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Weakly singular integrals

Definition

A singular integral is said to be weakly singular if its value exists and is
continuous at the singularity point.

Example

Consider [0, a] ⊂ R ∫ a

0
ln|x | = (xln|x | − x)

∣∣a
0

Using a limit approach and the rule of De l’ Hopital for the first term on
the RHS, we can easily find, that the integral is continuous at 0, although
the function is singular at 0.
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Strongly singular integrals

Definition

An integral ∫
f (x)dx

is said to be strongly singular if not only the integrand f(x) is singular at a
point c, but also the integral itself is singular at that point, too.

Example

in 2-D:
1

r
in 3-D:

1

r 3

When looking at strongly singular integrals, we can interpret their value in
terms of the Cauchy Principal Value:

Sophie Haug (ETH Zurich) Matrix construction: Singular integral contributions November 2010 4 / 58



The Cauchy Principal Value
We determine the value of an improper integral by deleting a symmetric
neighborhood around the singularity.

Example

Consider the integral ∫ b

−a

1

t
dt, a, b > 0

Delete now the region (−ε, ε) around zero and take the limit, letting ε→ 0
:

lim
ε→0

(∫ −ε
−a

1

t
dt +

∫ b

ε

1

t

)
= lim

ε→0
(log(ε/a) + log(b/ε)) = log(b/a)

Remark

Note that it is crucial for the limit to exist that we delete a symmetric
region (-ε, ε)
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Definition

We define the Cauchy Principal Value of an Integral with a singularity in a
point y to be:

P.V .

∫
Ω

f (x)dx := lim
ε→0

∫
Ω\|y−x |≤ε

f (x)dx

For integrals with a strong singularity: interpret it as a CPV-integral.

But: For hypersingular integrals this limit might not exist.

Example

Strongly singular integrals where we can apply the CPV approach:

in 2-D:
1

r
in 3-D:

1

r 2
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Hypersingular integrals and Hadamard finite part

Example

Consider the 1-dimensional integral:∫ b

a

1

t2
dt

CPV does not give us a limit. However, we can take the finite part of the
CPV:

CPV

∫ b

a

1

t2
dt = lim

ε→0

∫ −ε
a

1

t2
+

∫ b

ε

1

t2
= lim

ε→0

2

ε
+ (

1

a
− 1

b
).

Whereas the first term diverges, the second term is finite. This is the
Hadamard Finite part.
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The Laplace equation
Consider the homogeneous Laplace equation

∆u(x) = 0 on Ω ⊂ Rd

γD(u) = g

Recall the integral representation formula :

γDu(x) = γD

∫
Γ
γNG (x , y)γDu(y)dsy − γD

∫
Γ
γN,yu(y)G (x , y)dsy ,

or in terms of Boundary Integral Operators:

γDu = (
1

2
I − K0)γDu + V0γNu

→ (−1

2
I + K0)γDu = V0γNu
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Aim:

Solving this problem, i.e. find complete Cauchy data.

Two possible approaches

1 Collocation Method→ problematic!

2 Variational method (Galerkin approach)
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Collocation methods

Ansatz: Enforce the boundary integral equation to hold at a specified
number of points: (x1, . . . , xN) and obtain the following system of
equations:

−( 1
2 I − K0)γDu(x0) = V0γNu(x0)

...
...

−( 1
2 I − K0)γDu(xN) = V0γNu(xN)

after taking an approximation ansatz one gets Matrix equations:

H(γDu(xi ))i = V(γNu(xi ))i

for (N + 1× N + 1) matrices H and V, whose coefficients are to be
determined.
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How to compute the Matrix coefficients?
Take ansatz:

γDu ≈
∑
j

γDu(xj)φj ,

⋃
l τl = Γ is a discretization of the boundary

(φj) basis of Sph (Γ).

E.g. for H: in order to get the matrix coefficients, we have to compute:∫
Γ
γDu(y)γN,yG (xi , y)dsy =

∑
l

∫
τl

γDu(y)γN,yG (xi , y)dsy

≈
∑
l

∑
j

γDu(xj)

∫
τl

φj(y)γN,yG (xi , y)dsy

(1)

So the problem of the matrix elements’ computation comes down to
approximating the integrals:∫

τl

φj(y)γN,yG (xi , y)dsy
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Problems occur!

What is problematic about this approach? Consider again the integral:∫
τl

φj(y)γN,yG (xi , y)dsy

resulting matrices are dense

moreover, there is no underlying structure in the matrix which would
make computation and storage easier (like symmetricity).

Problematic when approximating Hypersingular Integral: to compute
γN,x

∫
τl
φjγN,yG (xi , y)dsy demands smoothness of the interpolation

of γD at interpolation points. (C1 interpolation would be possible but
very costly.)

A better approach: The Variational Method
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Computing the Matrix coefficients using a variational
method

Program:

1 Recalling the variational approach

2 2D Laplace problem: Explicit computations
3 3D Laplace problem: Computing the matrix coefficients numerically

Gauss Quadrature
A Semianalytic Method
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Recall from last time: Boundary integral equations I

Instead of demanding that the Boundary Integral equations be satisfied
pointwise, we ask for weak solutions: Let

K (w) = f , (2)

where K is some Boundary Integral operator: K : Hs(Γ)→ Hs′(Γ), where
s, s ′ ∈ {−1

2 ,
1
2}. Then we ask:

〈f , ψ〉 = 〈K (w), ψ〉, (3)

for any ψ ∈ H−s
′
. Choose Galerkin bases {φj}, {ψi} of Hs ,H−s

′
resp.,

and discretize w as:
w(x) =

∑
j

wjφj(x) (4)

We obtain a Matrix equation:

K[w ] = [f ] (5)

Sophie Haug (ETH Zurich) Matrix construction: Singular integral contributions November 2010 14 / 58



Recall from last time: Boundary integral equations II

where w and f are given by:

w = [w1, . . . ,wN ] (6)

fj = 〈f , ψj〉 (7)

and

Kij = 〈K (φi ), ψj〉. (8)

Our main concern: Computation of the coefficients Kij
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The homogeneous Laplace equation:The 2-D case

As an example, consider:

∆u = 0, on Ω ⊂ R2 (9)

With the Fundamental solution:

G (x , y) = − 1

2π
log(|x − y |) (10)

discriminate three different cases for the choice of τi , τj :
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3 different cases

3 different cases for 1-D boundary
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Discretized boundary

Discretized boundary Γ in 2D with hat functions

b0k

b1j
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The case of identical panels: Computing 〈V0(b0
0), b0

0〉
Remark:Use S0

h(Γ) for H−
1
2 (Γ) (cf. last time) and S1

h(Γ) for H
1
2 . Recall

that V0 : H−
1
2 (Γ)→ H

1
2 (Γ). Consider the reference element. Let b0

0 be the
corresponding basis function ∈ S0

h over that element. We have:

〈V0(b0
0), b0

0〉 = − 1

2π

∫ 1

0

∫ 1

0
log |x − y |dxdy (11)

= − 1

2π

∫ 1

0

∫ 1−y

−y
log(|z |)dzdy

= − 1

2π

∫ 1

0
(zlog |z | − z)

∣∣1−y
−y dy

= − 1

2π

∫ 1

0
((1− y)log(1− y) + ylog(y)− 1 + 2y ) dy

= − 1

π

∫ 1

0
ulog(u)du

(12)
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= − 1

π

([
u2

(
log(u)

2
− 1

2u

)] ∣∣∣∣1
0

)
=

1

4π
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Computing 〈K0(b1
0), b0

0〉

Recall that K0 : H
1
2 (Γ)→ H−

1
2 (Γ) First:

∂

∂ny
G (x , y) = − 1

2π

〈ny , (y − x)〉
|x − y |2

Remark: We have that 〈ny , y − x〉 = const. always and in case of identical

panels, 〈ny , y − x〉 = 0

x

ny

(y − x)
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Case of two adjacent panels, not on one line. Take b1
0(y) = y as a pw.

linear basis function on the reference element. Thus∫
τj

∫
τi

K0b1
0 = − 1

2π

(∫
τj

∫
τi

b1
0

|y − x |2 dsydsx

)

= − 1

2π

(∫ d

c

∫ 1

0

s

(s − t)2 + a2
dsdt

)
= − 1

2π

(∫ d

c

∫ 1

0

1

a
arctan(

s − t

a
)dsdt +

∫ d

c

1

a
arctan(

(1− t)

a
)dt

)
= − 1

2π

∫ d

c
arctan(

(1− t)

a
)(1− t)− arctan(−t/a)(−t)

− 1

2π

∫ d

c

1

2
log(1 +

(1− t)

a

2

) +
1

2
log(1 + (t/a)2)dt

(13)
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The last integral is nonsingular,can be evaluated. Similarly, in case of
non-adjacent panels, the integral exists.
Want to compute 〈( 1

2 I − K0)φ, θ〉. Already seen: 〈K0φ, θ〉. Now 〈φ, θ〉.
Take b1

0(y) = y ∈ S1
h and integrate against pw. constant b0

0 on the
reference element:

〈b1
0, b

0
0〉 = −

∫ 1

0

∫ 1

0
b1

0(y)dydx

=

∫ 1

0

∫ 1

0
ydydx

=

∫ 1

0
(

1

2
y 2)
∣∣1
0

=
1

2
. (14)

(For non-identical elements it is easy to show that the computation still
works fine.)
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Computing 〈W0b
1
0, b

1
0〉 I

Consider the identical case:τi = τj = (0, 1) Recall

W0 : H
1
2 (Γ)→ H

1
2 (Γ).

Use

γN,xγN,yG (x , y) = − 1

2π

[
−〈nx , ny 〉

r 2
+ 2
〈ny , (x − y)〉〈nx , (x − y)〉

r 4

]
Want to compute

∫ 1
0 xγN,x

∫ 1
0 γN,yG (x , y)ydsydsx . A different

representation of W0 is:
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Computing 〈W0b
1
0, b

1
0〉 II

W0(φ) = −
∫ 1

0 γN,xγN,yG (x , y)(φ(y)− φ(x))dsy . Thus it is enough
to compute:

= − 1

2π

∫ 1

0
x

∫ 1

0
y ·
(
−〈nx , ny 〉

r 2
+ 2
〈ny , (x − y)〉〈nx , (x − y)〉

r 4

)
dsxdsy

= − 1

2π

∫ 1

0
t

∫ 1

0
s

(
− 1

(s − t)2
+ 2

(ny · (x − y))(nx · (x − y))

r 4

)
dsdt

=
1

2π

∫ 1

0
t

∫ 1

0

s

(t − s)2
dsdt (15)

Singularity is of order (s − t)2, the integral does not have a finite
limit. It can be shown that a term log(ε2) remains when applying the
CPV operator, thus Hadamard finite part has to be taken.
Analytically, however, the log(ε2) term cancels with the integration
over a corresponding adjacent element.
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Computing 〈W0b
1
0, b

1
0〉 III

Remark

collocation in general fails to capture this!
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For the Hypersingular operator, we really benefit from using Galerkin
methods rather than Collocation.

Definition (Rotation of a scalar function, 2-D case)

Let v be a scalar function on Γ.

−−→
curlv = (

∂

∂x2
ṽ(x), − ∂

∂x1
ṽ(x))T , (16)

where ṽ defines an extension of v into a small neighborhood ⊂ R3 of Γ

We introduce:

curlΓv(x) := n · −−→curl ṽ

= n1(x)
∂

∂x2
ṽ(x)− n2(x)

∂

∂x1
ṽ(x)) (17)

It then can be shown that for u, v ∈ H
1
2 it holds:

〈W0(u), v〉Γ = − 1

2π

∫
Γ

curlΓv(x)

∫
Γ

log |x − y |curlΓu(y)dsydsx (18)
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Rewriting W0 for 3D
Similarly in the 3-D case one obtains:

〈W0(u), v〉Γ =
1

4π

∫
Γ

∫
Γ

curlΓu(y)curlΓv(x)

|x − y | dsxdsy (19)

Here we used:
curlv = ∇× v(x) (20)

and
curlΓu = n(x)×∇ũ x ∈ Γ (21)

where ũ again is an extension of u into a small neighborhood ⊂ R3 of
x ∈ Γ.)

curl of φ ∈ S1
h is constant on each triangle, by linearity of functions in

S1
h .

moreover n is constant on each triangle.
therefore: curlΓu(y)curlΓv(x) can be taken out of the integral →
reduces to case: 〈V0b0

i , b
0
j 〉 times some constant.

By using a Variational method, we reduce the (hard)

computation of the hypersingular integral to the weakly singular!!!
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Quadrature I

In 3D: Numerical evaluation of integrals: Let Ω be a domain in Rd ,
d=2,3. Let Γ = ∂Ω. Recall that ∀ τ ∈ G (G a triangulation of Γ)there is a
parametrization

χτ : τ̂ → τ, (22)

where τ̂ denotes the reference element.
Write an integral of a function v(x) : τ → R over τ as an integral τ̂ , using
the rule of transformation known from calculus, thus:∫

τ
v(x)dx =

∫
τ̂

v |τ ◦ χτ (x̂)gτ (x̂)dx̂ , (23)

where g denotes the Jacobian determinant of χτ .
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Quadrature II

Definition (Numerical Quadrature on the reference element)

A Numerical Quadrature on the reference element is a map:

Q :→ C 0(¯̂τ)→ R (24)

Q(v) =
n∑

i=1

wi ,nv(ξi ,n) (25)

The wi ,n are called weights, the ξi ,n Quadrature points.

Definition (Quadrature Error)

The numerical Quadrature Error is given by:

Eτ̂ =

∫
τ̂

v(x)dx − Q(v) (26)
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Quadrature III

Definition (Exactness)

A numerical quadrature is said to be exact of degree m, m ∈ N if Eτ = 0,
∀v ∈ Pm, where Pm denotes the space of polynomials of degree m.

Example (A very simple one)

Consider the reference triangle with nodes (0,0), (1,0), (1,1). Then

Q(v) =
v(2/3, 1/3)

2
(27)

has degree 1.
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Proof.

Let p(x)=ax+by+c be a polynomial in (x,y) of degree 1. Integrating over
the triangle yields:∫ 1

0

∫ x

0
ax + by + c dydx =

∫ 1

0
ax2 +

1

2
bx2 + cx dx (28)

=
a

3
+

b

6
+

c

2
, (29)

whereas

Q(p) =
v(2/3, 1/3)

2
(30)

= a · 2

3
+ b · 1

3
+ c , (31)

on the other hand, it easily can be shown that equation does no longer
hold for polynomials of degree ≥ 2. So indeed order of exactness is 1
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Doing Quadrature on the triangular elements

Recall that for an integral

I (f ) =

∫
[0,1]4

f (x)dx (32)

we have a the Gaussian Quadrature of order n = (n1, n2, n3, n4) given by:

Q[f ] =

n1∑
i

n2∑
j

n3∑
k

n4∑
l

ωi ,n1ωj ,n2ωk,n3ωl ,n4f (xi ,n1 , xj ,n2 , xk,n3 , xl ,n4) (33)

where Gauss points and weights are given. This rule yields the correct
result for polynomials of degree (2n-1) where n+1 Gauss quadrature
points are used.
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Example:Gauss Legendre Quadrature over Triangles

Consider a triangle with vertices P1, P2, P3.

Definition (Barycentric coordinates)

Write a point x inside the triangle as:

x = α1P1 + α2P2 + α3P3.

(α1, α2, α3) are called the barycentric coordinates of x.

We use these coordinates to represent Gauss Points within the triangle.
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A simple 1-point rule. 1

1Source:”’The Finite Element Method in Electromagnetics”’, Jianming Jin,
2nd Edition, John Wiley and Sons, Inc.,New York, USA
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A three-point rule 2

2Source:”’The Finite Element Method in Electromagnetics”’, Jianming Jin,
2nd Edition, John Wiley and Sons, Inc.,New York, USA
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A 7-point rule 3

3Source:”’The Finite Element Method in Electromagnetics”’, Jianming Jin,
2nd Edition, John Wiley and Sons, Inc.,New York, USA
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An estimate of error (without proof)

Theorem

Let
⋃

l τl be a triangulation of Γ into plane triangles. Suppose that the
ratio diam τ

diam r for elements τ, r , τ 6= r is bounded. Let m be the order of
exactness of the Quadrature method used.
then we have ∀v ∈ Hm̃(τ), with m̃ = max{2,m + 1}:

|Eτ(v)| ≤ Chm+2
τ ‖v‖Hm̃(τ), (34)

for some constant C and hτ = diam(τ).
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Quadrature method: Pro and Contra

Pro:

Well-suited for implementation

High accuracy can be achieved

Contra:

computationally costly: e.g., in
3D case: Consider the
integration of V0. for one double
integral the cost is O(n4

QP)
(nQP=Number of Quadrature
points). If dim(S0

h) = M, we
have M2 entries to compute.
The total cost for this matrix is
therefore O(n4

QP ·M2)

near singularities: the values get
very large . Refinement of

triangulation → values become
larger as quadrature points lie
even closer. Also: refining the
mesh → much more cost

→ We want to do betterSophie Haug (ETH Zurich) Matrix construction: Singular integral contributions November 2010 39 / 58



First approach deals with the second problem: Singular Integrals.

Recall that our problem is the computation of integrals of the form:∫
τj

∫
τi

f (x , y)

‖x − y‖dydx

First, we focus on the inner integral. Consider h(x , y) that has a first order
singularity at the point (0, 0) over the reference triangle τ̂ with vertices
(0, 0), (1, 0), (1, 1). ∫

τj

h(x , y)dS =

∫ 1

0

∫ x

0
h(x , y)dydx (35)

Using Taylor expansion, it follows that h can be written as g(x ,y)√
x2+y2

, where

g is an analytic function over Ω. Perform change of variables:

y = xu
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The above integral then equals to:∫ 1

0

∫ 1

0

g(x , xu)√
x2 + (xu)2

x dudx

Now we see that x cancels in this expression and we get:∫ 1

0

∫ 1

0

g(x , xu)√
1 + u2

dudx

Clearly, this function has no singularity.
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Duffy’s Trick

x=1

y=1

0
0

x=1

y=1
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After this transformation, we can use a Quadrature for the double
integral and no longer have the problem of singular integration.

But: We have only dealt with the 2nd problem i.e. singularity. The
problem of high cost of the double quadrature remains!

Semianalytic method!
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Another method: Semianalytic Method for 3-D

We consider another method for the 3-D Laplace problem. Recall that the
fundamental solution is given by:

G (x , y) =
1

4π‖x − y‖ (36)

We now want to compute the single layer potential boundary operator, i.e.

〈V0(b0
i ), b0

j 〉 =

∫
τj

∫
τi

1

4π‖x − y‖dsydsx (37)

Idea : compute inner integral analytically, then solve the outer integral
using Quadrature. → only one quadrature to do!

Aim:

solve
∫
τi

1
4π‖x−y‖dsydsx .
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Remark that all our further computations are for the 3-D case! We have:

∆‖x − y‖ =
2

‖x − y‖ (38)

→ ∫
τi

1

‖x − y‖dsy =
1

2

∫
τj

∆‖x − y‖dsy (39)

Lemma

Decomposition of the Laplace Operator

∆u =
∂2

∂n2
u + 2Hn

∂u

∂n
+ ∆Γu (40)

where
∆Γu = −curlΓ

−−→
curlΓu (41)

where Hn denotes the mean curvature of Γ. The operator
−−→
curlΓ is called

tangential rotation, input is a scalar function, and defined as:−−→
curlΓ(u) := curl(ũn)|Γ. the scalar function curlΓ(u) := (curl ũ · n)|Γ is
called surfacic rotation (remark that its input is a vector).
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The mean curvature/principle curvatures

Definition (Principal curvatures)

Consider the curvature operator R = ∇n, which acts on the tangent plane
of a surface. Its two eigenvalues κ1, κ2 are called principal curvatures. The
mean curvature is defined as: Hn := 1

2 (κ1 + κ2).

4 Remark: On flat triangles: Hn = 0

4Source: Wikipedia
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We put the decomposed form of the Laplace operator into equation (39)
and obtain:

F (x) : =

∫
τi

1

‖x − y‖dsy

=
1

2

∫
τj

∆‖x − y‖dsy

=
1

2

∫
τj

∂2

∂n2
‖x − y‖+ curlΓ

−−→
curlΓ‖x − y‖dsy (42)
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Computation of the inner integral

Using the definition of
−−→
curlΓ(u) and of the curl this is equivalent to:

1

2

∫
τj

∂2

∂n2
‖x − y‖ − 1

2

∫
τj

n · ∇ ×∇(‖x − y‖n)dsy (43)

We consider the two integrals obtained seperately. First, remarking that:

∇‖x − y‖ =
(y − x)

‖x − y‖

This gives us:

∂2

∂n2
‖x − y‖ =

∂

∂n
(∇‖x − y‖ · n)

=
∂

∂n

(
(y − x)

‖x − y‖ · n
)

(44)
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Computation of the inner integral

One can find that
(y − x) · n =: C (x , τj)

is just the length of the projection onto span(n) of the distance between x
and the triangle τj , and thus constant for fixed x . (See picture)

Sophie Haug (ETH Zurich) Matrix construction: Singular integral contributions November 2010 49 / 58



x

P1
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n

〈x− y, n〉

y
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Now move C (x , τj) outside the integral. The first term of the sum (43)
reduces to:

1

2
C (x , τj)

∫
τj

∂

∂n

(
1

‖x − y‖

)
dsy

=
1

2
C (x , τj)

∫
τj

∇
(

1

‖x − y‖

)
· n dsy

= −1

2
C (x , τj)

∫
τj

(y − x)

‖x − y‖3
· n dsy (45)

This integral now can be computed efficiently, as it describes a geometric
relationship between x and the triangle τj , the solid angle, for whose
computation efficient algorithms exist.
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Computation of the inner integral: 2nd term I

We now want to compute the second term, i.e.

1

2

∫
τj

n · ∇ ×∇× (‖x − y‖ · n)dsy

Recall Stokes’ Theorem:

Theorem (Stokes’ Thm)

Let Ω ⊂ U ⊂ R3 be a regular surface and U an open subset of R3.Let F
be a vector valued function on U.Then we have:∫

Ω
curlF · n dS =

∮
∂Ω

F · dr (46)
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Computation of the inner integral: 2nd term II

We put this result into the previous equation and get:

1

2

∫
τj

n · ∇ ×∇× (‖x − y‖ · n)dsy =

∮
∂τj

∇× (‖x − y‖n)d~r

=

∮
∂τj

∇(‖x − y‖)× nd~r

=

∮
∂τj

(y − x)

‖x − y‖ × nd~r , (47)

where we used that the field of normals is a gradient, and therefore
∇× n = 0.
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It remains to compute the contour integral along the boundary of τj . We
can write this integral as a sum of three integrals, one along each edge of
the triangle τj .

P2

P3

P1

ν2

l2

l1

ν1n

ν3

l3

S2

S3

S1

τj
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Compare with the notations on the picture to convince yourself that:∮
∂τj

(y − x)

‖x − y‖ × n d~r

=
3∑

k=1

∫
Sk

(y − x)

‖x − y‖ × n · lkdSk

= −
3∑

k=1

∫
Sk

(y − x)

‖x − y‖ · νkdSk (48)

, where we also used that (a× b) · c = −(a× c) · b. As in the first
computation we have that:

(y − x) · νk = (Pk − x) · νk
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is constant and therefore can again be taken out of the integral. So the
above expression becomes:

−1

2

3∑
k=1

(Pk − x)νk

∫
Sk

1

‖x − y‖dSk (49)

This integral then can be computed analytically without much trouble.
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Summary
We wanted to compute singular integral contributions in order to solve the
Laplace problem with Dirichlet BC using Boundary element methods. We
have seen the following:

Before doing so, we explained why we choose Galerkin methods over
collocation. Of particular importance:
Computation of Hypersingular integral

For 2-D, integrals can be explicitly computed

For 3-D, we generally have to use some numerical method:

We saw: Quadrature may lead to accurate results, however not near
singularities.

Another issue: High cost of quadrature methods!

For singular integrals, transformation methods exists that make the
integral nonsingular (Duffy trick)

To deal with the problem of high-costs in double quadratures, we
encoutered an altoghether different method, using a
seminanalytic approach .
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