Zbl 438.10036

Articles of (and about)

Erdős, Paul; Babu, Gutti Jogesh; Ramachandra, K.

An asymptotic formula in additive number theory. II. (In English)

J. Indian Math. Soc., New Ser. 41, 281-291 (1977). [0019-5839]

[Part I, cf. Acta Arith. 28, 405-412 (1976; Zbl 278.10047)]

Let $\{b_j\}$ be a sequence of integers satisfying $3 \leq b_1 < b_2 < b_3 < \dots$ and $\sum_{j=1}^{\infty} \frac{1}{b_j} < \infty$. Suppose $\sum_{b_j \le x} 1 = 0 \left(\frac{x}{\log x \log \log x} \right)$. Then the authors prove that the equation n = p + t where p is a prime and t is an integer not divisible by any b_j has $\frac{\alpha n}{\log n} + o\left(\frac{n}{\log n}\right)$ solutions and in particular has at least one solution for all sufficiently large n. Also the authors show that if a certain unproved hypothesis holds then the same result can be established under the slightly milder restriction $\sum_{b_j \le x} 1 = o\left(\frac{x}{\log x}\right)$.

Classification:

11P32 Additive questions involving primes

11N37 Asymptotic results on arithmetic functions

11N35 Sieves

Keywords:

Goldbach conjecture; Brun's Sieve; primitive abundant numbers