Musterlösung 3

- 1. Um die Stetigkeit von h zu beweisen, unterscheiden wir zwei Fälle:
 - 1. $x_0=0$: sei $\varepsilon>0$. Wir setzen $\delta=\varepsilon^2$ und betrachten alle $x\geq 0$ mit $|x|<\delta$. Dann folgt

$$|h(x) - h(0)| = \sqrt{x} = \sqrt{|x|} < \sqrt{\varepsilon^2} = \varepsilon$$

d.h. h ist stetig im Punkt 0.

2. $x_0 > 0$: sei $\varepsilon > 0$. Wir erinnern an die folgende Identität

$$\sqrt{x} - \sqrt{x_0} = \frac{x - x_0}{\sqrt{x} + \sqrt{x_0}},$$

die für alle nicht negativen x gilt. Wir setzen $\delta=\varepsilon\sqrt{x_0}$. Somit erhalten wir für alle $x\geq 0$ mit $|x-x_0|<\delta$

$$|h(x) - h(x_0)| = |\sqrt{x} - \sqrt{x_0}| = \frac{|x - x_0|}{\sqrt{x} + \sqrt{x_0}} \le \frac{|x - x_0|}{\sqrt{x_0}} \le \varepsilon,$$

d.h. h ist stetig im Punkt x_0 .

2. a) Seien $\varepsilon > 0$ und $x_0 \in D$. Weil $f: D \to \mathbb{R}$ Lipschitz-stetig ist, gilt

$$|f(x) - f(x_0)| \le K|x - x_0|$$
, für alle $x \in D$,

wobei $K \ge 0$ die Lipschitz-Konstante von f ist.

Falls K=0 ist, dann ist f eine konstante Funktion, die offensichtlich stetig ist.

Falls K>0 ist, setzen wir $\delta=\frac{\varepsilon}{K}$. Dann gilt für alle $x\in D$ mit $|x-x_0|<\delta$

$$|f(x) - f(x_0)| < K\delta = \varepsilon$$
,

d.h. f ist stetig im Punkt x_0 .

b) Nein! Um das zu sehen, betrachten wir die Funktion $x \mapsto \sqrt{x}$. Aus Aufgabe **1.** wissen wir, dass diese Funktion stetig ist. Wir nehmen nun an, dass sie auch Lipschitz-stetig ist. Dann gilt

$$|\sqrt{x} - \sqrt{x'}| \le K|x - x'|$$
, für alle $x, x' \ge 0$,

wobei K>0 ist. Wir wählen x'=0. Dann gilt $\sqrt{x} \le K|x|=Kx$. Wir wählen nun ein $x:0< x<\frac{1}{K^2}$. Somit folgt

$$1 \le K\sqrt{x} < K \cdot \frac{1}{K} = 1,$$

d.h. 1<1. Widerspruch! Wir schliessen, dass die Funktion $x\mapsto \sqrt{x}$ nicht Lipschitz-stetig sein kann.

- 3. Da $\lim_{x\to 0^-} 3\sqrt{-x} + 1 = 1$ ist, muss der Wert von cx + d an der Stelle x = 0 gleich 1 sein. Somit ist also d = 1. Weiters gilt $\lim_{x\to 1^+} x^{10} 1 = 0$. Der Wert von cx + d muss also in x = 1 gleich 0 sein. Also erhalten wir c = -1. Auf $\mathbb{R} \setminus \{0,1\}$ ist f jeweils eine Komposition stetiger Funktionen und somit stetig. Damit ist f auf ganz \mathbb{R} stetig.
- **4.** a) Per Definition ist g(0) = 0, also existiert es.
 - **b)** Da $x^2 b = (x b)(x + b)$ ist, gilt g(x) = x + b für $x \neq b$. Also ist

$$\lim_{x \to b} g(x) = \lim_{x \to b} (x+b) = 2b.$$

c) Damit g(x) stetig ist an der Stelle x = b, muss gelten

$$\lim_{x \to b} g(x) = g(b),$$

also 2b=0. Damit sehen wir, dass g(x) an der Stelle x=b stetig ist, genau dann, wenn b=0 ist.