf{A} \in \mathbb{R}^{m, k}, m, k \in \mathbb{N}$, and vectors $\mathbf{b} \in \mathbb{R}^{m}, \mathbf{x} \in \mathbb{R}^{k}$.
b) (10 points) Write a MATLAB function

$$
\text { function [alpha,beta] }=\text { lsqest }(z, c)
$$

that computes the values of α^{*} and β^{*} according to (2), when \mathbf{z}, \mathbf{c} pass the vectors \mathbf{z} and \mathbf{c}.

Hint. You may use MATLAB's \backslash-operator for solving a linear least squares problem. For $\mathbf{z}=(1,2, \ldots, 10)^{T}, \mathbf{c}=(10,9,8, \ldots, 1)^{T}$ your code should give $\alpha^{*} \approx-0.4211$, $\beta^{*} \approx 0.5789$.

Problem 3: Speed of convergence of CG (20 points)

The following is known about the matrix $\mathbf{A} \in \mathbb{R}^{n, n}$:

- $(\mathbf{A})_{i, i}=5$ for all $1 \leq i \leq n$,
- $\left|(\mathbf{A})_{i, j}\right| \leq 1$ for all $1 \leq i<j \leq n$,
- A is symmetric and positive definite (s.p.d.),
- each row of \mathbf{A} has at most four non-zero entries.

We consider a linear system of equations

$$
\begin{equation*}
\mathbf{A x}=\mathbf{b} \in \mathbb{R}^{n} \tag{3}
\end{equation*}
$$

a) (7 points) Appeal to the Gershgorin circle theorem (Lemma 5.1.3 in the lecture material) to find bounds for the largest and smallest eigenvalue of \mathbf{A}.
b) (6 points) The (non-preconditioned) conjugate gradient method (CG) is applied to solve (3). Give a reasonably sharp bound for the number of CG-steps it takes to reduce the A-norm (energy norm) of the error of the iterates by a factor of 10^{6}.
c) (7 points) Give a general bound (in terms of n and accurate in leading order) of the number of elementary operations (additions/subtractions and multiplications/divisions) that have to be executed in each CG-step.

Problem 4: "Quadrature of the circle" (40 points)

Given a smooth function $f:[-1,1] \mapsto \mathbb{R}$, Gaussian quadrature shall be used to approximate the integral

$$
\begin{equation*}
I(f):=\int_{-1}^{1} \sqrt{1-t^{2}} f(t) \mathrm{d} t \tag{4}
\end{equation*}
$$

A MATLAB routine $[\mathrm{x}, \mathrm{w}]=$ gaussquad (n) that computes the nodes (vector x) and weights (vector w) of n-point Gaussian quadrature on $[-1,1]$ is supplied in the file gaussquad.m.
a) ($\mathbf{1 2}$ points) For $f \equiv 1$ the integral value is $\pi / 2$, half of the area of the unit disk. Write a MATLAB routine

```
function plotgausserr
```

that creates a log-log plot of the quadrature error versus the number $n \in\{1, \ldots, 30\}$ of quadrature points, when Gaussian quadrature on $[-1,1]$ is used to evaluate the integral for $f=1$ right away. What kind of convergence do you observe?
Hint: The requested error plot may look like that depicted in Figure 1.

Figure 1: Quadrature error for Gaussian quadrature applied to (4) with $f \equiv 1$.
b) (8 points) The file circquad.m contains the following MATLAB function

```
function I = circquad(f,n)
|O Numerical quadrature for }\mp@subsup{\int}{-1}{1}\sqrt{}{1-\mp@subsup{t}{}{2}}f(t)\textrm{d}
g = @(s) 2*s.^2.*sqrt(2-s.^2).*(f(s.^2-1)+f(1-s.^2));
[x,w]=gaussquad(n)
I = 0.5* dot (w,g(0.5*(x+1)));
```

Write a MATLAB function
function plotIerr
that creates a lin-log plot of the quadrature error of cricquad versus the number n of quadrature points for $f=1$ and $n \in\{1, \ldots, 10\}$. What kind of convergence do you observe?
Hint: Your plot may look like that displayed in Figure 2.

Figure 2: Quadrature error for circquad
c) ($\mathbf{1 0}$ points) Obviously, circquad applies Gaussian quadrature to the integral

$$
\begin{equation*}
\int_{0}^{1} 2 x^{2} \sqrt{2-x^{2}}\left(f\left(x^{2}-1\right)+f\left(1-x^{2}\right)\right) \mathrm{d} x . \tag{5}
\end{equation*}
$$

Show in detail that (4) and (5) give the same value for every f.
d) (10 points) Explain why circquad achieves a much better accuracy with the same number of f-evaluations compared to straightforward Gaussian quadrature applied to (4).

Problem 5: SVD of a circulant matrix (25 points)

The circulant matrix

$$
\mathbf{C}:=\left(\begin{array}{ccccccc}
u_{0} & u_{1} & u_{2} & \cdots & & \cdots & u_{n-1} \\
u_{n-1} & u_{0} & \ddots & & & & u_{n-2} \\
u_{n-2} & \ddots & \ddots & & & & \vdots \\
\vdots & & & & & & \\
& & & & & \ddots & \vdots \\
\vdots & & & & \ddots & \ddots & u_{1} \\
u_{2} & & & \cdots & u_{n-1} & u_{0}
\end{array}\right) \in \mathbb{R}^{n, n}
$$

is defined by the generating vector $\mathbf{u}:=\left(u_{0}, \ldots, u_{n-1}\right)^{T} \in \mathbb{R}^{n}$.
a) (15 points) Implement an efficient MATLAB function

```
s = svcirc(u)
```

that computes the sorted singular values of the circulant matrix \mathbf{C}, when supplied with the generating vector \mathbf{u}.
Hint: Remember that the columns of the Fourier matrix provide a complete orthogonal basis of eigenvectors for any circulant matrix.
Hint: sort (x, 'descend') sorts the vector x in descending order.
b) (5 points) Write a MATLAB test routine

```
function svcirctest(u)
```

that uses the built-in MATLAB function svd() to validate the correctness of your implementation of svcirc by plotting the absolute error of the singular values over their index for a random generating vector $u \in \mathbb{R}^{10}$.
Hint: A circulant matrix can be built by the MATLAB command gallery('circul', u).
c) (5 points) What is the asymptotic complexity of svcirc in terms of the problem size parameter n ?

Problem 6: Solving an implicit ODE (40 points)

For a Lipschitz continuous function $g:[0, \infty] \mapsto[0, \infty]$, we consider the scalar implicit initial value problem

$$
\begin{equation*}
\dot{y} e^{\dot{y}}=g(y) \quad, \quad y(0)=y_{0}>0 \tag{6}
\end{equation*}
$$

a) (20 points) Write a MATLAB function

$$
\text { function fy }=\text { impoderhs }(\mathrm{g}, \mathrm{y})
$$

that uses Newton's method to evaluate the right hand side f of the ODE $\dot{y}=f(y)$ that is equivalent to the ODE of (6).
Use $\log (g(y))$ as initial guess and stop the iteration, once the relative size of the Newton correction is below 10^{-6}.
Hint: A (hidden) reference implementation of impoderhs is given in MATLAB function impoderhs_ref (in the file impoderhs_ref.p, which serves exactly the same purpose an .m-file, but conceals the source code).
b) ($\mathbf{1 0}$ points) Design a MATLAB function

$$
\text { function }[\mathrm{t}, \mathrm{y}]=\text { odeimpl }(\mathrm{g}, \mathrm{~T}, \mathrm{y} 0)
$$

that uses the MATLAB standard integrator ode45 with absolute tolerance 10^{-7} and relative tolerance 10^{-5} to solve (6) on $[0, T]$. The return values are those of ode45.
c) ($\mathbf{1 0}$ points) Write a MATLAB function

function plotivpsol

that solves the initial value problem (6) for the concrete $g(y)=\frac{y}{1+y^{2}}$ and $y_{0}=\frac{1}{2}$ over the time interval $[0,4]$. Plot both $y(t)$ and $\dot{y}(t)$ in one chart.
Hint: Your solution should look like the plot shown in Figure 3.

Figure 3: Solution of IVP of Problem 6(c)

