Department of Mathematics

p-adic Analysis Compared with Real

Please note that this page is old.
Check in the VVZ for a current information.
Organizers Prof. Özlem Imamoglu, Prof. Alessandra Iozzi
Pascal Rolli
Place HG G 19.1
Time Tuesday, 15:15-17:00
First meeting
Oct 4, 2011
Analysis I/II, Topology

Schedule of talks

Oct 4
  Organizational meeting
Oct 11
Felix Hensel
Waltraud Lederle
Simone Montemezzani
Completion of normed fields. Non-archimedean norms. p-adic norms. Definition of Qp. [Report]
[K] §1.2-1.4
[S] §8
Oct 18
Ivo Aschwanden
Adrian Clough
Alexandros Grosdos Koutsoumpelias
Equivalence of norms. Ostrowski's theorem. The product formula. [Report]
[K] §1.9
[S] §9-10
Oct 25
Claudio Hüni
Kathrin Naef
Daniel Schmitter
Definition of Zp using p-adic expansions. Arithmetic in Zp. Definition of Zp as an inverse limit. Qp as the fraction field of Zp. [Report]
[K] §1.4-1.6
[R] §1.1.1-1.1.3, §1.5.1
Nov 1st
Patrik Lengacher
Linda Raabe
Nicolas Wider
Hensel's lemma. Algebraic properties of Zp and Qp. Local-to-global for squares. [Report]
[K] §1.7-1.9

[R] §1.1.4-1.1.6

Nov 8
Giorgio Barozzi
Esther Röder
Samuel Trautwein
Topological properties of Zp and Qp. Euclidean models. [Report]
[K] §2.1-2.3
[R] §1.5.6
Nov 15 (in G19.2)
Hannah Hutter
May Szedlak
Philipp Wirth
Convergence of sequences and series. Power series. Strassman's theorem. p-adic logarithm and exponential. [Report]
[K] §3.1-3.6
Nov 22
Ciocan Nicolae
Stephan Tornier
p-adic functions. Locally constant functions. Differentiability. [Report]
[K] §4.1-4.4
Nov 29
Nina Otter
Berke Topacogullari
Antiderivatives. Dieudonné's theorem. [Report]
[S] §30
Dec 6
Jan Dumke
Vladimir Serbinenko
Raphael Steiner
Interpolation. Mahler series for continuous functions (and possibly for Lipschitz and differentiable functions). [Report]
[K] §4.6
[S] §50-53
Dec 13
  Additional meeting, if necessary



Wichtiger Hinweis:
Diese Website wird in älteren Versionen von Netscape ohne graphische Elemente dargestellt. Die Funktionalität der Website ist aber trotzdem gewährleistet. Wenn Sie diese Website regelmässig benutzen, empfehlen wir Ihnen, auf Ihrem Computer einen aktuellen Browser zu installieren. Weitere Informationen finden Sie auf
folgender Seite.

Important Note:
The content in this site is accessible to any browser or Internet device, however, some graphics will display correctly only in the newer versions of Netscape. To get the most out of our site we suggest you upgrade to a newer browser.
More information

© 2016 Mathematics Department | Imprint | Disclaimer | 11 December 2011