# Iterative methods for linear systems: conjugate gradient and GMRES Calderon preconditioning

Stefanie Müller

11.11.2010

Stefanie Müller Iterative methods for linear systems: conjugate gradient and G

イロト イポト イヨト イヨト

### Index



2 Conjugate gradient and Preconditioned conjugate gradient

- Conjugate gradient
- Preconditioned conjugate gradient
- Iterative methods in Krylov's spaces
- GMRES
- 5 Calderon preconditioning

- 4 同 6 4 日 6 4 日 6

Direct methods vs iterative methods

Conjugate gradient and Preconditioned conjugate gradient Iterative methods in Krylov's spaces GMRES Calderon preconditioning

Direct methods vs iterative methods

Full matrix of order n:

- direct method: costs about  $\frac{2}{3}n^3$
- iterarive method: costs about  $n^2$  for every iteration

- 4 同 6 4 日 6 4 日 6

Conjugate gradient Preconditioned conjugate gradient

### conjugate gradient

- Solve the system  $A\mathbf{x} = \mathbf{b}$ , where A is a symmetric positive definite matrix.
- We want to find  $\mathbf{x}^k$  recursively:

$$\mathbf{x}^{k+1} = \mathbf{x}^k + \alpha_k \mathbf{p}^k$$

• We define  $\mathbf{r}^k = \mathbf{b} - A\mathbf{x}^k$ 

Conjugate gradient Preconditioned conjugate gradient

### conjugate gradient

#### We define

$$\Phi(\mathbf{y}) = \frac{1}{2}\mathbf{y}^{\mathsf{T}} A \mathbf{y} - \mathbf{y}^{\mathsf{T}} \mathbf{b}$$

#### Theorem

We have that:

**x** solution of  $A\mathbf{x} = \mathbf{b} \Leftrightarrow \mathbf{x}$  minimum point of  $\Phi(\mathbf{y})$ 

 $\Rightarrow$  We want to find the minimum point of the function  $\Phi,$  starting from a point  $\textbf{x}^0$ 

・ロト ・回ト ・ヨト ・ヨト

Conjugate gradient Preconditioned conjugate gradient

### conjugate gradient

Given the direction  $\mathbf{p}^k$ , we can find  $\alpha_k$  that minimizes  $\Phi(\mathbf{x}^{k+1}) = \Phi(\mathbf{x}^k + \alpha_k \mathbf{p}^k)$ We obtain

$$\alpha_k = \frac{\mathbf{p^k}^T \mathbf{r^k}}{\mathbf{p^k}^T A \mathbf{p^k}}$$

How to find  $\mathbf{p}^k$ ?

(ロ) (同) (E) (E) (E)

Conjugate gradient Preconditioned conjugate gradient

## conjugate gradient

#### Definition

A solution  $\mathbf{x}^k$  is said to be optimal with respect to a direction  $\mathbf{p} \neq \mathbf{0}$  if

$$\Phi(\mathbf{x}^k) \leq \Phi(\mathbf{x}^k + \lambda \mathbf{p}) \ \forall \lambda \in \mathbb{R}$$

If  $\mathbf{x}^k$  is optimal w. r. t. all directions of a vector space V,  $\mathbf{x}^k$  is said to be optimal w. r. t. V.

#### Theorem

If  $\mathbf{x}^k$  is optimal with respect to  $\mathbf{p}$ ,  $\mathbf{p}$  is orthogonal to  $\mathbf{r}^k$ .

イロン スポン イヨン イヨン

Conjugate gradient Preconditioned conjugate gradient

## conjugate gradient

- We look for directions which conserve the optimality of the iterates.
- Suppose to have x<sup>k+1</sup> = x<sup>k</sup> + q, with x<sup>k</sup> optimal with respect to a direction p (i.e. r<sup>k</sup> ⊥ p).
- Impose  $\mathbf{x}^{k+1}$  optimal with respect to  $\mathbf{p}$  (i.e.  $\mathbf{r}^{k+1} \perp \mathbf{p}$ ). We obtain that

$$\mathbf{p}^T A \mathbf{q} = 0$$

That is, the directions are A-orthogonal, or A-conjugate.

Conjugate gradient Preconditioned conjugate gradient

### conjugate gradient

#### How to find these directions?

- Set  $\mathbf{p}^0 = \mathbf{r}^0$
- **p**<sup>k+1</sup> = **r**<sup>k+1</sup> β<sub>k</sub>**p**<sup>k</sup> for k = 0, 1, ... where β<sub>k</sub> is defined such that **p**<sup>jT</sup>A**p**<sup>k+1</sup> = 0 for j = 0, 1, ..., k
  We get for β<sub>k</sub>:

$$\beta_k = \frac{\left(A\mathbf{p}^k\right)^T \mathbf{r}^{k+1}}{\left(A\mathbf{p}^k\right)^T \mathbf{p}^k}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 善臣 の久で

Conjugate gradient Preconditioned conjugate gradient

### conjugate gradient

Summarizing, we get the method of the conjugate gradient: Choose  $x^0$ , set  $r^0=b-Ax^0$ ,  $p^0=r^0$  Iterate over k=0,1, ...

$$\alpha_{k} = \frac{\mathbf{p}^{k^{T}} \mathbf{r}^{k}}{\mathbf{p}^{k^{T}} A \mathbf{p}^{k}}$$
$$\mathbf{x}^{k+1} = \mathbf{x}^{k} + \alpha_{k} \mathbf{p}^{k}$$
$$\mathbf{r}^{k+1} = \mathbf{r}^{k} - \alpha_{k} A \mathbf{p}^{k}$$
$$\beta_{k} = \frac{(A \mathbf{p}^{k})^{T} \mathbf{r}^{k+1}}{(A \mathbf{p}^{k})^{T} \mathbf{p}^{k}}$$
$$\mathbf{p}^{k+1} = \mathbf{r}^{k+1} - \beta_{k} \mathbf{p}^{k}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○ のへで

Conjugate gradient Preconditioned conjugate gradient

### conjugate gradient

#### Remark

#### One can show that:

• 
$$\alpha_{k} = \frac{\|\mathbf{r}^{k}\|_{2}^{2}}{\mathbf{p}^{k^{T}}A\mathbf{p}^{k}}$$
  
•  $\beta_{k} = \frac{\|\mathbf{r}^{k+1}\|_{2}^{2}}{\|\mathbf{r}^{k}\|_{2}^{2}}$   
•  $A\mathbf{r}^{k} = -\frac{1}{\alpha_{k}}\mathbf{r}^{k+1} + (\frac{1}{\alpha_{k}} - \frac{\beta_{k-1}}{\alpha_{k-1}})\mathbf{r}^{k} + \frac{\beta_{k-1}}{\alpha_{k-1}}\mathbf{r}^{k-1}$ 

・ロン ・回と ・ヨン ・ヨン

æ

Conjugate gradient Preconditioned conjugate gradient

## conjugate gradient

#### Theorem

Let A be a symmetric, positive definite matrix,  $n \times n$ . The method of conjugate gradient for the system  $A\mathbf{x} = \mathbf{b}$  converges at most in n steps. Moreover, the error  $\mathbf{e}^k$  is orthogonal to  $\mathbf{p}^j$  for j = 0, 1, ..., k - 1 and

$$\|\mathbf{e}^k\|_A \leq rac{2c^k}{1+c^{2k}}\|\mathbf{e}^0\|_A \quad ext{where } c:=rac{\sqrt{\kappa_2(A)}-1}{\sqrt{\kappa_2(A)}+1}$$

#### Remark

To have a better convergence, we want  $\kappa_2(A)$  small, where  $\kappa_2(A) := \|A\|_2 \|A^{-1}\|_2 = \frac{\lambda_{max}(A)}{\lambda_{min}(A)}$ 

イロン イヨン イヨン イヨン

Conjugate gradient Preconditioned conjugate gradient

## preconditioned conjugate gradient

We have seen that to have a faster convergence  $\kappa_2(A) = \frac{\lambda_{max}(A)}{\lambda_{min}(A)}$  should be as small as possible.

So if  $\kappa_2(A) >> 1$ , we can write the system in the form:

$$P^{-\frac{1}{2}}AP^{-\frac{1}{2}}\mathbf{y} = P^{-\frac{1}{2}}\mathbf{b} \text{ with } \mathbf{y} = P^{\frac{1}{2}}\mathbf{x}$$
  
i.e. 
$$P^{-\frac{1}{2}}A\mathbf{x} = P^{-\frac{1}{2}}\mathbf{b}$$

(ロ) (同) (E) (E) (E)

Conjugate gradient Preconditioned conjugate gradient

### preconditioned conjugate gradient

We obtain the method of preconditioned conjugate gradient: Given  $\mathbf{x}^0$ , set  $\mathbf{r}^0 = \mathbf{b} - A\mathbf{x}^0$ ,  $\mathbf{z}^0 = P^{-1}\mathbf{r}^0$ ,  $\mathbf{p}^0 = \mathbf{z}^0$ . Iterate over k = 0, 1, ...

$$\alpha_{k} = \frac{\mathbf{p}^{k^{T}} \mathbf{r}^{k}}{(A\mathbf{p}^{k})^{T} \mathbf{p}^{k}}$$
$$\mathbf{x}^{k+1} = \mathbf{x}^{k} + \alpha_{k} \mathbf{p}^{k}$$
$$\mathbf{r}^{k+1} = \mathbf{r}^{k} - \alpha_{k} A \mathbf{p}^{k}$$
$$P \mathbf{z}^{k+1} = \mathbf{r}^{k+1}$$
$$\beta_{k} = \frac{(A\mathbf{p}^{k})^{T} \mathbf{z}^{k+1}}{\mathbf{p}^{k^{T}} A \mathbf{p}^{k}}$$
$$\mathbf{p}^{k+1} = \mathbf{z}^{k+1} - \beta_{k} \mathbf{p}^{k}$$

Conjugate gradient Preconditioned conjugate gradient

# preconditioned conjugate gradient

#### Remark

- The estimation of the errors is the same as in the CG, substituting A with P<sup>-1</sup>A.
- The implementation of PCG does not request to compute P<sup>1/2</sup>/<sub>2</sub> or P<sup>-1/2</sup>.
- Solving Pz<sup>k+1</sup> = r<sup>k+1</sup> increases the computational cost w.r.t. the CG.
- We need to find a preconditioning matrix P such that:
  - It is easy to solve the linear system  $P\mathbf{z}^{k+1} = \mathbf{r}^{k+1}$
  - κ<sub>2</sub>(P<sup>-1</sup>A) should be near to 1, to decrease the number of steps necessary to get a good convergence

## iterative methods in Krylov's spaces

Consider the Richardson's method  $\mathbf{x}^{k+1} = \mathbf{x}^k + \alpha_k \mathbf{r}^k$ We have that:

$$\mathbf{r}^{k} = \prod_{j=0}^{k-1} (I - \alpha_{j} A) \mathbf{r}^{0}$$
(1)

So  $\mathbf{r}^k = p_k(A)\mathbf{r}^0$ , where  $p_k(A)$  is a polynom in A of degree k.

#### Definition

We define the Krylov's space of order m as:

$$K_m(A, \mathbf{v}) = \operatorname{span} \left\{ \mathbf{v}, A\mathbf{v}, ..., A^{m-1}\mathbf{v} \right\}$$

It is a subspace of the space generated by all vectors  $\mathbf{u} \in \mathbb{R}^n$  of the form  $\mathbf{u} = p_{m-1}(A)\mathbf{v}$ , where  $p_{m-1}$  is a polynom in A of degree  $\leq m-1$ .

## iterative methods in Krylov's spaces

#### Remark

(1) implies that  $\mathbf{r}^k \in K_{k+1}(A, \mathbf{r}^0)$ 

We can observe that

$$\mathbf{x}^k = \mathbf{x}^0 + \sum_{j=0}^{k-1} lpha_j \mathbf{r}^j$$

where  $\sum_{j=0}^{k-1} \alpha_j \mathbf{r}^j$  is a polynom in A of degree  $\leq k-1$ , and so

$$\mathbf{x}^k \in W_k := \left\{ \mathbf{v} = \mathbf{x}^0 + \mathbf{y} : \mathbf{y} \in K_k(A, \mathbf{r}^0) 
ight\}$$

That is, we are looking for a solution approximating **x** in the space  $W_k$ 

## iterative methods in Krylov's spaces

In general, we have methods of the form:

$$\mathbf{x}^k = \mathbf{x}^0 + q_{k-1}(A)\mathbf{r}^0$$

where  $q_{k-1}(A)$  is a polynom choosen such that  $\mathbf{x}^k$  is the best approximation of  $\mathbf{x}$  in  $W_k$ .

#### Definition

Such methods are called Krylov's methods.

#### Property

Let  $A \in \mathbb{R}^{n \times n}$ ,  $\mathbf{v} \in \mathbb{R}^{n}$ . The Krylov's subspace  $K_m(A, \mathbf{v})$  has dimension m if and only if the degree of  $\mathbf{v}$  with respect to A,  $deg_A(\mathbf{v})$ , is not smaller than m, being the degree of  $\mathbf{v}$  w. r. t. Athe minimum degree of a monic non-zero polynomial p in A, for which  $p(A)\mathbf{v} = 0$ .

### iterative methods in Krylov's spaces

Fixed *m*, we can compute an orthonormal basis for  $K_m(A, \mathbf{v})$ , using Arnoldi's algorithm, based on Gram-Schmidt's algoritm. Applying Gram-Schmidt we would get:

$$\mathbf{v}_1 = \frac{\mathbf{v}}{\|\mathbf{v}\|_2}$$
$$\mathbf{w}_{k+1} = A^k \mathbf{v} - \sum_{i=1}^k h_{ik} \mathbf{v}_i$$
$$\mathbf{v}_{k+1} = \frac{\mathbf{w}_{k+1}}{\|\mathbf{w}_{k+1}\|_2}$$

where  $h_{ik}$ 's are choosen imposing the orthogonalaty of  $\mathbf{w}_{k+1}$ .

### iterative methods in Krylov's spaces

Applying Arnoldi's algorithm we get:

 $\mathbf{v}_1 = \frac{\mathbf{v}}{\|\mathbf{v}\|_2}$  $h_{ik} = \mathbf{v}_i^T A \mathbf{v}_k \quad i = 1, 2, ...k$  $\mathbf{w}_{k+1} = A \mathbf{v}_k - \sum_{i=1}^k h_{ik} \mathbf{v}_i$  $h_{k+1,k} = \|\mathbf{w}_{k+1}\|_2$  $\mathbf{v}_{k+1} = \frac{\mathbf{w}_{k+1}}{\|\mathbf{w}_{k+1}\|_2}$ 

## iterative methods in Krylov's spaces

 $\mathbf{v}_1, ..., \mathbf{v}_m$  build an orthonormal basis for  $K_m(A, \mathbf{v})$ . Defining  $V_m = (\mathbf{v}_1, ..., \mathbf{v}_m)$ , we have that

$$V_m^T A V_m =: H_m$$
$$V_{m+1}^T A V_m =: \hat{H}_m$$

where  $\hat{H}_m$  superior Hessenberg matrix with entries  $h_{ij}$  from above.

#### Remark

The algorithm stops at an intermediate step k < m if and only if  $deg_A(\mathbf{v}_1) = k$ .

Now we can apply a Krylov's method of type

$$\mathbf{x}^k = \mathbf{x}^0 + q_{k-1}(A)\mathbf{r}^0$$

to solve the system  $A\mathbf{x} = \mathbf{b}$ .

## iterative methods in Krylov's spaces

How to find  $\mathbf{x}^k$ ? We have two possibilities:

•  $\mathbf{x}^k \in W_k$  such that  $\mathbf{r}^k$  is orthogonal to every vector in  $K_k(A, \mathbf{r}^0)$ , that is

$$\mathbf{x}^k \in W_k$$
 such that  $\mathbf{v}^T (\mathbf{b} - A \mathbf{x}^k) = 0 \ \forall \mathbf{v} \in K_k(A, \mathbf{r}^0)$ 

 $\Rightarrow$  FOM (= Full Orthogonalization Method)

•  $\mathbf{x}^k \in W_k$  such that it minimizes the Euclidean norm of the residual  $\|\mathbf{r}^k\|_2$ , that is

$$\|\mathbf{b} - A\mathbf{x}^k\|_2 = \min_{\mathbf{v} \in W_k} \|\mathbf{b} - A\mathbf{v}\|_2$$

 $\Rightarrow$  GMRES (= Generalized Minimum RESiduals)

### GMRES

We build a basis for  $K_k(A, \mathbf{r}^0)$  with Arnoldi's algorithm, setting  $\mathbf{v}_1 = \frac{\mathbf{r}^0}{\|\mathbf{r}^0\|_2}$ , and we find  $V_k = (\mathbf{v}_1, ..., \mathbf{v}_k)$ . We can compute  $\mathbf{x}^k = \mathbf{x}^0 + V_k \mathbf{z}^k$ . How to choose  $\mathbf{z}^k$ ?

$$\begin{aligned} \mathbf{x}^{k} &= \mathbf{x}^{0} + V_{k} \mathbf{z}^{k} \\ \mathbf{r}^{k} &= \mathbf{r}^{0} - A V_{k} \mathbf{z}^{k} = \mathbf{v}_{1} \| \mathbf{r}^{0} \|_{2} - A V_{k} \mathbf{z}^{k} \\ \mathcal{V}_{k+1}^{T} \mathbf{r}^{k} &= \mathbf{e}_{1} \| \mathbf{r}^{0} \|_{2} - \hat{H}_{k} \mathbf{z}^{k} \\ \mathbf{r}^{k} &= V_{k+1} (\mathbf{e}_{1} \| \mathbf{r}^{0} \|_{2} - \hat{H}_{k} \mathbf{z}^{k} ) \end{aligned}$$

So choose  $\mathbf{z}^k$  such that  $\|\|\mathbf{r}^0\|_2 \mathbf{e}_1 - \hat{H}_k \mathbf{z}_k\|_2$  is minimum.

◆□▶ ◆□▶ ◆目▶ ◆目▶ ●目 - のへで

Calderon preconditioning



#### Remark

The GMRES stops at most after n iterations, giving the exat solution.

#### Remark

GMRES solves at every step a minimum squares problems, which requires many computations.

 $\Rightarrow$  GMRES useful if convergence is reached in a small number of steps.

・ロン ・回と ・ヨン ・ヨン

# Calderon preconditioning

- Let  $A_h^{BEM}$  be the stiffness matrix obtained with the Galerkin approximation.
- $A_h^{BEM}$  is a symmetric, positive definite matrix, hence it holds  $\kappa_2(A_h^{BEM}) = \frac{\lambda_{max}(A_h^{BEM})}{\lambda_{min}(A_h^{BEM})}$

#### Lemma

It holds:

• 
$$\lambda_{max}(A_h^{BEM}) \leq Ch^2$$
  
•  $\lambda_{min}(A_h^{BEM}) \geq C'h^3$ 

・ロト ・四ト ・ヨト ・ヨト - ヨ

## Calderon preconditioning

It follows that:

$$\kappa_2(A_h^{BEM}) \leq \tilde{C} rac{1}{h}$$

Note that if we halve the mesh size we get

$$\kappa_2(A_{h/2}^{BEM}) \le 2\tilde{C}rac{1}{h}$$

 $\Rightarrow \kappa_2(A_{h/2}^{BEM}) \approx 2\kappa_2(A_h^{BEM})$ 

イロト イヨト イヨト イヨト

# Calderon preconditioning

#### Problem:

- we want a small mesh h
- we want a small conditioning number for  $A_h^{BEM}$
- mesh decreases  $\Rightarrow$  conditioning number increases
- $\Rightarrow$  We need a preconditioning matrix!

イロト イポト イヨト イヨト

## Calderon preconditioning

#### Recall the Calderon projection

$$\begin{pmatrix} \gamma_D u \\ \gamma_N u \end{pmatrix} = \begin{pmatrix} \frac{1}{2}I - K_0 & V_0 \\ W_0 & \frac{1}{2}I + K'_0 \end{pmatrix} \begin{pmatrix} \gamma_D u \\ \gamma_N u \end{pmatrix}$$

where the Calderon projector

$$C = \begin{pmatrix} \frac{1}{2}I - K_0 & V_0 \\ W_0 & \frac{1}{2}I + K'_0 \end{pmatrix}$$

has the property  $C = C^2$ .

▲冊→ ▲屋→ ▲屋→

# Calderon preconditioning

We get

$$V_0 W_0 = (\frac{1}{2}I + K_0)(\frac{1}{2}I - K_0) = \frac{1}{4}I - K_0^2$$
$$W_0 V_0 = (\frac{1}{2}I + K_0')(\frac{1}{2}I - K_0') = \frac{1}{4}I - K_0'^2$$

• We know that 
$$\kappa_2(A) = rac{\lambda_{max}(A)}{\lambda_{min}(A)}$$

- We know that  $K_0$  ,  $K_0'$  are compact operators
- The eigenvalues of a compact operator are finite or they are a sequence converging to zero
- Adding the identity to a compact operator, we can avoid that  $\lambda_{\min}=0$
- This way the conditioning number can be controlled