Zbl 548.10010

Erdős, Paul; Szalay, M.

Articles of (and about)

On the statistical theory of partitions. (In English)

Topics in classical number theory, Colloq. Budapest 1981, Vol. I, Collog. Math. Soc. János Bolyai 34, 397-450 (1984).

[For the entire collection see Zbl 541.00002.]

Let $\Pi = \{\lambda_1 + \lambda_2 + ... + \lambda_m = n; \quad \lambda_1 \geq \lambda_2 \geq ... \geq \lambda_m \geq 1\}$ be a generic partition of n where $m = m(\Pi)$ and the $\lambda'_{\mu}s$ are integers. Let p(n) denote the number of partitions of n. The first author and J. Lehner [Duke Math. J. 8, 335-345 (1941; Zbl 025.10703)] determined the distribution of λ_1 where $\lambda_1 = \lambda_1(\Pi) = \max_{\nu \in \Pi} \nu$. The following analogous result is proved for the maximum with multiplicities. Theorem 1. The number of partitions of n with the property

 $\max_{\nu \in \Pi} \{\nu \operatorname{mult}(\nu) \text{ in } \Pi\} \le (2\pi)^{-1} (6n)^{1/2} \log n + \pi^{-1} (6n)^{1/2} \log \log \log n + \pi^{-1} (6n)^{1/2} c$

is $(\exp(-\pi^{-1}6^{1/2}e^{-c}) + o(1))p(n)$.

As to the λ_{μ} 's, some consequences of earlier results are also discussed. For "unequal" partitions (their number is q(n)), the increasing order ($\alpha'_1 + ... + \alpha'_n + \alpha'$ $\alpha'_m = n; 1 \leq \alpha'_1 < \alpha'_2 < \dots < \alpha'_m$) is more interesting. Theorems 2 and 3 state estimates for α'_{μ} which yield the following Corollary. For arbitrary $\eta > 0$, there exist n_0 and $\epsilon > 0$ such that, for $n > n_0$ with the restriction $\epsilon^{-1} \le \mu \le \epsilon \cdot n^{1/2}$, the estimation $|\alpha'_{\mu} - 2\mu| \le \eta\mu$ holds uniformly with the exception of at most $\eta q(n)$ unequal partitions of n.

Classification:

11P81 Elementary theory of partitions

11P81 Elementary theory of partitions

Keywords:

unequal partitions of integers; distribution of summands