9.1. Kompositionen

(a) Sei $s_n \to s_0$ für $n \to \infty$ eine konvergente Folge in \mathbb{R} . Gemäss Satz 3.6.1 gilt dann auch $(s_n, 0) \to (s_0, 0)$ und $(0, s_n) \to (0, s_0)$ in \mathbb{R}^2 für $n \to \infty$. Daher sind die Einbettungen ι_1, ι_2 stetig. Ist umgekehrt $(x_n, y_n) \to (x_0, y_0)$ für $n \to \infty$ eine konvergente Folge in \mathbb{R}^2 , so konvergieren nach Satz 3.6.1 $x_n \to x_0$ und $y_n \to y_0$ in \mathbb{R} für $n \to \infty$. Daher sind die Projektionen p_1, p_2 stetig. Ferner folgt $x_n y_n \to x_0 y_0$ aus den Grenzwertsätzen (Satz 3.3.2). Folglich ist auch die Multiplikation m stetig.

(b) Es gilt
$$f = \iota_1 \circ (p_1 + p_2) + \iota_2 \circ (p_1 + p_2)$$
, denn

$$(x+y,x+y) = \iota_1(p_1(x,y) + p_2(x,y)) + \iota_2(p_1(x,y) + p_2(x,y)).$$

Ferner gilt $g = m \circ (\iota_1 \circ (p_1 - p_2) + \iota_2 \circ (p_1 - p_2))$, denn

$$(x-y)^2 = m(p_1(x,y) - p_2(x,y), p_1(x,y) - p_2(x,y)).$$

Eine derartige Zerlegung ist nicht eindeutig. Wenden wir etwa zuerst die binomische Formel an, erhalten wir $g = m \circ (\iota_1 \circ p_1 + \iota_2 \circ p_1) - 2m \circ (\iota_1 \circ p_1 + \iota_2 \circ p_2) + m \circ (\iota_1 \circ p_2 + \iota_2 \circ p_2)$.

Offenbar gilt $p_1 \circ f = p_2 \circ f$. Daher ist das Bild von f Teilmenge der Diagonalen $D = \{(x, y) \in \mathbb{R}^2 : x = y\}$. Sei umgekehrt $(s, s) \in D$ ein beliebiger Punkt auf der Diagonalen. Dann ist $(s, 0) \in \mathbb{R}^2$ im Definitionsbereich von f und f(s, 0) = (s, s). Somit ist D Teilmenge des Bilds von f. Insgesamt folgt, dass D das Bild von f ist.

9.2. Punktmengentopologie Sei $n \in \mathbb{N}$.

- (a) Die Teilmenge $M = \{(x,0,\ldots,0) \in \mathbb{R}^n \; ; \; x>0\} \cup \{(-1,0,\ldots,0)\} \subset \mathbb{R}^n \text{ ist nicht offen, denn } (-1,0,\ldots,0) \in M \text{ ist kein innerer Punkt. Falls } n \geq 2 \text{ ist das Innere von } M \text{ sogar leer. Ferner ist } M \text{ nicht abgeschlossen, denn } (0,\ldots,0) \in \mathbb{R}^n \setminus M \text{ ist kein innerer Punkt des Komplements. Schliesslich ist } M \text{ unbeschränkt, denn } (n,0,\ldots,0) \in M \text{ für jedes } n \in \mathbb{N}.$
- (b) Sei $A = \{a_1, \ldots, a_m\} \subset \mathbb{R}^n$ eine endliche Teilmenge. Sei $a \in A$ beliebig. Für jedes r > 0 enthält der Ball $B_r(a)$ unendlich viele Punkte und kann daher keine Teilmenge von A sein. Somit ist das Innere von A die leere Menge: $\operatorname{int}(A) = \emptyset$.

Sei $p \in \mathbb{R}^n \setminus A$ ein beliebiger Punkt im Komplement. Dann ist der Abstand von p zu A eine positive Zahl $\delta := \min\{\|p - a_k\|; k = 1, \dots, m\} > 0$, da das Minimum einer endlichen Menge positiver Zahlen stets existiert und positiv ist. Nach Konstruktion ist der Ball $B_{\frac{\delta}{2}}(p) \subset \mathbb{R}^n \setminus A$ im Komplement enthalten. Somit ist $\mathbb{R}^n \setminus A$ offen und A abgeschlossen. Es folgt $\operatorname{clos}(A) = A$.

Schliesslich ist $\partial A = \operatorname{clos}(A) \setminus \operatorname{int}(A) = A \setminus \emptyset = A$ der Rand von A. Jeder Punkt einer endlichen Teilmenge des \mathbb{R}^n ist somit ein Randpunkt.

Eine endliche Teilmenge \mathbb{R}^n ist offenbar beschränkt, wie oben gezeigt abgeschlossen und somit stets kompakt.

(c) Sei $\Omega \subset \mathbb{R}^n$ offen, $A \subset \mathbb{R}^n$ abgeschlossen und $K \subset \mathbb{R}^n$ kompakt.

Als kompakte Teilmenge des \mathbb{R}^n ist K beschränkt und abgeschlossen. $A \cap K$ ist abgeschlossen als Durchschnitt zweier abgeschlossener Mengen. Ferner ist $A \cap K \subset K$ beschränkt als Teilmenge einer beschränkten Menge. Somit ist $A \cap K \subset \mathbb{R}^n$ kompakt.

 A^{\complement} ist das Komplement einer abgeschlossenen Menge und damit offen. $\Omega \setminus A = \Omega \cap A^{\complement}$ ist der Schnitt zweier offner Mengen und damit ebenfalls offen.

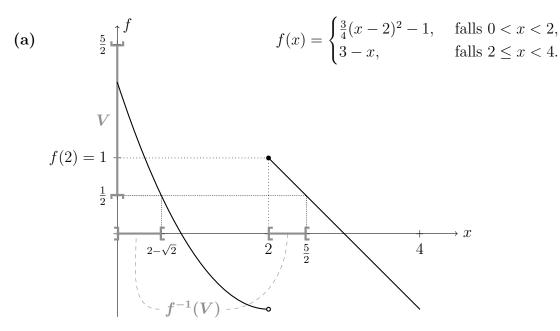
 Ω^{\complement} ist das Komplement einer offenen Menge und damit abgeschlossenen. $A \setminus \Omega = A \cap \Omega^{\complement}$ ist der Schnitt zweier abgeschlossener Mengen und damit ebenfalls abgeschlossenen.

(d) Es gilt

$$\mathcal{O} := \{ x \in \mathbb{R}^n \; ; \; r < ||x|| < R \} = B_R(0) \setminus \overline{B_r(0)},$$

wobei $B_R(0) = \{x \in \mathbb{R}^n ; ||x|| < r\}$ der offene Ball um 0 mit Radius R ist und $\overline{B_r(0)}$ den Abschluss von $B_r(0)$ meint. Somit folgt direkt aus (c), dass \mathcal{O} offen ist.

9.3. Topologisches Kriterium Graph und Vorschrift von $f:]0, 4[\to \mathbb{R} \text{ sind }$



(b) Das offene Intervall $V=\left]\frac{1}{2},\frac{5}{2}\right[$ ist eine Umgebung von f(2)=1 in \mathbb{R} . Um das Urbild von V zu bestimmen, beobachten wir, dass beide "Stücke" von f(x) auf ihrem Definitionsbereich jeweils monoton fallen. Wie sehen leicht, dass $f(2-\sqrt{2})=\frac{3}{2}-1=\frac{1}{2}$ und $f(\frac{5}{2})=3-\frac{5}{2}=\frac{1}{2}$. Daher gilt

$$f^{-1}(V) = \left[0, 2 - \sqrt{2}\right] \cup \left[2, \frac{5}{2}\right].$$

Dies ist keine Umgebung von 2 relativ zu $\Omega =]0, 4[$, denn für alle 0 < r < 1 ist

$$B_r(2) \cap \Omega =]2 - r, 2 + r[$$

aber $2 - \frac{r}{2} \notin f^{-1}(V)$. Das heisst, egal wie klein r gewählt wird, $B_r(2) \cap \Omega$ ist nie eine Teilmenge von $f^{-1}(V)$.

9.4. Fixpunkt Sei $f: [0,1] \rightarrow [0,1]$ eine beliebige stetige Funktion.

(a) Wir definieren die Funktion $g: [0,1] \to \mathbb{R}$ durch die Vorschrift g(x) = x - f(x). Dann gilt $f(x) = x \Leftrightarrow g(x) = 0$. Daher folgt die Behauptung, wenn wir zeigen, dass g in [0,1] eine Nullstelle besitzt.

 $g: [0,1] \to \mathbb{R}$ ist als Differenz stetiger Funktionen stetig. Aus $\forall x \in [0,1]: f(x) \in [0,1]$ folgt $g(0) = -f(0) \le 0$ und $g(1) = 1 - f(1) \ge 0$. Daher ist der Zwischenwertsatz anwendbar, und es folgt, dass zu $0 \in [g(0), g(1)]$ ein $x \in [0,1]$ mit g(x) = 0 existiert.

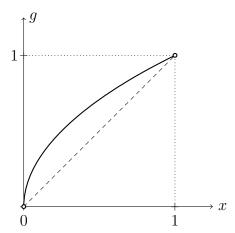
(b) Die Funktionen

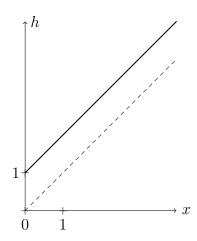
$$g:]0,1[\rightarrow]0,1[,$$

 $x \mapsto \sqrt{x}$

$$h: [0, \infty[\to [0, \infty[, x \mapsto x + 1]$$

sind stetig, haben aber beide keinen Fixpunkt: Zum einen gilt $\forall x \in]0,1[:\sqrt{x}>x.$ Zum anderen ist $\forall x \geq 0: h(x)-x=1>0.$





(c) Sei $n \in \mathbb{N}$ beliebig. Analog zu (a) definieren wir die Funktion

$$g: [0, 1 - \frac{1}{n}] \to \mathbb{R}$$

$$x \mapsto f(x) - f(x + \frac{1}{n})$$

und zeigen indirekt, dass g stets eine Nullstelle besitzt. Angenommen, $\forall x \in [0, 1 - \frac{1}{n}]$: g(x) > 0. Das bedeutet $f(x) > f(x + \frac{1}{n})$. Dann folgt für $x = 0, \frac{1}{n}, \frac{2}{n}, \dots, \frac{n-1}{n}$ sukzessiv

$$0 = f(0) > f(\frac{1}{n}) > f(\frac{2}{n}) > \dots > f(\frac{n-1}{n}) > f(1) = 0,$$

was zu einem Widerspruch führt. Falls $\forall x \in [0, 1 - \frac{1}{n}] : g(x) < 0$ folgt analog

$$0 = f(0) < f(\frac{1}{n}) < f(\frac{2}{n}) < \dots < f(\frac{n-1}{n}) < f(1) = 0,$$

was ebenso zu einem Widerspruch führt. Somit besitzt g eine Nullstelle.