Aufgabe 6: Das mathematische Pendel

sjorge, danicola; 2015, D-MATL ETHZ

Das mathematische Pendel

Das mathematische Pendel ist eine Idealisierung des normalen Pendels, dient zum Verständnis von Pendelschwingungen und hat folgende Eigenschaften:

- · Das Gewicht ist punktförmig
- Dem Faden wird kein Gewicht zugeschrieben
- Es gibt keine Reibung (kein Luftwiederstand, etc.)

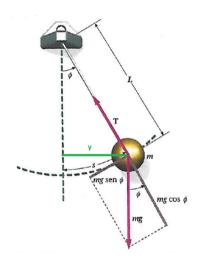


Abbildung 1: Skizze des mathematischen Pendels

Rückstellkraft F: $F(\varphi) = -m * g * \sin(\varphi)$, m = Masse des Gewichtes, g \approx 9.81 m/s². Diese Kraft F wirkt auf der Erdoberfläche auf das Gewicht.

Näherung für F (Aufgabe a)

Bei einer sehr kleinen Auslenkung des Pendels aufgrund der Kleinwinkelnäherung (siehe unten) gilt:

$$sin(\varphi) = \varphi$$

weshalb die Näherung

$$F(\varphi) = -m * g * \sin(\varphi) = -m * g * \varphi$$

gilt.

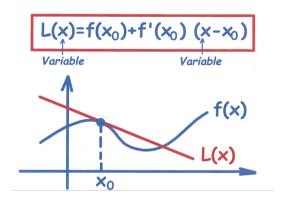


Abbildung 2: Linearisierung einer Funktion.

Unter Linearisierung versteht man die Approximation einer Funktion zu einer Geraden. Wir linearisieren die Funktion $f(x) = \sin(x)$ an der Stelle x = 0.

$$L(x) = \sin(\varphi_0) + \cos(\varphi_0)(\varphi - \varphi_0)$$

Der Winkel φ wird als möglichst klein betrachtet also $\varphi_0=0.$

$$L(x) = 0 + 1 * \varphi = \varphi$$

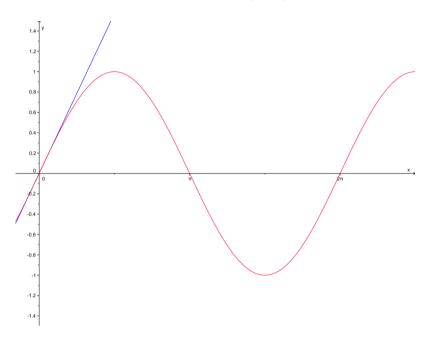


Abbildung 3: Linearisierung von x = sin(x) bei x = 0.

Zusammenhang zwischen φ und s (Aufgabe b)

Falls das Pendel nur ganz wenig ausgelenkt ist, kann man y = x annehmen.

Daraus folgt: $\varphi = \frac{x}{L} = \frac{y}{L}$ und $s(\varphi) = \varphi * L$.

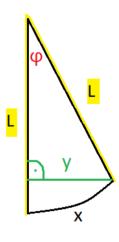


Abbildung 4

D-MATL ETHZ 21.10.15

Kraft für $\varphi(t) = 0$ (Aufgabe c)

Aus der Physik weiss man:

$$F(\varphi(t)) = m * L * \frac{d}{dt} \left(\frac{d}{dt} \varphi(t) \right)$$

Setzt man $\varphi(t)=0$ ein, erhält man $F(\varphi(t))=m*L*0=0$, da (0)''=(0)'=0. Dies macht auch physikalisch Sinn, denn wenn das Pendel nicht ausgelenkt ist, gibt es auch keine resultierende Kraft, sonst würde das Pendel von selbst beginnen sich zu Bewegen!

Einsetzen der Näherung und lösen der Differentialgleichung

Wir nehmen nun die Näherung $F(\varphi) = -m * g * \varphi$ und setzen diese in die Formel $F(\varphi(t)) = m * L * \varphi''(t)$ ein:

$$-m * g * \varphi(t) = m * L * \varphi''(t)$$

Teilen wir diese Gleichung durch m und L erhalten wir:

$$-\frac{g}{L} * \varphi(t) = \varphi''(t)$$

(Stellt man diese Gleichung um, erhält man die Gleichung eines harmonischen Oszillators: $\varphi''(t) + \omega_0^2 * \varphi(t) = 0$.)

Nun brauchen wir eine Funktion, die zweimal abgeleitet sich selbst ergibt: Sinus und Cosinus! Ist der Sinus nun die gesuchte Funktion? Nein, denn:

$$\sin''(t) = \cos'(t) = -\sin(t) \neq -\frac{g}{L} * \sin(t)$$

Jedoch kann man mit der Kettenregel $(\sin'(cx) = c * \cos(cx))$ diesen Faktor produzieren:

$$\sin''(cx) = (c * (cos (cx)))' = -c^2 \sin(cx)$$

Die ganze Gleichung lautet also:

$$-\frac{g}{L} * \sin\left(\sqrt{\frac{g}{L}} * t\right) = \sin''\left(\sqrt{\frac{g}{L}} * t\right)$$

Und die gesuchte Funktion:

$$\varphi(t) = \sin\left(\sqrt{\frac{g}{L}} * t\right)$$

Analog gilt das für den Cosinus.

(Das mathematische Pendel ist ein harmonischer Oszillator. Dessen Ortsfunktion ist $\mathbf{x}(t) = u \sin(\omega_0^2 \mathbf{t} + \varphi)$ Wobei u: Aplitude/max. Auslenkung, ω_0 : Resonanzfrequenz und φ : Anfangswinkel bzw. Phasenverschiebung.)

D-MATL ETHZ 21.10.15