Total positivity and cluster algebras Reading group

Manuela Tschabold

ETH Zürich

16. november 2010

- Tiles
- The graph $G_{T^0,\gamma}$
- Cluster expansion formula for ordinary arcs

- Tiles
- The graph $G_{T^0,\gamma}$
- Cluster expansion formula for ordinary arcs

(S, M) bordered surface with marked points

Bordered surface (S, M) is given by:

- S connected oriented 2-dimensional Riemann surface with boundary.
- *M* fixed nonempty set of **marked points** in the closure of *S*. Marked points in the interior of *S* are called **punctures**.

Restrictions

- At least one marked point on each boundary component,
- (S, M) is not a sphere with one, two or three punctures,
- (S, M) is not a bigon,
- (S, M) is not a triangle without punctures.

Tagged arcs

Definition

A tagged arc is an arc that does not cut out a once-punctured monogon and each of its ends is *tagged* plain or notched \bowtie , such that

- ends with endpoints lying on the boundary of S are tagged plain,
- both ends of a loop are tagged in the same way.

Tagged arcs

Example (Different types of tagged arcs)

Representing arcs by tagged arcs

 γ arc in (S, M).

The associated tagged $\tau(\gamma)$ arc is given by

- if γ not cut out a once-punctured monogon: $\tau(\gamma) = \gamma$ with both ends tagged plain,
- if γ is a loop at marked point *a* cutting out a once-punctured monogon with puncture *b*:

 $\tau(\gamma)=\gamma'$ compatible with γ having endpoints a,b and with plain at a and notched at b.

Compatibility of tagged arcs

Definition

Tagged arcs γ,γ' are compatible if

- $\bullet\,$ the untagged arcs γ^0,γ'^0 are compatible,
- $\gamma^0=\gamma'^0,$ then at least one end of γ is tagged in the same way as the corresponding end of $\gamma',$
- $\gamma^0 \neq \gamma'^0$ share an endpoint *a*, then both ends in *a* are tagged in the same way.

Remark

The map $\gamma \mapsto \tau(\gamma)$ preserves compatibility.

Tagged triangulations

Definition

A maximal collection of pairwise compatible tagged arcs is called **tagged triangulation**.

Example (Ideal triangulation and the corresponding tagged triangulation of a two-punctured monogon)

- Tiles
- The graph $G_{T^0,\gamma}$
- Cluster expansion formula for ordinary arcs

(S, M) bordered surface with marked points.

 γ a fixed arc, $T = \tau(T^0) =: (\tau_1, \tau_2, \dots, \tau_n)$ a fixed tagged triangulation of (S, M), where $T^0 = (\gamma_1, \gamma_2, \dots, \gamma_n)$ is an ideal triangulation of (S, M) not containing γ .

 $s \in M$ starting point of γ , $t \in M$ endpoint of γ . The *d* intersection points of γ and T^0 are

 $s = p_0, p_1, \dots, p_{d+1} = t.$

 p_j is contained in $\gamma_{i_j} \in T^0$, $(1 \le j \le d, 1 \le i_j \le n)$ Δ_{j-1} and Δ_j denote the two ideal triangles in T^0 , which have side γ_{i_j} .

Definition

For each $p_j, 1 \leq j \leq d$, the **tile** G_j is defined to be the edge-labeled triangulated quadrilateral, obtained by the union of two edge-labeled triangles Δ_1^j, Δ_2^j glued at γ_{i_i} , which are given by

• if Δ_{j-1}, Δ_j are no self-folded triangles, then Δ_1^j, Δ_2^j corresponds to them and G_j is called **ordinary tile**.

Remark

The orientations of Δ_1^j, Δ_2^j agree or disagree with those of Δ_{j-1}, Δ_j , hence there are two possible planar embeddings of G_j .

Example

Definition

For each $p_j, 1 \leq j \leq d$, the **tile** G_j is defined to be the edge-labeled triangulated quadrilateral, obtained by the union of two edge-labeled triangles Δ_1^j, Δ_2^j glued at γ_{i_i} , which are given by

- if Δ_{j-1} or Δ_j is a self-folded triangle, then there are two cases
 - γ intersect the loop γ_{ij} and terminate at the puncture, then G_j is a ordinary tile given by Δ_1^j, Δ_2^j , which correspond to the triangles with sides $\{\gamma_{k_1}, \gamma_{k_2}, \gamma_{ij} = I(\gamma_{k_3})\}$ and $\{\gamma_{ij} = I(\gamma_{k_3}), \gamma_{k_3}, \gamma_{k_3}\}$.

Definition

For each $p_j, 1 \le j \le d$, the **tile** G_j is defined to be the edge-labeled triangulated quadrilateral, obtained by the union of two edge-labeled triangles Δ_1^j, Δ_2^j glued at γ_{i_i} , which are given by

if Δ_{j-1} or Δ_j is a self-folded triangle, then there are two cases
2 γ intersect the loop, the folded side and the loop again, then to the three intersection points p_{j-1}, p_j, p_{j+1} it is associated a union of tales G_{j-1} ∪ G_j ∪ G_{j+1}, called triple tile.

Tiles

Tile

Remark

In case

- there are again two possible planar embeddings of G_j .
- **2** there are two possible planar embeddings of the triple tile.

Relative orientation

Definition

 \tilde{G}_j a planar embedding of an ordinary tile G_j $(1 \le j \le d)$. The **relative** orientaion rel (\tilde{G}_j, T^0) of \tilde{G}_j with respect to T^0 is given by

$$\operatorname{rel}(\tilde{G}_j, T^0) := \begin{cases} 1, & \text{if the triangles of } \tilde{G}_j \text{ agree in orientation} \\ & \text{with those of } T^0, \\ -1, & \text{if its triangles of } \tilde{G}_j \text{ disagree in orientation} \\ & \text{whith those of } T^0. \end{cases}$$

Remark

For a planar embedding of a triple tile $G_{j-1} \cup G_j \cup G_{j+1}$ is

$$\operatorname{rel}(\widetilde{G}_{j-1}, T^0) = \operatorname{rel}(\widetilde{G}_{j+1}, T^0).$$

- Tiles
- The graph $G_{T^0,\gamma}$
- Cluster expansion formula for ordinary arcs

 $\gamma_{[j]}$

The arcs
$$\gamma_{i_j}, \gamma_{i_{j+1}} \ (1 \leq j \leq d-1)$$
 form two sides of the ideal triangle Δ_j in \mathcal{T}^0 .
 $\gamma_{[j]} := \begin{cases} \text{the third side in } \Delta_j, & \text{if } \Delta_j \text{is not self-folded,} \\ \text{the folded side in } \Delta_j, & \text{if } \Delta_j \text{ is self-folded.} \end{cases}$

 $G_{T^0,\gamma}$

Definition

 $\overline{G}_{T^0,\gamma}$ is obtained from the tiles G_1, G_2, \ldots, G_d , by glueing them in the following way

- triple tiles stay glued together,
- for two adjacent ordinary tiles G_j and G_{j+1} , may be exterior tiles of triple tiles, G_{j+1} and \tilde{G}_j are glued along the edge $\gamma_{[j]}$, choosing a planar embedding \tilde{G}_{j+1} for G_{j+1} such that $\operatorname{rel}(\tilde{G}_{j+1}, T^0) \neq \operatorname{rel}(\tilde{G}_j, T^0)$. $G_{T^0,\gamma}$ is the graph obtained from $\overline{G}_{T^0,\gamma}$ by removing the diagonal in each tile.

$$\frac{\gamma_{j+1}}{\left[\begin{array}{c} \ddots \gamma_{j} \\ \ddots \end{array}\right]} \frac{\gamma_{j+1}}{\gamma_{j}} \gamma_{j} \gamma_{j+1}}{\gamma_{j}}$$

- Tiles
- The graph $G_{T^0,\gamma}$
- Cluster expansion formula for ordinary arcs

Crossing Monomial, perfect matchings and weights

Definition

The crossing monomial of γ with respect to T^0 is

$$\operatorname{cross}(T^0,\gamma) := \prod_{j=1}^d x_{\gamma_{i_j}}.$$

Definition

A **perfect matching** of a Graph G is a subset P of the edges of G such that each vertex of G is incident to exactly one edge of P.

Definition

 $\gamma_{j_1},\ldots,\gamma_{j_r}$ are the edges of a perfect matching P of $G_{T^0,\gamma}.$ The weight of P is

$$x(P) := \prod_{i=j_1}^{J_r} x_{\gamma_i}.$$

Perfect matchings

Remark

 $G_{T^0,\gamma}$ has exactly two perfect matchings, called **minimal matching** P_- and **maximal matching** P_+ , which contain only boundary edges.

Cluster expansion formula

Theorem

(S, M) bordered surface with marked points, $T^0 = (\gamma_1, \gamma_2, ..., \gamma_n)$ an ideal triangulation, $T = (\tau_1, \tau_2, ..., \tau_n) = \tau(T^0)$ the associated tagged triangulation and A denotes the corresponding cluster algebra. $\gamma \notin T^0$ an arc in (S, M) and $G_{T^0, \gamma}$ as before. Then the Laurent expansion of x_{γ} with respect to T is given by

$$\frac{\sum\limits_{P} x(P)}{\operatorname{cross}(T^0,\gamma)}$$

where the sum is over all perfect matchings P of $G_{T^0,\gamma}$.