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1 Cluster algebras with finitely many cluster vari-
ables
Let us consider the quiver

Q:1—2-—3

obtained by endowing the Dynking diagram Ajz with a linear orientation. By
applying the recursive construction to the initial seed (Q, {z1,z2,¥3}) one finds
exactly fourteen seeds (modulo simultaneous renumbering of vertices and cluster
variables). These are the vertices of the exchange graph, which is isomorphic to

the third Stasheff associahedron.
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The vertex labeled 1 corresponds to (@, {z1,z2, z3}), the vertex labeled 2 to
u2(Q, {z1,22,23}), which is given by
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and the vertex 3 to u;(Q, {z1, T2, 23}), which is given by
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As expected (see first talk), we find a total of 3 4+ 6 = 9 cluster variables,
which correspond bijectively to the faces of the exchange graph. The clusters
{z1, 29,73} and {2}, 22, x3}, where z{ = ”7112, also appear naturally as slices of
the repetition, where by a slice, we mean a full connected subquiver containing
a representative of each orbit under the horizontal translation (a subquiver is
full if, with any two vertices, it contains all the arrows between them).
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In fact, as it is easy to check, each slice yields a cluster. However, some clusters
do not come from slices, for example the cluster {zy, 3, ]}, where z{ = 21t%a,
associated with the seed po(Q,{z1,22,z3}). The phenomena observed in this
examples are explained by the following key theorem. Note that a Dynkin
diagram is simply laced if it contains only simple links, ie. it is of Type

An, Dy, Eg, E7 or Es.

Theorem 1.1 (Fomin-Zelevinsky). Let Q be a finite connected quiver without
loops or 2-cycles with vertex set {1,...,n}. Let oy be the associated cluster
algebra.

a) All cluster variables are Laurent polynomials, i.e. their denominators are
monomials.

b) The number of cluster variables is finite iff Q@ is mutation equivalent to an
orientation of a simply laced Dynkin diagram A. In this case, A is unique
and the non initial cluster variables are in bijection with the positive roots
of A; namely, if we denote the simple roots by o, ..., oy, then for each
positive root Y d; a,, there is a unique non initial cluster variable whose
denominator is []z.

¢) The knitting algorithm yields all cluster variables iff the quiver Q has two
vertices or is an orientation of a simply laced Dynkin diagram A.

It is not hard to check that the knitting algorithm yields exactly the cluster
variables obtained by iterated mutations at sinks and sources. Remarkably, in
the Dynkin case, all cluster variables can be obtained in this way.

Remark 1.1. The construction of the cluster algebra shows that if the quiver
Q is mutation-equivalent to Q', then we have an isomorphism

oy = g

preserving clusters and cluster variables. Thus, to prove that the condition in b)
is sufficient, it suffices to show that &g is cluster-finite if the underlying graph
of Q is a Dynkin diagrom.



In general it is unknown how to decide whether two given quivers are muta-
tion-equivalent. However, for certain restricted classes, the answer to this prob-
lem is known: Trivially, two quivers with two vertices are mutation-equivalent
iff they are isomorphic. But it is already a non-trivial problem to decide when
a quiver
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where r, s and ¢ are non negative integers, is mutation-equivalent to a quiver
without a 3-cycle: One can show that this is the case iff the Markoff inequality

r? s +t2 st >4
holds or one among r, s and ¢ is < 2.

Example 1.1. One can check that for 3 < n < 8, the following quiver glued
together from n — 2 triangles

1 / 3 / 5 / o n-—1

2 4 6 . / n
is cluster-finite of respective cluster-type As, Dy, Ds, Eg, E; and Eg and that
it is not cluster-finite if n > 8.

2 Associahedron

First some definitions that we all know from geometry:

Definition 2.1. A polygon P is a closed plane figure, that is bounded by a
closed path composed of a finite sequence of straight line segments (sides). It is
called simple, if its sides do not cross and it is called convex if it is simple
and its interior is a convez set.

Definition 2.2. A triangulation of a polygon P is the decomposition of P
into a set of non-overlapping triangles whose union is P.

Given a convex (n + 3)-gon P, i.e. a polygon with n + 3 sides.
Lemma 2.1. Each triangulation of P involves exactly n diagonals.

Theorem 2.1. The number of possible triangulations of a convezr (n + 3)-gon
is given by the Catalan number

1 2n 4+ 2
n+2\n+1/




Example 2.1. 1. n = 1: 2 triangulations of a conver quadrilateral (four-
sided figure),

2. n =2 5 triengulations of a pentagon,
3. n = 3: 14 triangulations of a hexagon.

Given a triangulation of P we can get another triangulation by removing a
diagonal to create a quadrilateral, then replace the removed diagonal with the
other diagonal of the quadrilateral. This procedure is called diagonal flip.

Definition 2.3. We call the graph defined by diagonal flips the exchange
graph of P.

Example 2.2. 1. n = 2: The exchange graph for triangulations of a pen-
tagon,

2. n = 3: The exchange graph for triangulations of a hexagon.
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The drawing of the exchange graph in figure 2 fails to convey its crucial
property: this exchange graph is the 1-skeleton of a convex polytope, the 3-

dimensional associahedron.
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In order to formally define the n-dimensional associahedron associated to a
{(n + 3)-gon, we start by describing the object which is dual to it.

Definition 2.4 (The dual complex of an associahedron). Consider the fol-
lowing simplicial complez:

o vertices: diagonals of a convez (n + 3)-gon,

e simplices: partial triangulations of the (n + 3)-gon (collections of non-
crossing diagonals)

o mazimal simplices: triangulations of the (n+3)-gon (collections of n non-

crossing diagonals)

In other words we connect two edges if the diagonals do not cross. Below
we see the simplicial complex dual to the 3-dimensional associahedron.



Theorem 2.2. The simplicial complez described in Definition 2.4 can be realized
as the boundary of an n-dimensional convex polytope.

Definition 2.5 (The associahedron). The n-dimensional associahedron is the
convex polytope that is dual to the polytope of Theorem 2.2.

3 Matrix mutations

Given a convex (n + 3)-gon P. Fix a triangulation T of P. Label the diagonals
of T arbitrarily by the numbers 1,...,n and label the n + 3 sides of P by the
numbers n+ 1, ..., 2n + 3. The combinatorics of T' can be encoded by the edge-
adjacency matrix B = (b;;). This is the (2n -+ 3) x n matrix whose entries
are given by

1 if i and j label two sides in some triangle of T" so that j
follows i in the clockwise traversal of the triangle’s boundary,
—1 if the same holds, with the counter-clockwise order,
0 otherwise.

Note that the first index i is a label for a side or a diagonal of the (n+3)-gon,
while the second index j must label a diagonal. The principal part of B is
the n x n submatrix B = (bi;)i je{1,..,n}-

In the language of matrices B and B, diagonal flips can be described as certain
transformations called matrix mutations.

Definition 3.1. Let B = b;; and B’ = (bl;) be integer matrices. We say that
B’ is obtained from B by mairic mutation in direction k € N, and write
B’ = ux(B), if

—bij lfk € {7'7.7} 3
bgj = by + bixlbk; ik ¢ {i,5} and bybx; > 0,
bi; otherwise.

1t is easy to check that a matrix mutation is an involution, i.e. px(ux(B)) =
B.

Theorem 3.1. Let P be a (n + 3)-gon. Assume that B and B’ (resp. B
and B’) are the edge-adjacency matrices (resp. their principal parts) for two
triangulations T and T’ of P obtained from each other by flipping the diagonal
numbered k € {1,...,n}; the rest of the labels are the same in T and T'. Then

B’ = p(B) (resp. B' = pux(B)).



4 Exchange relations

In the previous section we saw how we can transform a triangulation into an-
other by matrix multiplications. Now we shall introduce algebraic transforma-
tions that are compatible with the matrix multiplication. Let us consider a fixed
initial triangulation T, of a convex (n + 3)-gon . Further introduce a variable
for each diagonal of this triangulation, also for each side of the (n -+ 3)-gon. So
all in all we need 2n + 3 variables. Now we associate a rational function in this
2n + 3 variables to every diagonal of the (n + 3)-gon. Doing a diagonal flip

Figure 3.14. A diagonal flip

all but one rational function associated to the current triangulation remain un-
changed:

This function z assocxated with the diagonal being removed gets replaced by a
rational function z  associated with the resulting diagonal, where z’ is deter-
mined from the exchange relation

T = ac + bd

Lemma 4.1. The rational function z., associated to each diagonal v does not
depend on the particular choice of a sequence of flips that connects the initial
triangulation with another one containing ~.

Let us now illustrate this lemma with the triangulation of a pentagon, that is
we set n = 2. As shown on the next figure we labeled the sides of the pentagon
by the variables q1, g2, ..., g5.
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Figure 3.15. Labeling the sides of a pentagon



Clonsider the following illustration of the transformations of the triangulations
of the pentagon.

ysyz = it + 4394 Wiy = qy2 +4ads

o N

Yala = q3Y3 + 451

AN

YaUs = qa¥s + Q192 '

Starting at the top of the last figure. Let us now express ys, Ya, ... in terms of
Y1, Y2 and g1y g5t

N

Yay1 = GrYs + 4243

A\

_QoY2 + Q4G5
Yy = ———————

n
Ve = g3Y4 +45q1 _ G3¢2Y2 + 93qags + N1 Y1
Y2 Yiy2
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Y3 Y2
Finally we see that
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The last two equations verifies Lemma 4.1, which we can now rephrase by saying
that there are no "monodromies" associated with sequences of flips that begin
and end at the same triangulation.



5 Seed and clusters

Consider a diagonal flip transforming a triangulation T of a convex (n + 3)-
gon into a triangulation T, as we visualized in the first figure of the section
Exchange relations. The corresponding exchange relation, as described above,
can be written entirely in terms of the edge-adjacency matrix B. As before we
label the diagonals of the triangulation T in some way by numbers 1,2,...,n
and for the sides of the (n + 3)-gon we continue by labeling them from n + 1
to m = 2n + 3. We get the new triangulation T is the same except for the
one diagonal (say, labeled k) that is getting getting exchanged between T and
T'. This labeling of T allows us to denote the associated rational functions by
Ty, ..., Ty, For T, we get the same rational functions except that zj is replaced
by ;. The the exchange relation under consideration takes the form

’ N —b:
Ty = H zi’”‘ + H T; bk

bk >0,1<i<m bik<0,1<i<m

The right-hand side of this equation is the sum of two monomials whose expo-
nents are the absolute values of the entries in the k-th column of B, while the
sign of an entry determines which monomial the corresponding term contribute
to. All in all we can encode the combinatorics of flips and the algebra of ex-
change relations entirely in terms of the matrices B using, first the machinery
of matrix mutations and, second the "birational dynamics " given by the last
equation.

Definition 5.1. A cluster algebra A is a commautative ring contained in an
ambient field F isomorphic to the field of rational functions in m variables over

Q.

A is generated inside F by a set of generators. These generators are obtained
from an initial seed via an iterative process of seed mutations which follows a
set of canonical rules.

Definition 5.2. A seed in F is a pair (:’i,B), where

o Z={xy,...,Tm} is a set of m algebraically independent generators of F,
which is split into a disjoint union of an n-element cluster x = {zy,...,x,}
and an (m — n)-element set of frozen variables ¢ = {Ty 11, ..., Tm};

¢ B = (bij) is an m X n integer matriz of rank n whose principal part
B = (bij)i je[n) s skew-symmetrizable, i.e., there ezists a diagonal matriz
D with positive diagonal entries such that DBD™! is skew-symmetric.






