Total positivity and cluster algebras
 Reading group

Manuela Tschabold

ETH Zürich

16. november 2010

Outline

(1) Tagged triangulations

(2) Cluster expansion formula for ordinary arcs

- Tiles
- The graph $G_{T^{0}, \gamma}$
- Cluster expansion formula for ordinary arcs

Outline

(1) Tagged triangulations

(2) Cluster expansion formula for ordinary arcs

- Tiles
- The graph $G_{T 0}$,
- Cluster expansion formula for ordinary arcs

(S, M) bordered surface with marked points

Bordered surface (S, M) is given by:

- S connected oriented 2-dimensional Riemann surface with boundary.
- M fixed nonempty set of marked points in the closure of S. Marked points in the interior of S are called punctures.

Restrictions

- At least one marked point on each boundary component,
- (S, M) is not a sphere with one, two or three punctures,
- (S, M) is not a bigon,
- (S, M) is not a triangle without punctures.

Tagged arcs

Definition

A tagged arc is an arc that does not cut out a once-punctured monogon and each of its ends is tagged plain or notched \bowtie, such that

- ends with endpoints lying on the boundary of S are tagged plain,
- both ends of a loop are tagged in the same way.

Tagged arcs

Example (Different types of tagged arcs)

Representing arcs by tagged arcs

γ arc in (S, M).
The associated tagged $\tau(\gamma)$ arc is given by

- if γ not cut out a once-punctured monogon: $\tau(\gamma)=\gamma$ with both ends tagged plain,
- if γ is a loop at marked point a cutting out a once-punctured monogon with puncture b :
$\tau(\gamma)=\gamma^{\prime}$ compatible with γ having endpoints a, b and with plain at a and notched at b.

Compatibility of tagged arcs

Definition

Tagged arcs γ, γ^{\prime} are compatible if

- the untagged arcs $\gamma^{0}, \gamma^{\prime 0}$ are compatible,
- $\gamma^{0}=\gamma^{\prime 0}$, then at least one end of γ is tagged in the same way as the corresponding end of γ^{\prime},
- $\gamma^{0} \neq \gamma^{\prime 0}$ share an endpoint a, then both ends in a are tagged in the same way.

Remark

The map $\gamma \mapsto \tau(\gamma)$ preserves compatibility.

Tagged triangulations

Definition

A maximal collection of pairwise compatible tagged arcs is called tagged triangulation.

Example (Ideal triangulation and the corresponding tagged triangulation of a two-punctured monogon)

Outline

(1) Tagged triangulations

(2) Cluster expansion formula for ordinary arcs

- Tiles
- The graph $G_{T^{0}, \gamma}$
- Cluster expansion formula for ordinary arcs

Tile

(S, M) bordered surface with marked points.
γ a fixed arc, $T=\tau\left(T^{0}\right)=:\left(\tau_{1}, \tau_{2}, \ldots, \tau_{n}\right)$ a fixed tagged triangulation of (S, M), where $T^{0}=\left(\gamma_{1}, \gamma_{2}, \ldots, \gamma_{n}\right)$ is an ideal triangulation of (S, M) not containing γ.
$s \in M$ starting point of $\gamma, t \in M$ endpoint of γ.
The d intersection points of γ and T^{0} are

$$
s=p_{0}, p_{1}, \ldots, p_{d+1}=t
$$

p_{j} is contained in $\gamma_{i_{j}} \in T^{0}, \quad\left(1 \leq j \leq d, 1 \leq i_{j} \leq n\right)$
Δ_{j-1} and Δ_{j} denote the two ideal triangles in T^{0}, which have side $\gamma_{i j}$.

Tile

Definition

For each $p_{j}, 1 \leq j \leq d$, the tile G_{j} is defined to be the edge-labeled triangulated quadrilateral, obtained by the union of two edge-labeled triangles $\Delta_{1}^{j}, \Delta_{2}^{j}$ glued at $\gamma_{i j}$, which are given by

- if Δ_{j-1}, Δ_{j} are no self-folded triangles, then $\Delta_{1}^{j}, \Delta_{2}^{j}$ corresponds to them and G_{j} is called ordinary tile.

Remark

The orientations of $\Delta_{1}^{j}, \Delta_{2}^{j}$ agree or disagree with those of Δ_{j-1}, Δ_{j}, hence there are two possible planar embeddings of G_{j}.

Tile

Example

Tile

Definition

For each $p_{j}, 1 \leq j \leq d$, the tile G_{j} is defined to be the edge-labeled triangulated quadrilateral, obtained by the union of two edge-labeled triangles $\Delta_{1}^{j}, \Delta_{2}^{j}$ glued at $\gamma_{i j}$, which are given by

- if Δ_{j-1} or Δ_{j} is a self-folded triangle, then there are two cases
(1) γ intersect the loop $\gamma_{i j}$ and terminate at the puncture, then G_{j} is a ordinary tile given by $\Delta_{1}^{j}, \Delta_{2}^{j}$, which correspond to the triangles with sides $\left\{\gamma_{k_{1}}, \gamma_{k_{2}}, \gamma_{i j}=\mathrm{I}\left(\gamma_{k_{3}}\right)\right\}$ and $\left\{\gamma_{i_{j}}=\mathrm{I}\left(\gamma_{k_{3}}\right), \gamma_{k_{3}}, \gamma_{k_{3}}\right\}$.

Tile

Definition

For each $p_{j}, 1 \leq j \leq d$, the tile G_{j} is defined to be the edge-labeled triangulated quadrilateral, obtained by the union of two edge-labeled triangles $\Delta_{1}^{j}, \Delta_{2}^{j}$ glued at $\gamma_{i_{j}}$, which are given by

- if Δ_{j-1} or Δ_{j} is a self-folded triangle, then there are two cases
(2) γ intersect the loop, the folded side and the loop again, then to the three intersection points p_{j-1}, p_{j}, p_{j+1} it is associated a union of tales $G_{j-1} \cup G_{j} \cup G_{j+1}$, called triple tile.

or

Tile

Tile

Remark

In case
(1) there are again two possible planar embeddings of G_{j}.
(2) there are two possible planar embeddings of the triple tile.

Relative orientation

Definition

\tilde{G}_{j} a planar embedding of an ordinary tile $G_{j}(1 \leq j \leq d)$. The relative orientaion $\operatorname{rel}\left(\tilde{G}_{j}, T^{0}\right)$ of \tilde{G}_{j} with respect to T^{0} is given by

$$
\operatorname{rel}\left(\tilde{G}_{j}, T^{0}\right):= \begin{cases}1, & \text { if the triangles of } \tilde{G}_{j} \text { agree in orientation } \\ -1, & \text { if ith those of } T^{0}, \\ & \text { whith those of } T^{0} .\end{cases}
$$

Remark
For a planar embedding of a triple tile $G_{j-1} \cup G_{j} \cup G_{j+1}$ is

$$
\operatorname{rel}\left(\tilde{G}_{j-1}, T^{0}\right)=\operatorname{rel}\left(\tilde{G}_{j+1}, T^{0}\right)
$$

Outline

(1) Tagged triangulations

(2) Cluster expansion formula for ordinary arcs

- Tiles
- The graph $G_{T^{0}, \gamma}$
- Cluster expansion formula for ordinary arcs

The arcs $\gamma_{i j}, \gamma_{i+1}(1 \leq j \leq d-1)$ form two sides of the ideal triangle Δ_{j} in T^{0} 。
$\gamma_{[j]}:= \begin{cases}\text { the third side in } \Delta_{j}, & \text { if } \Delta_{j} \text { is not self-folded, } \\ \text { the folded side in } \Delta_{j}, & \text { if } \Delta_{j} \text { is self-folded. }\end{cases}$
$G_{T^{0}, \gamma}$

Definition

$\bar{G}_{T^{0}, \gamma}$ is obtained from the tiles $G_{1}, G_{2}, \ldots, G_{d}$, by glueing them in the following way

- triple tiles stay glued together,
- for two adjacent ordinary tiles G_{j} and G_{j+1}, may be exterior tiles of triple tiles, G_{j+1} and \tilde{G}_{j} are glued along the edge $\gamma_{[j]}$, choosing a planar embedding \tilde{G}_{j+1} for G_{j+1} such that $\operatorname{rel}\left(\tilde{G}_{j+1}, T^{0}\right) \neq \operatorname{rel}\left(\tilde{G}_{j}, T^{0}\right)$. $G_{T^{0}, \gamma}$ is the graph obtained from $\bar{G}_{T^{0}, \gamma}$ by removing the diagonal in each tile.

Outline

(1) Tagged triangulations

(2) Cluster expansion formula for ordinary arcs

- Tiles
- The graph $G_{T^{0}, \gamma}$
- Cluster expansion formula for ordinary arcs

Crossing Monomial, perfect matchings and weights

Definition
The crossing monomial of γ with respect to T^{0} is

$$
\operatorname{cross}\left(T^{0}, \gamma\right):=\prod_{j=1}^{d} x_{\gamma_{i_{j}}}
$$

Definition
A perfect matching of a Graph G is a subset P of the edges of G such that each vertex of G is incident to exactly one edge of P.

Definition

$\gamma_{j_{1}}, \ldots, \gamma_{j_{r}}$ are the edges of a perfect matching P of $G_{T^{0}, \gamma}$. The weight of P is

$$
x(P):=\prod_{i=j_{1}}^{j_{r}} x_{\gamma_{i}} .
$$

Perfect matchings

Remark

$G_{T^{0}, \gamma}$ has exactly two perfect matchings, called minimal matching P_{-} and maximal matching P_{+}, which contain only boundary edges.

Cluster expansion formula

Theorem
(S, M) bordered surface with marked points, $T^{0}=\left(\gamma_{1}, \gamma_{2}, \ldots, \gamma_{n}\right)$ an ideal triangulation, $T=\left(\tau_{1}, \tau_{2}, \ldots, \tau_{n}\right)=\tau\left(T^{0}\right)$ the associated tagged triangulation and \mathcal{A} denotes the corresponding cluster algebra.
$\gamma \notin T^{0}$ an arc in (S, M) and $G_{T^{0}, \gamma}$ as before.
Then the Laurent expansion of x_{γ} with respect to T is given by

$$
\frac{\sum_{P} x(P)}{\operatorname{cross}\left(T^{0}, \gamma\right)}
$$

where the sum is over all perfect matchings P of $G_{T^{0}, \gamma}$.

