Zbl 409.10043

Articles of (and about)

Erdős, Paul; Saffari, B.; Vaughan, R.C.

On the asymptotic density of sets of integers. II. (In English)

J. London Math. Soc., II. Ser. 19, 17-20 (1979).

[Part I, cf. ibid. 13, 475-485 (1976; Zbl 333.10039)]

Let A and B be a pair of direct factors of N^* , the set of positive integers; that is a pair of subsets A and B of N^* such that every $n \in N^*$ can be written uniquely as $n = a \cdot b$, with $a \in A$ and $b \in B$. Let $S \subset N^*$ and d(S) denote the asymptotic density of S whenever it exists. Let $H(S) = \sum_{n \in S} \frac{1}{n}$. It has been shown by Saffari that in the convergent case, the sets A and B habe asymptotic densities: $d(A) = \frac{1}{H(B)}$ and $d(B) = \frac{1}{H(A)}$. In this paper the authors settle (in the affirmative) the first two open problems stated by Saffari. In fact they prove: Theorem 1. The direct factors A and B have asymptotic densities in the divergent case $H(A) = H(B) = \infty$ and d(A) = 0. Theorem 2. In the divergent case $H(A) = H(B) = \infty$, we have $\sum_{b \in A} \frac{1}{b} = \sum_{b \in B} \frac{1}{p} = \infty$.

D.Suryanarayana

Classification:

11B83 Special sequences of integers and polynomials

Keywords:

asymptotic density; sets of integers; direct factors