Examination

February $4^{\text {th }}, 2010$

Problem 1: Efficient matrix multiplication

(6 points)
Given the fully populated matrices $\mathbf{A} \in \mathbb{R}^{n, 2}, \mathbf{B} \in \mathbb{R}^{2, n}, \mathbf{C} \in \mathbb{R}^{n, 2}, n \gg 2$, determine the asymptotic complexity (in terms of the problem size parameter n) of the evaluation of the MATLAB expressions $(A * B) * C$ and $A *(B * C)$. Explain your answer.

Problem 2: Direct power method

The following is known about the large sparse matrix $\mathbf{A} \in \mathbb{R}^{n, n}, n \in \mathbb{N}, n \gg 5$:

- $(\mathbf{A})_{i, i}=5$ for all $1 \leq i \leq n$,
- $\left|(\mathbf{A})_{i, j}\right| \leq 1$ for all $1 \leq i<j \leq n$,
- each row of \mathbf{A} has at most four non-zero entries,
- \mathbf{A} is symmetric.
a) (2 points) Show that the matrix \mathbf{A} is positive definite.
b) (4 points) Implement an efficient MATLAB function

$$
\text { Hv = H_times_v }(\mathrm{A}, \mathrm{u}, \mathrm{v}) .
$$

that computes $\mathbf{H v}$ for the matrix $\mathbf{H}:=\mathbf{A}+\mathbf{u u}^{T}, \mathbf{u} \in \mathbb{R}^{n}$, and a vector $\mathbf{v} \in \mathbb{R}^{n}$. What is the asymptotic complexity of your routine in terms of the problem size parameter n ?
c) (6 points) Implement a MATLAB function

$$
\text { lmax }=\text { dir_pow_meth(A,u,tol) }
$$

that computes an approximation of the largest eigenvalue of \mathbf{H} by means of the direct power method. The function should make use of H_times_v (A, u,v) from subtask b). Use \mathbf{u} as initial guess for the corresponding eigenvector. The iteration should be stopped once the relative change of the eigenvalue approximation drops below the tolerance tol.

Problem 3: Saddle point problem

We consider a large block-partitioned linear system of equations

$$
\mathbf{M x}=\mathbf{b} \in \mathbb{R}^{n} \quad \text { with } \quad \mathbf{M}:=\left(\begin{array}{cc}
\mathbf{A} & \mathbf{B}^{T} \tag{1}\\
\mathbf{B} & 0
\end{array}\right), \quad \mathbf{b}:=\binom{\mathbf{c}}{0}
$$

where

$$
\mathbf{A} \in \mathbb{R}^{n, n} \quad \text { s.p.d. and tridiagonal } \quad, \quad \mathbf{B} \in \mathbb{R}^{m, n}, \quad \mathbf{c} \in \mathbb{R}^{n}
$$

and $n>m \gg 1$.
We know that each row of \mathbf{B} has no more than two non-zero entries.
a) (2 points) Show that \mathbf{M} is not positive definite.
b) ($\mathbf{3}$ points) Give a sharp bound for the cardinality $\sharp \operatorname{env}(\mathbf{M})$ (i.e., number of tupels contained in it) of the envelope $\operatorname{env}(\mathbf{M})$ of \mathbf{M}.
c) ($\mathbf{3}$ points) Use the MATLAB spy command to visualize the non-zero entries of \mathbf{A}^{-1} for the tridiagonal matrix

$$
\mathbf{A}=\left(\begin{array}{cccccccc}
3 & 1 & 0 & & \cdots & & & 0 \\
1 & 3 & 1 & & & & & \vdots \\
0 & 1 & 3 & \ddots & & & & \\
\vdots & & \ddots & \ddots & & & & \vdots \\
& & & & \ddots & \ddots & 0 \\
\vdots & & & & \ddots & 3 & 1 \\
0 & & \cdots & & & 0 & 1 & 3
\end{array}\right) \in \mathbb{R}^{10,10}
$$

To that end write a short MATLAB script vis_A_pattern.m.
Hint: The complete inverse of a regular matrix is provided by the MATLAB function $\operatorname{inv}(A)$.
d) (3 points) We introduce a partitioning of the solution vector of (1) according to

$$
\mathbf{x}=\binom{\mathbf{y}}{\mathbf{z}} \quad, \quad \mathbf{y} \in \mathbb{R}^{n}, \quad \mathbf{z} \in \mathbb{R}^{m}
$$

Assume that \mathbf{M} is regular. Derive a Schur complement system $\mathbf{S z}=\mathbf{q}, \mathbf{S} \in \mathbb{R}^{m, m}$, $\mathbf{q} \in \mathbb{R}^{m}$, whose solution supplies the \mathbf{z}-component of the solution \mathbf{x} of (1).
Hint: Just eliminate the \mathbf{y}-component of \mathbf{x} in the partitioned linear system

$$
\left(\begin{array}{cc}
\mathbf{A} & \mathbf{B}^{T} \tag{2}\\
\mathbf{B} & 0
\end{array}\right)\binom{\mathbf{y}}{\mathbf{z}}=\binom{\mathbf{c}}{0}
$$

Alternatively, you may rely on block Gaussian elimination.
e) (4 points) The symmetric tridiagonal matrix $\mathbf{A} \in \mathbb{R}^{n, n}$ can be specified through its diagonal $\mathbf{d} \in \mathbb{R}^{n}$ and first sub- and super-diagonal $\mathbf{r} \in \mathbb{R}^{n-1}$:

$$
\mathbf{A}=\left(\begin{array}{cccccccc}
d_{1} & r_{1} & 0 & & \cdots & & & 0 \\
r_{1} & d_{2} & r_{2} & & & & & \vdots \\
0 & r_{2} & d_{3} & \ddots & & & & \\
\vdots & & \ddots & \ddots & & & & \vdots \\
& & & & & \ddots & \ddots & 0 \\
\vdots & & & & & \ddots & d_{n-1} & r_{n-1} \\
0 & & \cdots & & & 0 & r_{n-1} & d_{n}
\end{array}\right)
$$

Devise an efficient MATLAB routine

$$
S=\text { Schurcomplement }(d, r, B)
$$

that computes the Schur complement matrix $\mathbf{S} \in \mathbb{R}^{m, m}$ found in sub-problem d). Here, d, r pass the column vectors \mathbf{d}, \mathbf{r}, and \mathbf{B} the sparse $m \times n$-matrix \mathbf{B}.
Hint: Remember the initialization routine spdiags for initializing sparse banded matrices. You may use the MATLAB \backslash-operator.
f) (1 point) What is the asymptotic complexity of your implementation of Schurcomplement w.r.t. problem size parameters n, m ?

Hint: You may assume that MATLAB makes optimal use of the fact that \mathbf{A} is tridiagonal and s.p.d.
g) (6 points) Implement an efficient MATLAB function

```
z = solveSchurcomplement(d,r,B,c)
```

that solves the Schur complement system $\mathbf{S z}=\mathbf{q}$ from sub-problem d) iteratively by means of the (non-preconditioned) conjugate gradient method provided through MATLAB's pcg built-in function. Use the default tolerance of pcg and initial guess 0 . The function arguments d, r, B have the same meaning as for Schurcomplement from sub-problem e), and c contains the column vector $\mathbf{c} \in \mathbb{R}^{n}$, see (1).

Problem 4: Non-linear least squares

The tuples $\left(t_{i}, a_{i}\right), 1 \leq i \leq n$, represent measurements of the activities $a_{i} \in \mathbb{R}$ of a radioactive sample at times $t_{i} \in \mathbb{R}$. It is known that the sample contains two different radionuclides that decay into non-radioactive isotops. Thus, the sample's total activity is governed by the decay law

$$
\begin{equation*}
a(t)=c_{1} \exp \left(-\lambda_{1} t\right)+c_{2} \exp \left(-\lambda_{2} t\right), \quad t \in \mathbb{R} \tag{3}
\end{equation*}
$$

However, the decay rates λ_{1}, λ_{2} and the initial activities c_{1}, c_{2} are not known and are to be estimated from the measurements. This is done by solving a non-linear least squares problem of the form

$$
\begin{equation*}
\mathbf{x}^{*}=\underset{\mathbf{x} \in \mathbb{R}^{n}}{\operatorname{argmin}}\|\mathbf{F}(\mathbf{x})\|_{2}, \tag{4}
\end{equation*}
$$

with a function $\mathbf{F}: \mathbb{R}^{m} \mapsto \mathbb{R}^{n}$.
a) ($\mathbf{3}$ points) What is \mathbf{x} and \mathbf{F} for the concrete problem of estimating the parameters c_{1}, $c_{2}, \lambda_{1}, \lambda_{2}$ outlined above?
b) (4 points) Give the detailed formulas for one step of the Gauss-Newton method for solving the non-linear least squares problem arising from the current parameter estimation problem.
c) (8 points) Write a MATLAB function
[c,lambda] = lsq_gauss_newton(t,a)
that employs the Gauss-Newton iterations in order to solve the parameter estimation problem for given data t_{i} and $a_{i}, i=1, \ldots, n$, passed in the argument vectors t and a. The parameters found should be returned in the vectors c and lambda. What are the values for $c_{1}, c_{2}, \lambda_{1}, \lambda_{2}$?
To determine an initial guess $\mathbf{x}^{(0)}$ for the Gauss-Newton iteration the fact that radionuclide $\# 2$ decays much more slowly than the other is used. For the initial guess we therefore assume $\lambda_{2}=0$ and $c_{2}=2$. Use the first two measurements $\left(t_{1}, a_{1}\right)$ and $\left(t_{2}, a_{2}\right)$ to determine the remaining parameters c_{1} and λ_{1}.
d) (3 points) The file activities.mat provides data vectors $\left(t_{i}\right)_{i=1}^{n}$ and $\left(a_{i}\right)_{i=1}^{n}$. Plot the 2 -norm of the error of the Gauss-Newton iterates from lsq-gauss_newton versus the number of the iteration step in lin-log scale for errors larger than 10^{-10}. What kind of convergence can you read off the chart?
Hint: The solution of the least squares problem is TODO

Problem 5: Method of Heun

a) (3 points) Let $g: \mathbb{R} \mapsto \mathbb{R}$ be a given Lipschitz continuous function. Convert the scalar third-order ODE

$$
\begin{equation*}
\dddot{u}+\sin \dot{u}=g(u), \tag{5}
\end{equation*}
$$

into an equivalent first order ODE.
b) ($\mathbf{3}$ points) The method of Heun is a 3 -stage explicit Runge-Kutta method described by the Butcher scheme

$$
\begin{array}{c|ccc}
0 & 0 & & \tag{6}\\
\frac{1}{3} & \frac{1}{3} & 0 & \\
\frac{2}{3} & 0 & \frac{2}{3} & 0 \\
\hline & \frac{1}{4} & 0 & \frac{3}{4}
\end{array}
$$

Write down the formulas for the corresponding discrete evolution for the autonomous $\operatorname{ODE} \dot{\mathbf{y}}=\mathbf{f}(\mathbf{y})$.
c) (3 points) Implement a MATLAB function
[t, y] = heun_integrator(odefun, y0, T, N),
which employs the method of Heun to solve the autonomous initial value problem

$$
\begin{equation*}
\dot{\mathbf{y}}=\mathbf{f}(\mathbf{y}), \quad \mathbf{y}\left(t_{0}\right)=\mathbf{y}_{0} \tag{7}
\end{equation*}
$$

over the interval $[0, T]$ using $N \in \mathbb{N}$ uniform timesteps. The right hand side $\mathbf{f}(\mathbf{y})$ of (7) is passed via the function handle $@(y)$ odefun(y).
The return values should correspond to those of the MATLAB standard integrators.
d) (3 points) Write a MATLAB function

$$
[t, y]=\text { heun_driver (g, y0, T, N), }
$$

that invokes heun_integrator from the previous sub-problem to solve initial value problems for the ODE (5).

Hint: By means of the MATLAB script run_script you can test heun_driver by plotting the solution of

$$
\begin{array}{ll}
& u(0)=1 \\
\dddot{u}+\sin \dot{u}=-u, & \dot{u}(0)=0 \\
& \ddot{u}(0)=0
\end{array} .
$$

