Zbl 842.11035

Erdős, Paul; Nicolas, J.L.

Articles of (and about)

On practical partitions. (In English)

Collect. Math. 46, No.1-2, 57-76 (1995). [0010-0757]

Let $\mathcal{A} = \{a_1 = 1 < a_2 < \dots < a_k < \dots\}$ be an infinite subset of \mathbb{N} . A partition of n with parts in \mathcal{A} is a way of writing $n = a_{i_1} + a_{i_2} + \dots + a_{i_j}$ with $1 \leq i_1 \leq i_2 \leq \dots \leq i_j$. An integer a is said to be represented by the above partition, if it can be written $a = \sum_{r=1}^{j} \varepsilon_r a_{i_r}$ with $\varepsilon_r = 0$ or 1. A partition will be called practical if all a's, $1 \leq a \leq n$, can be represented. When $\mathcal{A} = \mathbb{N}$, it has been proved by P. Erdős and M. Szalay that almost all paritions are practical. In this paper, a similar result is proved, first when $a_k = 2^k$, secondly when $a_k \geq k a_{k-1}$. Finally an example due to D. Hickerson gives a set \mathcal{A} and integers n for which a lot of non practical partitions do exist.

J.L.Nicolas (Villeurbanne)

Classification:

11P81 Elementary theory of partitions

11B83 Special sequences of integers and polynomials

Keywords:

practical partitions; partition