Zbl 558.10010

Articles of (and about)

Erdős, Paul; Hildebrand, A.; Odlyzko, Andrew M.; Pudaite, P.; Reznick, B.

The asymptotic behavior of a family of sequences. (In English)

Pac. J. Math. 126, No.2, 227-241 (1987). [0030-8730]

A class of sequences defined by nonlinear recurrences involving the greatest integer function [.] is studied, a typical member of the class being a(0) = 1, $a(n) = a(\lfloor n/2 \rfloor) + a(\lfloor n/3 \rfloor) + a(\lfloor n/6 \rfloor)$ for $n \ge 1$. For this sequence, it is shown that $\lim a(n)/n$ as $n \to \infty$ exists and equals $12/(\log 432)$. More generally, for any sequence defined by a(0) = 1, $a(n) = \sum_{i=1}^{s} r_i a(\lfloor n/m_i \rfloor)$ for $n \ge 1$, where $r_i > 0$ and the m_i are integers ≥ 2 , the asymptotic behavior of a(n) is determined. Let τ be the unique solution to $\sum_{i=1}^{s} r_i m_i^{-\tau} = 1$. When there is an integer d and integers u_i such that $m_i = d^{u_i}$ for all i, $a(n)/n^{\tau}$ oscillates, while in the other case, where no such d and u_i exist, the limit of $a(n)/n^{\tau}$ exists and is explicitly computed. Results on the speed of convergence to the limit are also obtained.

P.Erdős

Classification:

11B37 Recurrences

11A25 Arithmetic functions, etc.

11B99 Sequences and sets

Keywords:

nonlinear recurrences; greatest integer function; asymptotic behaviour; speed of convergence; limit; renewal theory; square functional equation