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1 Steklov-Poincaré Operator

Last time we saw the Calderón projection that satisfies the following system of boundary
integral equation for a harmonic u ∈ H1(Ω)(we consider only the homogeneous case, i.e.
f = 0) (

γDu
γNu

)
=

(
(1− σ)I −K0 V0

W0 σI +K ′0

)(
γDu
γNu

)
We proved that V0 is H−

1
2 -elliptic and therefore, by the Lax-Milgram theorem, invertible.

Take the first of the two equation and solve for the Neumann data gives

γNu = V −1
0 (σI +K0)γDu

We thus found an operator

S0 := V −1
0 (σI +K0) : H

1
2 (Γ)→ H−

1
2 (Γ)

that maps the Dirichlet datum to the Neumann datum. We call S0 Steklov-Poincaré
operator.

Use the second equation to obtain the symmetric representation of the Steklov-
Poincaré operator:

S0 = W0 + (σI +K ′0)V −1
0 (σI +K0)

In this form, we see that S0 admits the same ellipticity estimates as W0:

〈S0v, v〉Γ ≥ 〈W0v, v〉Γ

using the H−
1
2 -ellipticity of V0. In particular, S0 is H

1
2
∗ (Γ)-elliptic.

2 Wave Equation and Helmholtz Equation

2.1 Wave equation reduces to Helmholtz Equation

The wave equation is
∂2

∂t2
Ψ− c2∆Ψ = 0

Assume the solution to be time harmonic:

Ψ(t, x) = e−iwtu(x)

Then u will satisfy

−w2u− c2∆u = 0 or −∆u− k2u = 0 with k =
w

c

and is called Helmholtz equation.

2.2 Fundamental solution

We shall always assume k ∈ C∗ and 0 ≤ arg k < π. To derive the fundamental solution of
the Helmholtz equation, we go over to spherical coordinates (remember that the Lapla-
cian commutes with rotation and (−∆y − k2)Gk(x− y) = δ(x− y), so (−∆z − k2)Gk(z)
vanishes r = |z| = |x− y| > 0 ):

1

r2
∂r
[
r2∂rũ(r)

]
− k2ũ(r) = 0 where ũ(r) = ũ(|z|) = u(z)
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Put v(r) = rũ(r) and v solves

v′′(r) + k2v(r) = 0.

We find

ũ(r) =
1

r
v(r) = A

sin kr

r
+B

cos kr

r

If one analyzes the behavior for r → 0, then A = 0 and taking a complex combination of
v one defines

Gk(x, y) =
1

4π

eik|x−y|

|x− y|
.

Note that one actually has a choice to put a minus sign in the exponential function,

that is 1
4π

e−ik|x−y|

|x−y| is also a fundamental solution. The next section will justify our choice

of sign.

2.3 Sommerfeld Radiation condition

We will be concerned with the exterior Dirichlet problem −∆u − k2u = 0 in Ωc and
u = g in ∂Ω for a bounded domain Ω (details later). The solution will in general not be
unique. However, we can impose additional properties how u should behave at infinity.

Consider the spherical waves A eikr

r and B e−ikr

r . They are solutions of the (radial)

Helmholtz equation. Remember that A eikr

r e−iwt = A eik(r−ct)

r is then a solution of the
wave equation and its phase r− ct is outgoing for r > 0. Similiar, the other one will have
“left going phase” and hence be incoming.

Let u∞(r) := A eikr

r . Then

∂

∂r
u∞(r) = A

eikr

r
(ik − 1

r
),

and assumung k real, ∣∣∣∣ ∂∂ru∞ − iku∞
∣∣∣∣ = o(

1

r2
) as r →∞.

We will demand that a solution of the EDP satisifies the latter property, i.e. behaves
like an outgoing wave. It is called the Sommerfeld’s radiation condition. Note that

B e−ikr

r does not fulfill the condition. Consider −∆u− k2u = f in Rn. Then u = Gk ∗ f
is a solution that behaves likes, for x = rω

A(ω)
eikr

r
+ o(r−2) as r →∞

And thus our choice for the sign of the fundamental solution.
We will show that this forces the solution to be unique, and we will be able to talk

about “the” radiating solution of the EDP.

2.4 Rellich Lemma and Uniqueness of the EDP

Lemma 2.1. (Rellich)
Let k > 0 and u a solution of

−∆u− k2u = 0 on Bρ0(0)
c
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and suppose that

lim
ρ→∞

∫
|x|=ρ

|u(x)|2dσ = 0

then u = 0 on Bρ0(0)
c
.

Proof. (Idea) We have that u is an eigenfunction of ∆ outside the closed ball of radius ρ0.
The elliptic regularity theorem tells us that u is thus C∞. So we can write u as a sum of
surface spherical harmonics {H(S2)m}m∈N (remember: these are harmonic homogeneous
polynomials (in the three coordinate variables) restricted to the unit surface) which
form are dense in L(S2) and rescaling the unit sphere to ∂Bρ for ρ > ρ0, x = ρω,
|x| = ρ and ω ∈ S2. So, let the spherical harmonics {ψmp} be an ONB of L2 and
fmp(kρ) = 〈u(ρ · ), ψmp〉L2(S2):

u =

∞∑
m=0

N(n,m)∑
p=1

fmp(kρ)ψmp(ω).

Since u satisfies the Helmholtz equation one can show that each zn/2−1fmp(z) is then a
solution of a Bessel equation

g′′(z) +
1

z
g′(z) + (1−

(m+ 1
2 )2

z2
)g(z) = 0.

The spherical Hankel functions h1
m, h

2
m are a basis of the solution space of this equation.

They satisfy

h1
m =

1

z(n−1)/2

[
exp i [z − (2m+ 2)π/4] +O(

1

z
)

]
and

h2
m =

1

z(n−1)/2

[
exp−i [z − (2m+ 2)π/4] +O(

1

z
)

]
So fmp can be represented as a linear combination of those two, say fmp = ah1

m + bh2
m

and hence

ρ2|fmp(kρ)|2 = |a exp 2i [kρ− (2m+ 2)π/4] + b|2 +O(
1

ρ
).

But ∫
|x|=ρ

|u(x)|2dσ =

∞∑
m=0

N(n,m)∑
p=1

ρ2|fmp(kρ)|2.

Taking the limit ρ → ∞ shows a = b = 0, so every fmp vanishes and therefore does
u.

Corollary 2.2. Let u ∈ H1
loc(Ω

c) be a solution of the homogeneous exterior Helmholtz
equation,

−∆u− k2u = 0 on Ωc

and satisfies in addition to the Sommerfeld radiation condition also

=
(
k

∫
Γ

(γcN ū)(γcDu) dσ

)
≥ 0,

then u = 0 on Ωc.
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Proof. First note that by the elliptic regularity theorem u is smooth on Ωc. For what
follows it does not matter if we enlarge to some Ω∗ such that Γ∗ ⊂ Ωc. So u is smooth
in the closure of Ωc∗. We know lose the asterix. Hence γNu = n · ∇u = ∂u

∂ρ on the ∂Bρ
and so ∣∣∣∣∂u∂ρ − iku

∣∣∣∣2 =

∣∣∣∣∂u∂ρ
∣∣∣∣2 + |k|2|u|2 + 2=

(
k
∂ū

∂ν
u

)
.

Set Ωcρ = Ωc ∩Bρ and apply Greens first identiy,∫
Ωcρ

∇ū · ∇v − k̄2ūv dx = 〈(−∆− k2)u, v〉L2(Ωcρ) + 〈γNu, γDv〉L2(∂Ωcρ).

Take v = u. The first integral on the right hand side vanishes by assumption. Now
multiply with k and take the imaginary part to obtain

=(k)

∫
Ωcρ

|∇u|2 − |k|2|u|2 dx =

∫
∂Bρ

=
(
k
∂ū

∂ν
u

)
dσ −

∫
Γ

=
(
k
∂ū

∂ν
u

)
dσ.

Substitute =
(
k ∂ū∂ν u

)
of the first integral with the equality we already obtained:

=(k)

∫
Ωcρ

|∇u|2 + |k|2|u|2 dx+
1

2

∫
∂Bρ

∣∣∣∣∂u∂ρ
∣∣∣∣2 + |k|2|u|2 dσ =

+

∫
∂Bρ

∣∣∣∣∂u∂ρ − iku
∣∣∣∣2 dσ −

∫
Γ

=
(
k
∂ū

∂ν
u

)
dσ.

So if =(k) > 0 and using the assumption, the LHS is positive whereas by the Som-
merfeld radiation the right hand side converges to something ≤ 0 as ρ → ∞. Therefore∫

Ωcρ
|u|2dx→ 0 and u must vanish on Ωc.

If we assume k to be real, we can merely conclude (|k|2 > 0!) that
∫
∂Bρ
|u|2dx→ 0. But

now Rellich Lemma applies.

Theorem 2.3. (Uniqueness)
There is at most one radiating solution u ∈ H1

loc(Ω
c) of

−∆u− k2u = 0 on Ωc

γcDu = g on Γ,

where g ∈ H 1
2 (Γ).

Proof. If v, w are two solutions, then u = v−w satisfies the assumption of the corrolary
since γDu = 0.

3 BIE of Helmholtz Equation

3.1 Integral operators and Boundary Integral Equations

We introduce now the integral representations of the solutions of the Helmholtz equation.
In particular we will give a proof of the existence of a solution of the EDP.
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Recall the fundamental solution of the Helmholtz Equation

−∆u(x)− k2u(x) = 0 for x ∈ Ω ⊂ R3,

namely

Gk(x, y) =
1

4π

eik|x−y|

|x− y|
.

The standard boundary integral operators for x ∈ Γ are then

Weakly Singular Boundary Integral Operator (Vkw)(x) =

∫
Γ

Gk(x, y)w(y)dsy

Double Layer Potential (Kkv)(x) =

∫
Γ

∂

∂ny
Gk(x, y)v(y)dsy

Adjoint Double Layer Potential (K ′kv)(x) =

∫
Γ

∂

∂nx
Gk(x, y)v(y)dsy

Hypersingular Boundary Integral Operator (Wkv)(x) =− ∂

∂nx

∫
Γ

∂

∂ny
Gk(x, y)v(y)dsy

Theorem 3.1. For a bounded Lipschitz domain, the boundary integral operators

Vk : H−
1
2 +s(Γ)→ H

1
2 +s(Γ)

Kk : H
1
2 +s(Γ)→ H

1
2 +s(Γ)

K ′k : H−
1
2 +s(Γ)→ H−

1
2 +s(Γ)

Wk : H
1
2 +s(Γ)→ H−

1
2 +s(Γ)

are bounded for all s ∈ [− 1
2 ,

1
2 ]

However the ellipticity property of Vk no longer holds. We now rather prove

Lemma 3.2. Vk : H−
1
2 (Γ) → H

1
2 (Γ) is coercive, i.e. there exists a compact operator

C : H−
1
2 (Γ)→ H

1
2 (Γ) such that the Gardings inequality

〈Vkw,w〉Γ + 〈Cw,w〉Γ ≥ const ||w||2
H−

1
2 (Γ)

∀w ∈ H− 1
2 (Γ)

holds.

Proof. The idea is the following: Let C = δV = V0 − Vk. Then V0 = Vk + δV . Consider
u = ΨSLw − Ψ0

SLw. One calculates −∆[−∆ − k2]u = 0 and can therefore argue that

ΨSL − Ψ0
SL : H−

1
2 (Γ) → H3(Ω) and thus δV = γD(V − V0) : H−

1
2 (Γ) → H

5
2 (Γ). Since

the embedding of H
5
2 in H

1
2 is compact, δV : H−

1
2 (Γ)→ H

1
2 is also compact. The claim

then follows from the H−
1
2 -ellipticity of V0.

Note that also Wk −W0, Kk −K0 and K ′k −K ′0 are compact.

Theorem 3.3. Let φ ∈ H−
1
2 (Γ). Then u = ΨSLφ satisfies the homogeneous partial

differential equation (−∆− k2)u = 0 in Rn \Γ. It also satifies the Sommerfeld radiation

condition. Furthermore [γDu] = 0 Analogously, for φ ∈ H 1
2 (Γ). Then if u = ΨDLφ we

have (−∆ − k2)u = 0 in Rn \ Γ and also satifies the Sommerfeld radiation condition.
Furthermore [γNu] = 0
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Remark 3.4. One has the equalities Wk = Kk + 1
2 Id and Vk = K ′k + 1

2 Id.

Suppose that u ∈ H1
loc(Ω

c) with (−∆ − k2)u = 0 in Ωc satisfies u = −ΨSL[γDu] +
ΨDL[γDu] in Ωc. Taking the Dirichlet trace and Neumann trace repectively and applying
above identies one has (

γcDu
γcNu

)
=

(
1
2I +Kk −Vk
−Wk

1
2I −K

′
k

)(
γcDu
γcNu

)
Note the change of signs with respect to the interior Calderón Operator.

We now list the corresponding boundary integral equations to the exterior Dirichlet
problem.

Direct Method - integral equality of the first kind: Let g ∈ H 1
2 (Γ). Find ψ ∈ H− 1

2 (Γ)
such that

〈Vkψ,ϕ〉L2(Γ) = −1

2
〈g, ϕ〉L2(Γ) + 〈Kkg, ϕ〉L2(Γ) ∀ϕ ∈ H− 1

2 (Γ)

Direct Method - integral equality of the second kind: Let g ∈ H
1
2 (Γ). Find ψ ∈

H−
1
2 (Γ) such that

1

2
〈ψ,ϕ〉L2(Γ) + 〈K ′kψ,ϕ〉L2(Γ) = −〈Wkg, ϕ〉L2(Γ) ∀ϕ ∈ H 1

2 (Γ)

Indirect Method - using the single layer potential: Let g ∈ H 1
2 (Γ). Find ψ ∈ H− 1

2 (Γ)
such that

〈Vkψ,ϕ〉L2(Γ) = 〈g, ϕ〉L2(Γ) ∀ϕ ∈ H 1
2 (Γ)

Indirect Method - using the double layer potential: Let g ∈ H 1
2 (Γ). Find ψ ∈ H− 1

2 (Γ)
such that

1

2
〈ψ,ϕ〉L2(Γ) + 〈Kkψ,ϕ〉L2(Γ) = 〈g, ϕ〉L2(Γ) ∀ϕ ∈ H− 1

2 (Γ)

3.2 Representation formula

We have seen Green’s representation formula that states if Ω is bounded in u ∈ H1(Ω) is
a solution to the homogeneous interior Dirichlet problem for the Laplace. It also holds
for the Helmholtz operator, i.e. if (−∆− k2)u = 0, γDu = g, g ∈ H 1

2 (Γ)

u = ΨSL(γNu)−ΨDL(γDu) in Ω.

A more general version of it goes as follows (with the closed brackets denoting the
jumps of the traces):

Theorem 3.5. u ∈ L2(Rn) with compact support, u|Ω ∈ H1(Ω), u|Ωc ∈ H1(Ωc), then

u = ΨDL([γDu])−ΨSL([γNu]) on Rn

Obviously, for the EDP we don’t want to restrict solutions to have compact support
but satisfy only the Sommerfeld radiating condition, writing x = ρω, ρ = |x|, ω ∈ S2:

lim
ρ→∞

ρ

(
∂u

∂r
− iku

)
= 0

uniformely in ω.
Remarkably, the representation formula still holds:
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Theorem 3.6. Let g ∈ H 1
2 (Γ). And suppose u ∈ H1

loc(Ω
c) is a radiating solution of

−∆u− k2u = 0 on Ωc

γcDu = g on Γ,

then u has the integral representation

u = ΨDLg −ΨSL(γcNu).

Proof. We sketch the proof. Once more, put Ωcρ = Ωc ∩ Bρ. The boundedness of this

domain implies u ∈ H1(Ωcρ) (remember the definition of H l
loc(W ) = {t ∈ D′(W ) : t ∈

H1(B) for all bounded B ⊂W}) and that we can apply Greens representation theorem

u(x) = +ΨSL(γcNu)(x)−ΨDL(γcDu)(x)

−
∫
∂Bρ

G(x, y)γNu(y) dσ +

∫
∂Bρ

γNG(x, y)γDu(y) dσ in Ωcρ (?),

the second line corresponding to the “outer” boundary. Note the different signs: On Γ,
we use the outer normal unit vector of Ω which therefore looks inward to Ωcρ = Ωc ∩Bρ
and so ΨSL carries a + in front of it and ΨDL a −. On ∂Bρ we do consider the outward
UNV.

Remember the uniqueness result? We showed that the Sommerfeld radiation condi-
tion implied that

=(k)

∫
Ωcρ

|∇u|2 + |k|2|u|2 dx+
1

2

∫
∂Bρ

∣∣∣∣∂u∂ρ
∣∣∣∣2 + |k|2|u|2 dσ

→ −
∫

Γ

=
(
k
∂ū

∂ν
u

)
dσ as ρ→∞.

In particular,
∫
∂Bρ
|u|2 dσ has to be bounded. Note that

∫
∂Bρ
|G(x, y)|2 dσ is also

bounded and the fundamental solution is also radiating. We then write∫
∂Bρ

G(x, y)γNu(y) dσ +

∫
∂Bρ

γNG(x, y)γDu(y) dσ =∫
∂Bρ

G(x, y) (γNu(y)− iku(y)) dσ +

∫
∂Bρ

(γNG(x, y)− ikG(x, y)) γDu(y) dσ

We apply on both integrals Cauchy-Schwarz, the former then vanishes by the radiating
condition on u as ρ→∞, the latter because of the radiating property of G. Finally, let
ρ→∞ in (?) and the claim follows.

3.3 Existence

We finally will prove the existence of a radiating solution. Of utmost importance is
the following correspondence between the volume problem and the boundary integral
equation:

Theorem 3.7. Let g ∈ H 1
2 (Γ). And suppose u ∈ H1

loc(Ω
c) is a radiating solution of

−∆u− k2u = 0 on Ωc

γcDu = g on Γ,
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then φ = γcN ∈ H−
1
2 (Γ) is a solution of the boundary integral equation

Vkφ = (− Id /2 +K)g on Γ, (1)

and u has the integral representation

u = ΨDLg −ΨSLφ. (2)

Conversely, if φ ∈ H−
1
2 (Γ) is a solution (1), then formula (2) defines a solution u ∈

H1
loc(Ω

c) of the exterior Dirichlet problem.

Proof. First suppose u to be a solution of the EDP. We already proved the representation
formula u = ΨDL(γcD)−ΨSL(γcNu). Take the Dirichlet trace to get

γcDu = −VkγcNu+ (K +
1

2
Id)γcDu.

But with φ = γcNu, g = γcDu this is just (1).
Now, let u := ΨDLg − ΨSLφ where φ is a solution of the BIE (1). We know that

(−∆ − k2)ΨDL ≡ 0 and (−∆ − k2)ΨSL ≡ 0 and both ΨDLv and ΨSLw satisfy the

Sommerfeld radiation condition, v ∈ H 1
2 (Γ), w ∈ H− 1

2 (Γ). Hence, we only need to check
that γDu = g. But again, taking the trace of u gives

γcDu = (K +
1

2
Id)g − Vkφ = (K +

1

2
Id)g − (−1

2
Id +K)g = g

and u solves the EDP. To proof that u ∈ H1
loc(Ω

c) one needs the fact that for any

ϕ ∈ D(Rn) it holds ϕΨSL : H−
1
2 (Γ)→ H1(Rn) and ϕΨDL : H

1
2 (Γ)→ H1(Ωc) and that

elements of H1
loc(W ) can also be characterized by

v ∈ H1
loc(W ) iff ϕv ∈ H1(Rn)∀ϕ ∈ D(W )

Theorem 3.8. Vk is injective on H−
1
2 (Γ) iff k2 is not an eigenvalue of −∆ of the

interior Dirichlet problem, i.e.

−∆u = k2u on Ω, γDu = 0⇒ u = 0 on Ω

The kernel of Vk is given by

ker(Vk) = span
[
γNv : −∆v = k2v on Ω and γDv = 0 on Γ

]
Proof. Suppose v satisfies −∆v = k2v and γDv = 0. So, by Green’s representation
formula for v, we have v = ΨSLγNv in Ω. Apply the interior Dirichlet trace to get

0 = γDv = γDΨSLγNv = VkγNv.

Therefore γNv ∈ ker(Vk). Conversely, let w ∈ ker(Vk). Define v = ΨSLw. The single
layer potential satisfies LkΨSL = 0, so −∆v = k2v. Also 0 = Vkw = γDΨSLw = γDv.
Hence if k2 is not to be an eigenvalue of −∆ of the above IDP, v must be indentically
zero proving that the kernal is trivial.
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Theorem 3.9. (Fredholm Alternative)
Let A ∈ B(X,Y ) coercive. If Au = 0 only allows the trivial solution u = 0, then
Au = f is uniquely solvable for all f ∈ Y . Else Au = f is solvable iff 〈v, f〉 = 0 for all
v ∈ Y ∗ : A∗v = 0.

Theorem 3.10. (Existence and Uniqueness)

Let Ω be a bounded Lipschitz domain with boundary Γ. Then for every g ∈ H 1
2 (Γ) the

exterior Dirchlet problem

−∆u− k2u = 0 on Ωc

γcDu = g on Γ

has a unique solution u ∈ H1
loc(Ω

c) that satisfies the Sommerfeld radiation condition.

Proof. The uniqueness readily follows from the corollary of the Rellich lemma. To prove
existence, we will solve the boundary integral equation Vkφ = (− Id /2 + Kk)g. By the
above theorem u defined as u = ψDLg − ψSLφ will then be a radiating solution. We use
the Fredholm alternative: We already showed coercivity of Vk. If k2 is not an eigenvalue
we also have injectivity and therefore Vk is invertible and the BIE is solvable (even
uniquely!). If k2 is an eigenvalue, we have to check the solvability condition 〈w, f〉 = 0
for all w ∈ ker(V ∗k ) and f the right hand side of the BIE. But we can apply the theorem
about injectivity of Vk to see that

ker(V ∗) = span
[
γNv : v ∈ H1(Ω), −∆v = k

2
v on Ω and γDv = 0 on Γ

]
Apply the second of Green’s identities to get

〈γNv, (−
1

2
I +Kk)g〉L2(Γ) = 〈γNv, γD(ΨDLg)〉L2(Γ)

= 〈γDv, γN (ΨDLg)〉L2(Γ)

− 〈(−∆− k̄2)v,ΨDLg〉L2(Ω) + 〈v, (−∆− k2)ΨDLg〉L2(Ω)

Each of the three terms on the right vanishes since γDv = 0 on Γ, (−∆− k̄2)v = 0 and
(−∆− k2)ΨDLg = 0 on Ω.

Note that the BIE in the case of resonance is not uniquely solvable even though the
exterior Dirchlet problem is (assuming the radiating condition)!
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