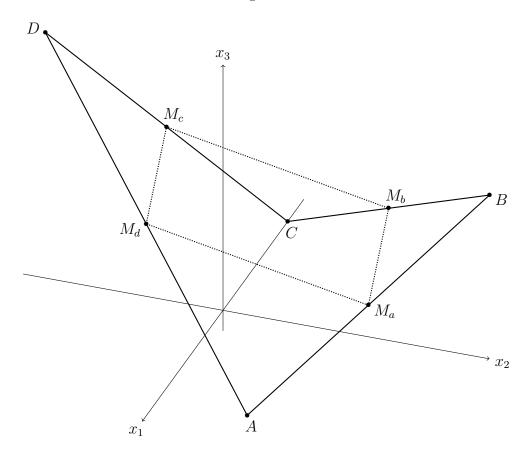
3.1. Viereck Sei $n \geq 3$ und seien $A, B, C, D \in \mathbb{R}^n$ verschiedene Punkte. Zeigen Sie: Die Seitenmitten des (nicht notwendigerweise ebenen) Vierecks ABCD in \mathbb{R}^n liegen in einer Ebene und bilden ein Parallelogramm.



- **3.2. Einheitsvektoren** Sei $n \in \mathbb{N}$. Bestimmen Sie die gegenseitige Lage dreier Einheitsvektoren $u, v, w \in \mathbb{R}^n$ mit Summe $u + v + w = 0 \in \mathbb{R}^n$.
- **3.3. komplexe Teilmengen** Bestimmen Sie die folgenden Teilmengen der komplexen Ebene.

$$\begin{split} A &= \big\{z \in \mathbb{C} \; ; \; \overline{z} = -z \big\}, \\ B &= \big\{z \in \mathbb{C} \setminus \big\{0\big\} \; ; \; \overline{z} = \frac{1}{z} \big\}, \\ C &= \big\{z \in \mathbb{C} \; ; \; 0 < \operatorname{Re}(iz) < 1 \big\}, \\ D &= \big\{z \in \mathbb{C} \setminus \big\{-1\big\} \; ; \; |\frac{z}{z+1}| = 2 \big\}, \\ E &= \big\{z \in \mathbb{C} \setminus \big\{-i\big\} \; ; \; \operatorname{Im}(\frac{z-i}{z+i}) = 0 \big\}. \end{split}$$

3.4. komplexe Zahlen

(a) Seien $z, w \in \mathbb{C}$ komplexe Zahlen. Zeigen Sie: Falls |z| = 1 und $w \neq z$, so gilt

$$\left| \frac{z - w}{1 - \overline{z}w} \right| = 1.$$

Hinweis: $|z|^2 = z\overline{z}$.

(b) Zerlegen Sie die folgenden komplexen Zahlen in Real- und Imaginärteil.

$$\begin{split} z &= \frac{1}{1+i} + \frac{1}{2+i} + \frac{1}{3+i}, \\ u &= \frac{2-3i}{2+i} + \frac{1-i}{1+3i}, \\ v &= \sqrt{i}, \\ w &= i^i. \end{split}$$

Hinweis: Nichtganzzahlige Potenzen komplexer Zahlen sind mehrdeutig.

(c) Berechnen Sie $(1+i)^4(1-\sqrt{3}i)^3$. Hinweis: Polarform.

3.5. komplexe Wurzeln (schriftlich)

(a) Sei $n \in \mathbb{N}$. Eine Lösung $z \in \mathbb{C}$ der Gleichung $z^n = 1$ wird n-te Einheitswurzel genannt. Bestimme Sie alle n-ten Einheitswurzeln (es sind n an der Zahl). Zeichnen Sie alle 3-ten Einheitswurzeln in die komplexe Ebene ein.

 $\mathit{Hinweis}$: Rechnen Sie in Polarform mit dem Ansatz $z=r\,e^{i\varphi}$. Welche Gleichungen müssen φ und r erfüllen?

(b) Bestimmen Sie alle Lösungen $z \in \mathbb{C}$ der kubischen Gleichung $1z^3 + 3z^2 + 3z - 7 = 0$.