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Abstract. The Torelli group of a compact surface consists of the homotopy classes of ho-
meomorphisms that act like the identity on the first homology group of the surface. In this note
we show that the Torelli group of a non-orientable compact surface acts without fixed points on
the Teichmüller space of the surface.

1. Statement of results

The purpose of this paper is to extend the construction of Torelli spaces of
compact Riemann surfaces to the case of compact non-orientable surfaces. We
will show, by topological methods, that if a diffeomorphism of a Klein surface acts
trivially in the first homology group, then it is homotopic to the identity. This
allows us to define the Torelli spaces of Klein surfaces, and show that they are
smooth real submanifolds of the Torelli spaces of compact Riemann surfaces.

We give a more precise statement of our results. Let Σ be a smooth com-
pact non-orientable surface. The Teichmüller space T (Σ) of Σ is defined as
T (Σ) = M (Σ)/Diff0(Σ), where M (Σ) is the set of Klein surface structures on Σ
that agree with the given smooth structure, and Diff0(Σ) is the group of diffeo-
morphisms of Σ homotopic to the identity [7, p. 145]. The modular or mapping
class group, Mod(Σ) = Diff(Σ)/Diff0(Σ), acts on T (Σ) by pull-back of structures.
We define the Torelli group U(Σ) as the subgroup of Mod(Σ) consisting of the
mapping classes that act like the identity on H1(Σ,Z). The parallel result to the
following theorem is a classical fact in Riemann surfaces theory.

Theorem 3.2. Let Σ be a smooth compact non-orientable surface of arith-
metic genus g ≥ 2 . Let f ∈ U(Σ) , and suppose that there exists a Klein surface
structure S on Σ such that f : (Σ, S)→ (Σ, S) is dianalytic. Then f = id . There-
fore, the Torelli group U(Σ) acts fixed-points free on T (Σ) , and the Torelli space
Tor(Σ) = T (Σ)/U(Σ) is a smooth real manifold of dimension 3g − 3 .

Given a non-orientable surface Σ with a Klein surface structure S , there
exists an unramified double cover (Σc,X), where Σc is an orientable surface of
genus g , and X is a Riemann surface structure on Σc . The surface Σc has
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an involution σ , which is anti-holomorphic on the structure X , such that Σ is
isomorphic to Σc/〈σ〉 . The mapping σ induces in a natural way involutions σ∗

and σ̃ on the Teichmüller space T (Σc) and the Torelli space T (Σc), respectively.
It is a classical result that T (Σ) can be identified with the set of fixed points of
σ∗ on T (Σc).

Proposition 3.4. The Torelli space Tor(Σ) can be identified with the set of
fixed points of σ̃ on Tor(Σc) .

2. Some general facts about Riemann and Klein surfaces

A Klein surface (or dianalytic) structure S on a surface without boundary Σ
is given by a covering of Σ by open sets {Ui}i , and a collection of homeomorphisms
zi: Ui → Vi , where Vi are open subsets of C , such that if Ui ∩ Uj 
= ∅ , then the
mapping zi ◦ z−1

j is holomorphic or anti-holomorphic (conjugate of a holomorphic
function) [1]. Klein surfaces are the generalisation of Riemann surfaces to the
non-orientable case. We will write (Σ, S) or S for a Klein surface, depending on
the context.

A non-orientable surface Σ is homeomorphic to the connected sum of p ≥ 1
real projective planes [2]. The integer p is called the topological genus of Σ.
However, we will use the arithmetic genus, which is defined as g = p − 1 [7].
If g = 2n , the fundamental group of Σ has a presentation given by generators
c, a1, . . . , an, b1, . . . , bn , satisfying the relation c2

∏n
j=1[aj , bj ] = 1, where [a, b] =

aba−1b−1 . If the genus of Σ is odd, g = 2n+ 1, we can choose generators of the
fundamental group c, d, a1, . . . , an, . . . , b1, . . . , bn , that satisfy c2d2

∏n
j=1[aj , bj ] =

1.
Throughout this paper, all surfaces are assumed to be compact without bound-

ary, of genus g ≥ 2.
Given a compact non-orientable surface Σ of genus g , there exists a compact

orientable surface Σc , of genus g , and a double covering map: π: Σc → Σ [2]. If
Σ has a Klein surface structure S , then it is possible to give a Riemann surface
structure to X . Moreover, there exist local coordinates z and w , on Σc and
Σ, respectively, such that the mapping w ◦ π ◦ z−1 is holomorphic. The pair
(Σc,X) together with π is called the complex double [1] of (Σ, S). By an abuse of
notation, we will refer to Σc as the complex double, when we are only interested
in the topological aspects.

Let Y denote a compact orientable smooth surface, with a fixed orientation.
The Teichmüller space T (Y ) is defined as T (Y ) = M (Y )/Diff0(Y ). Here M (Y )
is the set of Riemann surface structures on M that agree with the given orien-
tation and smooth structure [7]. The group Diff0(Y ) consists of the diffeomor-
phisms of Y that are homotopic to the identity. The modular group Mod(Y ) =
Diff+(Y )/Diff0(Y ), consisting of homotopy classes of orientation preserving dif-
feomorphisms of Y , acts on T (Y ) by pull-back: if [f ] ∈ Mod(Y ) and [X] ∈ T (Y ),
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then [f ]∗([X]) is defined as the class [f∗(X)] of the Riemann surface structure
that makes f :

(
Y, f∗(X)

)
→ (Y,X) biholomorphic. It is a well-known result

that Mod(Y ) acts on T (Y ) with fixed points, corresponding to surfaces with
automorphisms. A subgroup G of Mod(Y ) is said to have the Hurwitz–Serre
property [5] if for any element [g] ∈ G , such that there exists a point [X] in
T (Y ) for which g: (Y,X) → (Y,X) is biholomorphic, we have that [g] = [id] . A
group with this property acts fixed-points free on T (Y ). The Torelli group U(Y )
consists of those elements of Mod(Y ) that act trivially on H1(Y,Z); it is a clas-
sical fact that U(Y ) satisfies the Hurwitz–Serre property [3]. The quotient space
Tor(Y ) := T (Y )/U(Y ) is called the Torelli space of Y .

Teichmüller spaces and modular groups of non-orientable surfaces are defined
in a similar way, removing all the conditions that involve the orientability of the
surface, and substituting Riemann surface structures by Klein surfaces.

3. Torelli groups of non-orientable surfaces

In this section, we first prove that the Torelli groups of compact non-orientable
surfaces have the Hurwitz–Serre property. We do this by lifting homeomorphisms
from the surface to its complex double, and then using the fact that the Torelli
groups of Riemann surfaces satisfy the above mentioned property. We use this fact
to show that the Torelli spaces of Klein surfaces are smooth manifolds, which can
be embedded into the Torelli spaces of the complex doubles, in a situation similar
to what happens between Teichmüller spaces.

Theorem 3.1. Let Σ be a compact non-orientable surface, and let f be a
homeomorphism of Σ . Assume that f acts trivially on H1(Σ,Z) . Let f̃ be the
unique orientation lift of f to the complex double Σc . Then f̃ acts trivially on
H1(Σc,Z) .

Proof. Our proof will be divided in two cases, depending on whether the
genus of Σ is even or odd; we will provide full details in the first case, and only a
sketch of the second situation.

Let f : Σ → Σ be a homeomorphism, and let f̃ the the unique orientation
preserving lift of f to the complex double, so that the following diagram is com-
mutative [6]:

Σc
f̃ ��

π

��

Σc

π

��
Σ

f �� Σ.

Let f# and f̃# denote the corresponding mappings induced by f and f̃ on the
first homology groups of Σ and Σc respectively. By hypothesis we have that
f# = id, and we want to show that f̃# = id.
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We start by recalling how the surface Σc is constructed, from a topological
point of view; the reader can find more details in [2]. Assume that Σ has genus
g = 2n . By the presentation of the fundamental group of Σ given in Section 2,
we can view this surface as a (2n + 2)-polygon, with the sides identified by the
relation of the fundamental group. The surface Σc is given by two polygons, with
boundary relations:

c1c2

n∏
j=1

[aj,1, bj,1] = 1 and c2c1

n∏
j=1

[aj,2, bj,2 ] = 1.

To obtain a single relation, we find the value of c2 on the right-hand side equation
and substitute it on the left-hand side one (equivalently, we glue the polygons by
the c2 sides):

c2 =
( n∏

j=1

[bn+1−j,2, an+1−j,2]
)
c−1
1 ;

so

c1

( n∏
j=1

[bn+1−j,2, an+1−j,2]
)
c−1
1

( n∏
j=1

[aj,1, bj,2]
)

=
( n∏

j=1

[c1bn+1−j,2c
−1
1 , c1an+1−j,2c

−1
1 ]

)( n∏
j=1

[aj,1, bj,2]
)
= 1.

The above expression shows that Σc is a compact surface of genus g . We can take
the following paths as generators of the fundamental group of Σc :

α1 = c1bn,2c
−1
1 , . . . , αn = c1b1,2c

−1
1 , αn+1 = a1,1, . . . , α2n = an,1,

β1 = c1an,2c
−1
1 , . . . , βn = c1a1,2c

−1
1 , βn+1 = b1,1, . . . , β2n = bn,1.

These loops satisfy
∏n

j=1[αj , βj ] = 1. Let B and Bc denote the basis in homology
induced by the above two sets of generators of the fundamental groups of Σ and
Σc , respectively. By an abuse of notation, we will use the same letters for paths
of the fundamental groups and the corresponding classes in homology. It is not
difficult to see that Bc is a symplectic basis of H1(Σc,Z); that is, its intersection
matrix is

J =
(
0 I
−I 0

)
,

where I is the identity matrix of order g . The covering map π has the fol-
lowing associated matrix for its action on homology, with respect to the two
bases given above, ordered as B = {{c}, {a1, . . . , an}, {b1, . . . , bn}} and Bc =
{{α1, . . . , αn}, {αn+1, . . . , α2n}, {β1, . . . , βn}, {βn+1, . . . , β2n}} :

π# =


 0 0 0 0
0 I K 0
K 0 0 I



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where K is the matrix

K =



0 . . . . . . 1
0 . . . 1 0
...

...
1 0 . . . 0


 .

The symmetry σ maps aj,1 (respectively bj,1 ) to aj,2 (respectively bj,2 ); therefore,
its action on H1(Σc,Z) is given by the matrix K (of order 2g ). Let f̃# =
(Aij)4i,j=1 be the matrix associated to the mapping f̃ . Then f̃# must satisfy

(3.1) (a) π#f̃# = π#, (b) f̃#σ# = σ#f̃#, (c) f̃ t
# Jf̃# = J.

Equation (a) of (3.1) is due to the fact that f acts trivially on H1(Σ,Z). The
uniqueness of the orientation-preserving lift gives us (b) above. In (c), which is true
for any orientation-preserving homeomorphism of Σc [4, Theorem N13, p. 178],
f̃ t
# denotes the transpose matrix. Equation (3.1a) is equivalent to the following:




A21 +KA31 = 0
A22 +KA32 = I
A23 +KA33 = K

A24 +KA34 = 0

KA11 +A41 = K

KA12 +A42 = 0
KA13 +A43 = 0
KA14 +A44 = I.

Therefore, we have that the matrix f̃# is given by

f̃# =




A11 A12 A13 A14

A21 A22 A23 A24

−KA21 K −KA22 I −KA23 −KA24

K −KA11 −KA12 −KA13 I −KA14


 .

From (3.1)(b) we obtain:

(3.2)




A14K = K(K −KA11)
A13K = K(−KA12)
A12K = K(KA13)
A11K = K(I−KA14)

A24K = K(−KA21)
A23K = K(K −KA22)
A22K = K(I−KA23)
A21K = K(−KA24).

Looking at the first row of the equation (c) of (3.1) we get the following identities,
after using (3.2) to simplify the result:




At
21K −KA21 = 0

At
11K −KA22 = 0

−2I + At
11 +KA22K = 0
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Solving these equations we obtain A21 = 0 and A11 = I , which imply A24 =
A14 = 0. By a similar set of equations given by the second row of the relation (c)
of (3.1) we get A22 = I and A12 = 0. By (3.2) we have A23 = A13 = 0, which
shows that f̃# is the identity matrix.

For the case of odd genus g = 2n+1, we will use the presentation of the fun-
damental group of Σ given in Section 2. The complex double Σc is homeomorphic
to two polygons with the following boundary relations:

c1c2d1d2

n∏
j=1

[aj,1, bj,2] = 1 and c2c1d2d1

n∏
j=1

[aj,2, bj,1] = 1.

Calculating as in the previous situation, we have

d2 = c−1
1 c−1

2

( n∏
j=1

[bn+1−j,2, an+1−j,2]
)
d−1
1 ,

which can be substituted into the first boundary equation of Σc to get

c1c2c
−1
1 c−1

2

( n∏
j=1

[bn+1−j,2, an+1−j,2]
)( n∏

j=1

[aj,1, bj,1]
)

= c1c2d1c
−1
1 c−1

2 d−1
1

( n∏
j=1

[d1bn+1−j,2d
−1
1 , d1an+1−j,2d

−1
1 ]

)( n∏
j=1

[aj,1, bj,1 ]
)
= 1.

We therefore obtain the following set of generators of the fundamental group of Σc :

α1 = c1d
−1
1 , α2 = d1bn,2d

−1
1 , . . . , αn+1 = d1b1,2d

−1
1 , αn+2 = a1,1, . . . , α2n+1 = an,1,

β1 = d1c2, β2 = d1an,2d
−1
1 , . . . , βn+1 = d1a1,2d

−1
1 , βn+2 = b1,1, . . . , β2n+1 = bn,1,

which satisfy the relation
∏2n+1

j=1 [αj , βj ] = 1. Although the basis {α1, . . . , α2n+1 ,
β1, . . . , β2n+1} is symplectic, computations are easier if we arrange the generators
in the following way Bc = {α1, β1, α2, . . . , α2n+1, β2, . . . , β2n+1} , whose intersec-
tion matrix is: 



N 0 0 0 0
0 0 0 I 0
0 0 0 0 I
0 0 −I 0 0
0 −I 0 0 0


 .

Here

N =
(
0 1
−1 0

)
.
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With respect to the basis B = {{c, d}, {a1, . . . , an}, {b1, . . . , bn}} and Bc =
{{α1, β1}, {α2, . . . , αn+1}, {αn+2, . . . , α2n+1}, {β2, . . . , βn+1}, {βn+2, . . . , β2n+1}} ,
we have that the action of σ on the first homology group is given by

σ# =




M 0 0 0 0
0 0 0 O K
0 0 0 K 0
0 0 K 0 0
0 K 0 0 0


 ,

where

M =
(
1 0
2 −1

)
.

To see how M is obtained, observe that in homology we have α1 = c1 − d1 and
β1 = d1 + c2 . Therefore, σ(α1) = c2 − d2 and σ(β1) = d2 + c1 . Substituting the
value of d2 obtained previously we get the matrix M . Similarly, we have that
the covering map π: Σc → Σ has the following associated matrix for its action on
homology:

π# =


L 0 0 0 0
0 0 I K 0
0 K 0 0 I


 ,

where

L =
(
1 −1
1 1

)
.

The rest of the proof is similar to the even genus case.

A mapping f : (Σ1, S1)→ (Σ2, S2) between Klein surfaces is called dianalytic
if there exist local coordinates zj in Σj , j = 1, 2, such that the mapping z2◦f◦z−1

1

is holomorphic or anti-holomorphic. The above computations show that the Torelli
group U(Σ) of a compact non-orientable Klein surface satisfies the Hurwitz–Serre
property.

Theorem 3.2. Let Σ be a compact non-orientable surface of genus g ≥ 2 .
Let [f ] ∈ U(Σ) , and suppose that there exists a Klein surface structure S on Σ
such that f : (Σ, S)→ (Σ, S) is dianalytic. Then f = id .

Corollary 3.3. The Torelli space Tor(Σ) = T (Σ)/U(Σ) is a smooth real
manifold of dimension 3g − 3 .

Proof of the theorem. Since f is dianalytic on the Klein surface (Σ, S), the
orientation preserving lift f̃ is biholomorphic on the Riemann surface (Σc,X). By
the previous result we have that f̃ acts like the identity on H1(Σc,Z). But then,
by the classical theory of Riemann surfaces [3], we have that f̃ = idΣc , which
implies that f = idΣ .



30 Pablo Arés Gastesi

The involution σ induces in a natural way a symmetry σ∗ on the Teichmüller
space T (Σc). It is clear that σ∗ descends to a symmetry σ̃ of Tor(Σc).

Proposition 3.4. The Torelli space Tor(Σ) can be identified with the set of
fixed points of σ̃ in Tor(Σc) .

Proof. The proof follows immediately from the definition of Torelli spaces. In
fact, we have that two points S1 and S2 of M (Σ) project to the same point in
Tor(Σ) if and only if there exists a dianalytic mapping h: (Σ, S1)→ (Σ, S2) such
that h#: H1(Σ,Z) → H1(Σ,Z) is the identity. The rest of the proof is similar to
the fact that T (Σ) can be identified with the set of fixed points of σ∗ in T (Σc);
see [7] for more details.
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