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Direct methods vs iterative methods

Full matrix of order n:

direct method: costs about 2
3n

3

iterarive method: costs about n2 for every iteration
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Solve the system Ax = b, where A is a symmetric positive
definite matrix.

We want to find xk recursively:

xk+1 = xk + αkp
k

We define rk = b− Axk
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We define

Φ(y) =
1

2
yTAy − yTb

Theorem

We have that:

x solution of Ax = b⇔ x minimum point of Φ(y)

⇒ We want to find the minimum point of the function Φ, starting
from a point x0

Stefanie Müller Iterative methods for linear systems: conjugate gradient and GMRES Calderon preconditioning



Direct methods vs iterative methods
Conjugate gradient and Preconditioned conjugate gradient

Iterative methods in Krylov’s spaces
GMRES

Calderon preconditioning

Conjugate gradient
Preconditioned conjugate gradient

conjugate gradient

Given the direction pk , we can find αk that minimizes
Φ(xk+1) = Φ(xk + αkp

k)
We obtain

αk =
pk

T
rk

pkTApk

How to find pk?
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Definition

A solution xk is said to be optimal with respect to a direction
p 6= 0 if

Φ(xk) ≤ Φ(xk + λp) ∀λ ∈ R

If xk is optimal w. r. t. all directions of a vector space V, xk is
said to be optimal w. r. t. V.

Theorem

If xk is optimal with respect to p, p is orthogonal to rk .
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We look for directions which conserve the optimality of the
iterates.

Suppose to have xk+1 = xk + q, with xk optimal with respect
to a direction p (i.e. rk ⊥ p).

Impose xk+1 optimal with respect to p (i.e. rk+1 ⊥ p).
We obtain that

pTAq = 0

That is, the directions are A-orthogonal, or A-conjugate.
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How to find these directions?

Set p0 = r0

pk+1 = rk+1 − βkpk for k = 0, 1, ...

where βk is defined such that pj
T
Apk+1 = 0 for j = 0, 1, ..., k

We get for βk :

βk =
(Apk)

T
rk+1

(Apk)
Tpk

Stefanie Müller Iterative methods for linear systems: conjugate gradient and GMRES Calderon preconditioning



Direct methods vs iterative methods
Conjugate gradient and Preconditioned conjugate gradient

Iterative methods in Krylov’s spaces
GMRES

Calderon preconditioning

Conjugate gradient
Preconditioned conjugate gradient

conjugate gradient

Summarizing, we get the method of the conjugate gradient:
Choose x0 , set r0 = b− Ax0 , p0 = r0

Iterate over k=0,1, ...

αk =
pk

T
rk

pkTApk

xk+1 = xk + αkp
k

rk+1 = rk − αkAp
k

βk =
(Apk)

T
rk+1

(Apk)
Tpk

pk+1 = rk+1 − βkpk
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Remark

One can show that:

αk =
‖rk‖22

pkTApk

βk =
‖rk+1‖22
‖rk‖22

Ark = − 1
αk
rk+1 + ( 1

αk
− βk−1

αk−1
)rk +

βk−1

αk−1
rk−1

Stefanie Müller Iterative methods for linear systems: conjugate gradient and GMRES Calderon preconditioning



Direct methods vs iterative methods
Conjugate gradient and Preconditioned conjugate gradient

Iterative methods in Krylov’s spaces
GMRES

Calderon preconditioning

Conjugate gradient
Preconditioned conjugate gradient

conjugate gradient

Theorem

Let A be a symmetric, positive definite matrix, n × n. The method
of conjugate gradient for the system Ax = b converges at most in
n steps. Moreover, the error ek is orthogonal to pj for
j = 0, 1, ..., k − 1 and

‖ek‖A ≤
2ck

1 + c2k
‖e0‖A where c :=

√
κ2(A)− 1√
κ2(A) + 1

Remark

To have a better convergence, we want κ2(A) small, where

κ2(A) := ‖A‖2‖A−1‖2 = λmax (A)
λmin(A)
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We have seen that to have a faster convergence κ2(A) = λmax (A)
λmin(A)

should be as small as possible.
So if κ2(A) >> 1, we can write the system in the form:

P−
1
2AP−

1
2 y = P−

1
2b with y = P

1
2 x

i.e. P−
1
2Ax = P−

1
2b
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We obtain the method of preconditioned conjugate gradient:
Given x0, set r0 = b− Ax0 , z0 = P−1r0 , p0 = z0.
Iterate over k = 0, 1, ...

αk =
pk

T
rk

(Apk)
Tpk

xk+1 = xk + αkp
k

rk+1 = rk − αkAp
k

Pzk+1 = rk+1

βk =
(Apk)

T
zk+1

pkTApk

pk+1 = zk+1 − βkpk
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Remark

The estimation of the errors is the same as in the CG,
substituting A with P−1A.

The implementation of PCG does not request to compute P
1
2

or P−
1
2 .

Solving Pzk+1 = rk+1 increases the computational cost w.r.t.
the CG.

We need to find a preconditioning matrix P such that:

It is easy to solve the linear system Pzk+1 = rk+1

κ2(P−1A) should be near to 1, to decrease the number of
steps necessary to get a good convergence
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Consider the Richardson’s method xk+1 = xk + αkr
k

We have that:

rk =
k−1∏
j=0

(I − αjA)r0 (1)

So rk = pk(A)r0 , where pk(A) is a polynom in A of degree k.

Definition

We define the Krylov’s space of order m as:

Km(A, v) = span
{
v,Av, ...,Am−1v

}
It is a subspace of the space generated by all vectors u ∈ Rn of the
form u = pm−1(A)v , where pm−1 is a polynom in A of degree
≤ m − 1.

Stefanie Müller Iterative methods for linear systems: conjugate gradient and GMRES Calderon preconditioning



Direct methods vs iterative methods
Conjugate gradient and Preconditioned conjugate gradient

Iterative methods in Krylov’s spaces
GMRES

Calderon preconditioning

iterative methods in Krylov’s spaces

Remark

(1) implies that rk ∈ Kk+1(A, r0)

We can observe that

xk = x0 +
k−1∑
j=0

αj r
j

where
∑k−1

j=0 αj r
j is a polynom in A of degree ≤ k − 1, and so

xk ∈Wk :=
{
v = x0 + y : y ∈ Kk(A, r0)

}
That is, we are looking for a solution approximating x in the space
Wk
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In general, we have methods of the form:

xk = x0 + qk−1(A)r0

where qk−1(A) is a polynom choosen such that xk is the best
approximation of x in Wk .

Definition

Such methods are called Krylov’s methods.

Property

Let A ∈ Rnxn, v ∈ Rn. The Krylov’s subspace Km(A, v) has
dimension m if and only if the degree of v with respect to A,
degA(v), is not smaller than m, being the degree of v w. r. t. A
the minimum degree of a monic non-zero polynomial p in A, for
which p(A)v = 0.
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Fixed m, we can compute an orthonormal basis for Km(A, v) ,
using Arnoldi’s algorithm, based on Gram-Schmidt’s algoritm.
Applying Gram-Schmidt we would get:

v1 =
v

‖v‖2

wk+1 = Akv −
k∑

i=1

hikvi

vk+1 =
wk+1

‖wk+1‖2

where hik ’s are choosen imposing the orthogonalaty of wk+1.
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Applying Arnoldi’s algorithm we get:

v1 =
v

‖v‖2
hik = vTi Avk i = 1, 2, ...k

wk+1 = Avk −
k∑

i=1

hikvi

hk+1,k = ‖wk+1‖2
vk+1 =

wk+1

‖wk+1‖2
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v1, ..., vm build an orthonormal basis for Km(A, v).
Defining Vm = (v1, ..., vm) , we have that

V T
m AVm =: Hm

V T
m+1AVm =: Ĥm

where Ĥm superior Hessenberg matrix with entries hij from above.

Remark

The algorithm stops at an intermediate step k < m if and only if
degA(v1) = k.

Now we can apply a Krylov’s method of type

xk = x0 + qk−1(A)r0

to solve the system Ax = b.
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How to find xk? We have two possibilities:

xk ∈Wk such that rk is orthogonal to every vector in
Kk(A, r0), that is

xk ∈Wk such that vT (b− Axk) = 0 ∀v ∈ Kk(A, r0)

⇒ FOM (= Full Orthogonalization Method)

xk ∈Wk such that it minimizes the Euclidean norm of the
residual ‖rk‖2, that is

‖b− Axk‖2 = min
v∈Wk

‖b− Av‖2

⇒ GMRES (= Generalized Minimum RESiduals)
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We build a basis for Kk(A, r0) with Arnoldi’s algorithm, setting

v1 = r0

‖r0‖2 , and we find Vk = (v1, ..., vk).

We can compute xk = x0 + Vkz
k .

How to choose zk?

xk = x0 + Vkz
k

rk = r0 − AVkz
k = v1‖r0‖2 − AVkz

k

V T
k+1r

k = e1‖r0‖2 − Ĥkz
k

rk = Vk+1(e1‖r0‖2 − Ĥkz
k)

So choose zk such that ‖‖r0‖2e1 − Ĥkzk‖2 is minimum.
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Remark

The GMRES stops at most after n iterations, giving the exat
solution.

Remark

GMRES solves at every step a minimum squares problems, which
requires many computations.
⇒ GMRES useful if convergence is reached in a small number of
steps.
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Let ABEM
h be the stiffness matrix obtained with the Galerkin

approximation.

ABEM
h is a symmetric, positive definite matrix, hence it holds

κ2(ABEM
h ) =

λmax (ABEM
h )

λmin(A
BEM
h )

Lemma

It holds:

λmax(ABEM
h ) ≤ Ch2

λmin(ABEM
h ) ≥ C ′h3
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It follows that:

κ2(ABEM
h ) ≤ C̃

1

h

Note that if we halve the mesh size we get

κ2(ABEM
h/2 ) ≤ 2C̃

1

h

⇒ κ2(ABEM
h/2 ) ≈ 2κ2(ABEM

h )
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Problem:

we want a small mesh h

we want a small conditioning number for ABEM
h

mesh decreases ⇒ conditioning number increases

⇒ We need a preconditioning matrix!
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Recall the Calderon projection(
γDu
γNu

)
=

(
1
2 I − K0 V0

W0
1
2 I + K ′0

)(
γDu
γNu

)
where the Calderon projector

C =

(
1
2 I − K0 V0

W0
1
2 I + K ′0

)
has the property C = C 2.
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We get

V0W0 = (
1

2
I + K0)(

1

2
I − K0) =

1

4
I − K 2

0

W0V0 = (
1

2
I + K ′0)(

1

2
I − K ′0) =

1

4
I − K ′20

We know that κ2(A) = λmax (A)
λmin(A)

We know that K0 , K ′0 are compact operators

The eigenvalues of a compact operator are finite or they are a
sequence converging to zero

Adding the identity to a compact operator, we can avoid that
λmin = 0

This way the conditioning number can be controlled
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