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Tagged triangulations

(S ,M) bordered surface with marked points

Bordered surface (S ,M) is given by:

S connected oriented 2-dimensional Riemann surface with boundary.
M fixed nonempty set of marked points in the closure of S .
Marked points in the interior of S are called punctures.

Restrictions
At least one marked point on each boundary component,
(S ,M) is not a sphere with one, two or three punctures,
(S ,M) is not a bigon,
(S ,M) is not a triangle without punctures.
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Tagged triangulations

Tagged arcs

Definition
A tagged arc is an arc that does not cut out a once-punctured monogon
and each of its ends is tagged plain or notched ./, such that

ends with endpoints lying on the boundary of S are tagged plain,
both ends of a loop are tagged in the same way.
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Tagged triangulations

Tagged arcs

Example (Different types of tagged arcs)
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Tagged triangulations

Representing arcs by tagged arcs

γ arc in (S ,M).
The associated tagged τ(γ) arc is given by

if γ not cut out a once-punctured monogon:
τ(γ) = γ with both ends tagged plain,
if γ is a loop at marked point a cutting out a once-punctured
monogon with puncture b:
τ(γ) = γ′ compatible with γ having endpoints a, b and with plain at a
and notched at b.

a

b
γ

τ(γ)

a

b
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Tagged triangulations

Compatibility of tagged arcs

Definition
Tagged arcs γ, γ′ are compatible if

the untagged arcs γ0, γ′0 are compatible,
γ0 = γ′0, then at least one end of γ is tagged in the same way as the
corresponding end of γ′,
γ0 6= γ′0 share an endpoint a, then both ends in a are tagged in the
same way.

Remark
The map γ 7→ τ(γ) preserves compatibility.
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Tagged triangulations

Tagged triangulations

Definition
A maximal collection of pairwise compatible tagged arcs is called tagged
triangulation.

Example (Ideal triangulation and the corresponding tagged triangulation of
a two-punctured monogon)

7→
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Cluster expansion formula for ordinary arcs Tiles

Tile

(S ,M) bordered surface with marked points.
γ a fixed arc, T = τ(T 0) =: (τ1, τ2, . . . , τn) a fixed tagged triangulation of
(S ,M), where T 0 = (γ1, γ2, . . . , γn) is an ideal triangulation of (S ,M) not
containing γ.

s ∈ M starting point of γ, t ∈ M endpoint of γ.
The d intersection points of γ and T 0 are

s = p0, p1, . . . , pd+1 = t.

pj is contained in γij ∈ T 0, (1 ≤ j ≤ d , 1 ≤ ij ≤ n)
∆j−1 and ∆j denote the two ideal triangles in T 0, which have side γij .
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Cluster expansion formula for ordinary arcs Tiles

Tile

Definition
For each pj , 1 ≤ j ≤ d , the tile Gj is defined to be the edge-labeled
triangulated quadrilateral, obtained by the union of two edge-labeled
triangles ∆j

1,∆
j
2 glued at γij , which are given by

if ∆j−1,∆j are no self-folded triangles, then ∆j
1,∆

j
2 corresponds to

them and Gj is called ordinary tile.

Remark

The orientations of ∆j
1,∆

j
2 agree or disagree with those of ∆j−1,∆j , hence

there are two possible planar embeddings of Gj .
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Cluster expansion formula for ordinary arcs Tiles

Tile

Example

γ1 γ2

γ3

γ4γ

pj ∆j

∆j−1
−→

γ2

γ4

γ3

γ2
γ1

or

γ4

γ2

γ2

γ3
γ1
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Tile

Definition
For each pj , 1 ≤ j ≤ d , the tile Gj is defined to be the edge-labeled
triangulated quadrilateral, obtained by the union of two edge-labeled
triangles ∆j

1,∆
j
2 glued at γij , which are given by

if ∆j−1 or ∆j is a self-folded triangle, then there are two cases
1 γ intersect the loop γij and terminate at the puncture, then Gj is a

ordinary tile given by ∆j
1,∆

j
2, which correspond to the triangles with

sides {γk1 , γk2 , γij = l(γk3)} and {γij = l(γk3), γk3 , γk3}.

γk3

γijγk1 γk2

∆j−1

∆j

γ pj
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Tile

Definition
For each pj , 1 ≤ j ≤ d , the tile Gj is defined to be the edge-labeled
triangulated quadrilateral, obtained by the union of two edge-labeled
triangles ∆j

1,∆
j
2 glued at γij , which are given by

if ∆j−1 or ∆j is a self-folded triangle, then there are two cases
2 γ intersect the loop, the folded side and the loop again, then to the

three intersection points pj−1, pj , pj+1 it is associated a union of tales
Gj−1 ∪ Gj ∪ Gj+1, called triple tile.

γk4

γk3
γk1 γk2

γ pj−1

pj

pj+1

−→ γk4

γk4

γk2

γk1

γk4

γk3

γk3

γk4 γk1

γk2

γk3

γk3 γk4

or γk4

γk4

γk1

γk2

γk4

γk3

γk3 γk4 γk4 γk2

γk1

γk3

γk3
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Tile

γk4

γk3
γk1 γk2

pj−1

pj

pj+1

γ
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γk3

γk3

γk4 γk1

γk2

γk3

γk3 γk4
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γk4
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γk3
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γk3
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γk4
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Cluster expansion formula for ordinary arcs Tiles

Tile

Remark
In case

1 there are again two possible planar embeddings of Gj .
2 there are two possible planar embeddings of the triple tile.
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Cluster expansion formula for ordinary arcs Tiles

Relative orientation

Definition

G̃j a planar embedding of an ordinary tile Gj (1 ≤ j ≤ d). The relative
orientaion rel(G̃j ,T 0) of G̃j with respect to T 0 is given by

rel(G̃j ,T 0) :=


1, if the triangles of G̃j agree in orientation

with those of T 0,
−1, if its triangles of G̃j disagree in orientation

whith those of T 0.

Remark
For a planar embedding of a triple tile Gj−1 ∪ Gj ∪ Gj+1 is

rel(G̃j−1,T 0) = rel(G̃j+1,T 0).
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Cluster expansion formula for ordinary arcs The graph GT0,γ

γ[j ]

The arcs γij , γij+1 (1 ≤ j ≤ d − 1) form two sides of the ideal triangle ∆j in
T 0.

γ[j] :=

{
the third side in ∆j , if ∆j is not self-folded,
the folded side in ∆j , if ∆j is self-folded.
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Cluster expansion formula for ordinary arcs The graph GT0,γ

GT 0,γ

Definition

GT 0,γ is obtained from the tiles G1,G2, . . . ,Gd , by glueing them in the
following way

triple tiles stay glued together,
for two adjacent ordinary tiles Gj and Gj+1, may be exterior tiles of
triple tiles, Gj+1 and G̃j are glued along the edge γ[j], choosing a
planar embedding G̃j+1 for Gj+1 such that rel(G̃j+1,T 0) 6= rel(G̃j ,T 0).

GT 0,γ is the graph obtained from GT 0,γ by removing the diagonal in each
tile.

γj+1

γ[j ]

γj

γj γj+1
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Crossing Monomial, perfect matchings and weights

Definition

The crossing monomial of γ with respect to T 0 is

cross(T 0, γ) :=
d∏

j=1

xγij
.

Definition
A perfect matching of a Graph G is a subset P of the edges of G such
that each vertex of G is incident to exactly one edge of P .

Definition
γj1 , . . . , γjr are the edges of a perfect matching P of GT 0,γ . The weight of
P is

x(P) :=

jr∏
i=j1

xγi .
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Perfect matchings

Remark
GT 0,γ has exactly two perfect matchings, called minimal matching P−
and maximal matching P+, which contain only boundary edges.
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Cluster expansion formula

Theorem

(S ,M) bordered surface with marked points, T 0 = (γ1, γ2, . . . , γn) an ideal
triangulation, T = (τ1, τ2, . . . , τn) = τ(T 0) the associated tagged
triangulation and A denotes the corresponding cluster algebra.
γ 6∈ T 0 an arc in (S ,M) and GT 0,γ as before.
Then the Laurent expansion of xγ with respect to T is given by∑

P
x(P)

cross(T 0, γ)

where the sum is over all perfect matchings P of GT 0,γ .
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