Indecomposable representations, Endomorphisms and the Krull-Remak-Schmidt theorem

Christian Sbardella, Mateo Rodriguez, Patrik Kuehn, Claudio Sibilia

21.10.2008

In this section we consider finite dimensional representations.

Definition 1: Let X_1, \dots, X_r be a finite number of representations. A *di*rect sum $X = X_1 \oplus \dots \oplus X_r$ is a representation X together with morphisms $\iota_i : X_i \longrightarrow X$ and $\pi_i : X \longrightarrow X_i$ for $1 \le i \le r$, such that $\sum_{i=1}^r \iota_i \pi_i = id_X$ and $\pi_i \iota_i = id_{X_i}$.

Definition 2: A family of representations $X_1, ..., X_r$ of X satisfying: $X = \sum_{i=1}^r X_i$ and $X_i \cap \sum_{i' \neq i} X'_i = 0$ for $1 \leq i \leq r$ is called *direct sum decomposition* of X.

Lemma 1: Let $X = X_1 \oplus ... \oplus X_r$ and $Y = Y_1 \oplus ... \oplus Y_s$. Then we have induced vector space decompositions:

$$\bigoplus_{i=1}^{r} Hom(X_i, Y) \simeq Hom(X, Y) \simeq \bigoplus_{j=1}^{s} Hom(X, Y_j).$$

Definition 3: A representation X is called *indecomposable* if $X \neq 0$ and $X = X_1 \oplus X_2$ implies $X_1 = 0$ or $X_2 = 0$.

Definition 4: The set of morphisms $X \longrightarrow Y$ we denote by Hom(X;Y). The set of morphisms $X \longrightarrow X$ is the set of the *endomorphisms* $X \longrightarrow X$ and we write End(X). Note that $(End(X), +, \circ)$ is a ring.

Lemma 2: (*Fitting*) Let X be a representation and ϕ an endomorphism: 1) For large enough r, we have $X = \text{Im}\phi^r \oplus \text{Ker}\phi^r$. 2) If X is *indecomposable*, then ϕ is either an *automorphism* or *nilpotent*.

Definition 5: A ring is called *local* if the sum of two non-units is again a non-unit.

Proposition 1: A representation X is indecomposable if and only if End(X) is local. (The assumption on X to be *finite* is necessary).

Example 1: (Counterexample) Let k[t] denote the polynomial ring in one variable and consider the following representation of the Kronecker quiver. The endomorphism ring of X is isomorphic to k[t].

So the proposition 1 doesn't hold for infinite dimensional X.

Definition 6: Given a pair X,Y of representations, we define the *radical*: Rad(X,Y)= { $\phi \in Hom(X,Y) | \tau \phi \sigma$ is non-invertible for every pair $\sigma : Z \longrightarrow X$ and $\tau : Y \longrightarrow Z$, with Z indecomposable}.

Lemma 3: Let X,Y be a pair of representations.

1) $\operatorname{Rad}(X,Y)$ is a subspace of $\operatorname{Hom}(X,Y)$.

2) $\operatorname{Rad}(X, Y_1 \oplus Y_2) = \operatorname{Rad}(X, Y_1) \oplus \operatorname{Rad}(X, Y_2).$

3) $\operatorname{Rad}(X_1 \oplus X_2, Y) = \operatorname{Rad}(X_1, Y) \oplus \operatorname{Rad}(X_2, Y).$

4) If X and Y are indecomposable, then $Hom(X,Y) \setminus Rad(X,Y)$ equals the set of isomorphisms $X \longrightarrow Y$.

Proof: 1) Let $\phi_1, \phi_2 \in \text{Rad}(X, Y)$. Choose $\sigma \in \text{Hom}(Z, X)$ and $\tau \in \text{Hom}(Y, Z)$ with Z indecomposable. Then $\tau \phi_1 \sigma$ and $\tau \phi_2 \sigma$ are non-invertible, and therefore $\tau(\phi_1 + \phi_2)\sigma = \tau \phi_1 \sigma + \tau \phi_2 \sigma$ is non-invertible, since End(Z) is local by proposition 1. Thus $\phi_1 + \phi_2$ belongs to Rad(X, Y).

2) Let $Y=Y_1 \oplus Y_2$ and $\phi = (\phi_i) \in Hom(X,Y)$ with $\phi_i \in Hom(X,Y_i)$ for i=1,2. Choose $\phi \in Hom(Z,X)$ and $\tau = (\tau_i) \in Hom(Y,Z)$ with Z indecomposable and $\tau_i \in Hom(Y_i, Z)$ for i=1,2. Then $\tau \phi \sigma = \tau_1 \phi_1 \sigma + \tau_2 \phi_2 \sigma$.

If $\phi_i \in \operatorname{Rad}(X,Y_i)$ for i=1,2, then $\tau_i \phi_i \sigma$ is non-invertible for i=1,2, and therefore $\tau \phi \sigma$ is non-invertible, since $\operatorname{End}(Z)$ is local by proposition 1. Thus ϕ belongs to $\operatorname{Rad}(X,Y)$. Conversely, let $\phi \in \operatorname{Rad}(X,Y)$ and fix $i \in \{1,2\}$. Then $\phi_i \in \operatorname{Rad}(X,X_i)$ because we can put $\tau_j = 0$ for $j \neq i$ and have that $\tau_i \phi_i \sigma = \tau \phi \sigma$ is non-invertible.

3) Analogous to part 2).

4) Let $\phi \in \text{Hom}(X,Y) \setminus \text{Rad}(X,Y)$. Choose $\sigma \in \text{Hom}(Z,X)$ and $\tau \in \text{Hom}(Y,Z)$ with Z indecomposable such that $\tau \phi \sigma$ is invertible. Then ϕ is invertible because X is indecomposable, and τ is invertible because Y is indecomposable. Thus ϕ is invertible.

It is clear that an isomorphism $X \longrightarrow Y$ does not belong to Rad(X,Y).

Theorem(Krull-Remak-Schmidt): Let X be a finite dimensional representation. Then there exists a decomposition $X = X_1^{a_1} \oplus \cdots \oplus X_r^{a_r}$ with the X_i pairwise non-isomorphic indecomposable representations and each $a_i \ge 1$. If $X = Y_1^{b_1} \oplus \cdots \oplus Y_s^{b_s}$ is another such decomposition, then r = s and, after reordering, $X_i \cong Y_i$ and $a_i = b_i$ for $1 \le i \le r$.

References

H.Krause, Representation of quivers via reflection functors.