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Abstract. An unbounded Fatou component U of a transcendental entire function is simply-
connected. The paper studies the boundary behaviour of the Riemann map Ψ of the disc D to
U , in particular the set Θ of ∂D where the radial limit of Ψ is ∞ .

If U is not a Baker domain and ∞ is accessible in U , then Θ is dense in ∂D . If U is a Baker
domain in which f is not univalent, Θ contains a non-empty perfect subset of ∂D . Examples
show that Θ may be either countably infinite or residual in ∂D . The function f(z) = z + e−z

leads to a component U with a particularly interesting prime end structure.

1. Introduction

Suppose that f(z) is a non-linear entire function with iterates fn(z), n ∈ N ,
and Fatou set F (f) such that F (f) contains an unbounded component U . (For
basic results about the iteration of entire functions see e.g. [5]). Then U is neces-
sarily simply-connected [1]. We shall consider the case when U is periodic; indeed
it suffices to consider the case when U is invariant under f(z). The dynamics of
f(z) in U then falls into four cases.

(i) There exists z0 ∈ U with f(z0) = z0 and |f ′(z0)| < 1. Then every point
z ∈ U satisfies fn(z) → z0 as n → ∞ . The point z0 is called an attractive fixed
point and U is called the immediate attracting basin of z0 .

(ii) There exists z0 ∈ ∂U , z0 �= ∞ with f(z0) = z0 and f ′(z0) = 1. Every
point z ∈ U satisfies fn(z)→ z0 as n → ∞ . The point z0 is called either a fixed
point of multiplier one or a parabolic point and U is called a parabolic basin.

(iii) There exists an analytic homeomorphism ψ: U → D where D is the unit
disc such that ψ

(
f
(
ψ−1(z)

))
= e2πiαz for some α ∈ R \Q . In this case, U is

called a Siegel disc.
(iv) For every z ∈ U , fn(z) → ∞ as n → ∞ . In this case the domain U is

called a Baker domain.
It is natural to study U and its boundary in connection with the Riemann

map Ψ: D = D(0, 1) → U . R.L. Devaney and L.R. Goldberg [10] examined the
case when f(z) = λez , λ = te−t , |t| < 1, for which F (f) = U is a single un-
bounded component, which contains the attracting fixed point t . They described
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the structure of ∂U , which in this case is the whole Julia set and consists of a
Cantor set of curves. They showed that the Riemann map Ψ, normalized by
Ψ(0) = t , is highly discontinuous on ∂D although the radial limit

Ψ(eiθ) = lim
r→1−

Ψ(reiθ)

exists (possibly =∞) for every eiθ ∈ ∂D .
For eiθ ∈ ∂D and g analytic in D the cluster set C(g, eiθ) is the set of all

w ∈ Ĉ for which there exist sequences zn in D such that zn → eiθ and g(zn)→ w
as n→ ∞ . If in the previous definition we restrict zn to lie on the radius from 0
to eiθ we obtain the radial cluster set C	(g, eiθ). The cluster sets C(g, eiθ) and
C	(g, eiθ) are either a continuum or a single point (see e.g. [9]). I.N. Baker and
J.W. Weinreich [3] proved the following result.

Theorem A. If f(z) is transcendental entire and if U is an unbounded
invariant component of F (f) , then in cases (i), (ii), and (iii) listed above, ∞ ∈
C(Ψ, eiθ) for every eiθ ∈ ∂D , where Ψ is a Riemann map of D onto U .

It was also shown in [3] that Theorem A no longer holds in general when
f(z) falls under case (iv), i.e. when fn → ∞ in U . An example was given where
fn → ∞ in U and ∂U is a Jordan curve, so that each C(f, eiθ) is a different
singleton. This was shown to occur for f(z) = z + γ + e2πiz for some choices of
the real constant γ . W. Bergweiler [7] showed that 2 − log 2 + 2z − ez has the
same property.

Masashi Kisaka [14] studied the set

Θ =
{
eiθ : Ψ(eiθ) exists and =∞

}
,

and obtained an analogue of Theorem A under a number of further assumptions.
Let N = (sing f−1 ) denote the set of singular values of the inverse function

f−1 of f , that is the critical values and asymptotic values of f . Write

(1) P (f) =
∞⋃
n=o

fn(N).

Kisaka proves the following two theorems.

Theorem B. Let U be an unbounded invariant component of F (f) of a
transcendental entire function f , Ψ: D → U be a Riemann map and P (f) be as
in (1) .

Suppose that there exists a finite point q ∈ ∂U with q /∈ P (f) and a contin-
uous curve C(t) ⊂ U (0 ≤ t < 1) such that C(t) → q as t → 1 and f(C) ⊃ C .
Suppose further that in the cases when U is (i) an attracting basin, (ii) a parabolic
basin or (iii) a Siegel disc the point ∞ is accessible in U . If U is (iv) a Baker
domain suppose that f | U is not univalent.

Then the set Θ is dense in ∂D in the case (i), (ii) or (iii). In the case of (iv),
the closure Θ of Θ contains a certain perfect set in ∂D . In particular, J(f) is
disconnected in all cases.
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Theorem C. Let U , f and Ψ be as in Theorem B. Suppose that U is either
an attracting basin or a parabolic basin and ∞ ∈ ∂U is accessible. If there exist a
point q ∈ ∂U and a continuous curve C(t) ⊂ U (0 ≤ t ≤ 1) such that C(t)→ q ,
t → 1 and f(C) ⊃ C , or if there exist two pairs of qi and Ci (i = 1, 2) with the
same property as above, then J(f) is disconnected.

We shall remove some of the assumptions in Theorems B and C. In fact the
only assumption beyond those of Theorem A is that ∞ should be an accessible
boundary point of U . It seems an interesting open problem whether ∞ might not
be accessible in U .

Theorem 1.1. If f(z) is a transcendental entire function and U is an un-
bounded invariant component of F (f) , such that ∞ is accessible in U along some
path Γ in U , and U is either an attracting basin, a Siegel disc, or a parabolic
basin, then Θ is dense in ∂D .

Theorem 1.2. If f(z) is a transcendental entire function and U is an un-
bounded invariant component of F (f) , which is a Baker domain, such that f | U
is not univalent, then Θ contains a non-empty perfect set in ∂D .

Remark 1. It is automatically true in Theorem 1.2 that ∞ is accessible
in U .

Corollary 1.3. Under the assumptions of Theorem 1.1 and Theorem 1.2 the
boundary of U and J(f) are disconnected sets of C .

The Riemann map Ψ conjugates f and its iterates as maps of U to an inner
function g and its iterates as maps of D(0, 1). In Section 2 and 3 we collect some
results about inner functions which are used in the proofs of Theorem 1.1 and
Theorem 1.2, Section 4.

One may ask whether the three cases listed in Theorem 1.1 can arise. For
f(z) = λez , 0 < λ < e−1 , the set U = F (f) is a single unbounded attracting
basin. It is easy to see that U contains a half-plane so that ∞ is accessible in U .
Putting λ = e−1 in λez the same results hold except that U is now an unbounded
parabolic basin in which ∞ is accessible. In the course of proving Theorem 5.1
we show that f(z) = ze−z gives another parabolic example.

The case of a Siegel disc is more difficult. M. Herman [13] showed that we
may choose the constant a so that eaz has a Siegel disc U , whose rotation number
satisfies a Diophantine condition and that U is then unbounded. P.J. Rippon [22]
gives a fairly simple proof that almost all λ such that |λ| = 1 the function eλz−1
has an unbounded Siegel disc. These proofs seem, however, to give no information
as to whether ∞ is accessible from within the disc.

The necessity in Theorem 1.2 of the condition that f | U is univalent follows
from the examples quoted after the statement of Theorem A, for instance f(z) =
2− log 2+2z−ez which has an unbounded invariant domain U in which fn → ∞
while the corresponding set Θ is a singleton.
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In Section 5 we give an example of an entire function f(z) = z + e−z which
has an (unbounded) invariant Baker domain U in which f(z) is conjugate to the
self-map g(z) = (3z2 + 1)/(3 + z2) of the unit disc, so that Theorem 1.2 applies
to f . In fact Θ= ∂D (Theorem 5.2).

Now recall (see e.g. [9]) that for our Riemann map Ψ: D → U , the point
eiθ ∈ ∂D is said to correspond to a prime-end of Types 1 to 4 as follows.

Type 1: C	(Ψ, eiθ) = C(Ψ, eiθ) a singleton,
Type 2: C	(Ψ, eiθ) a singleton, �= C(Ψ, eiθ),
Type 3: C	(Ψ, eiθ) = C(Ψ, eiθ) not a singleton, and
Type 4: C	(Ψ, eiθ) not a singleton, �= C(Ψ, eiθ).
Let Ei denote the set of eiθ in D which correspond to prime ends of U of

Type i , 1 ≤ i ≤ 4.
In Section 6 we show that for the function f(z) = z + e−z and the Baker

domain described in Section 5 the set Θ is countable, and further, for this U we
have E1 = ∅ , Θ ⊂ E2 , while E3 is a residual subset of ∂D . This same example
gives a natural dynamical example of another result in prime end theory. The
notion of asymmetric prime end is defined in [9] and it is known that the set
of asymmetric prime ends of any simply-connected domain is countable. In the
preceding example every eiθ ∈ Θ corresponds to an asymmetric prime end, so that
U has a dense countable set of asymmetric prime ends. These results are contained
in Theorems 6.1–6.4. It is interesting to note that the iteration of f(z) = z + e−z

arises from applying Newton’s method to solve the equation e−ez

= 0.
In Section 7 we note some further examples where Θ is countable. This is

not, however, the case for the example f(z) = λez , 0 < λ < e−1 , U = F (f)
discussed above. The result of R.L. Devaney and L.R. Goldberg [10] is equivalent
to statement that in this case ∂D = E1 ∪ E2 , E3 = ∅ . From Theorem A we
have E1 ⊂ Θ while (see e.g. [9]) E1 ∪ E3 is residual for any simply-connected
domain. Thus Θ is a residual subset of ∂D for the example of R.L. Devaney and
L.R. Goldberg.

Finally in Section 7 we examine a class of functions which include f(z) =
z + 1 + e−z and show that all these functions have a Baker domain for which
Θ = ∂D . Noting these and the other cases of Theorem 1.2 which have been
computed suggests the open problem:

With the assumptions of Theorem 1.2 is it necessarily the case that Θ= ∂D?
In Section 8 we give a new proof of the result of R.L. Devaney and L.R. Gold-

berg.
The second author wishes to thank CONACyT (Consejo Nacional de Ciencia

y Tecnoloǵıa) and Universidad Autonoma de Puebla for their financial support.

2. Lemmas on inner functions

Let D = D(0, 1) and g: D → D be an analytic function. Then the radial limit
g(eiθ) exists a.e. on ∂D . If |g(eiθ)| = 1 a.e. then g is called an inner function.
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Lemma 1 ([9, Theorem 5.4]). If g is an inner function then for any singularity
eiθ0 of g we have C(g, eiθ) =D.

Lemma 2 ([17, p. 36]). If g is an inner function, if D(α, �) ⊂ D , and if
e(w,w0) is an analytic function element of the inverse function of g(z) such that
w0 ∈ D(α, �) , then there exists some path γ which joins w0 to α inside D(α, �)
such that e(w,w0) can be continued analytically along γ , except perhaps at α .

Lemma 3 ([17, p. 34]). If g is analytic and |g(z)| < 1 in D , and if E1 is
a set on ∂D such that for all eiθ ∈ E1 we have |g(eiθ)| = 1 then the set E2 of
values g(eiθ) , eiθ ∈ E1 satisfies m

∗(E2) > 0 provided m∗(E1) > 0 , where m∗

and m∗ denote outer and inner Lebesgue measure respectively.

Lemma 4. If g is an inner function then all iterates gn , n ∈ N , are inner
functions.

Proof. If g and h are inner then k = h(g): D → D and g(eiθ), k(eiθ) exist
a.e. If |k(eiθ)| < 1 on a set E1 of positive measure we can assume |g(eiθ)| = 1
on E1 , g(E1) = E2 then has positive outer measure. eiφ ∈ E2 is the radial
limit g(eiθ), eiθ ∈ E1 say, so there is a path to eiφ in D on which h(z) has the
asymptotic value k(eiθ). But then also h(eiφ) = k(eiθ) which has modulus less
than 1. Since m∗(E2) > 0 this contradicts the assumption that h is inner. Thus
h(g) is inner. Lemma 4 follows by induction.

Definition. A Stolz angle at � ∈ ∂D is of the form

∆ =
{
z ∈ D : | arg(1 − �z)| < α, |z − �| < ψ (0 < α < 1

2π, ψ < 2 cosα)
}
.

If l: l(t), 0 ≤ t < 1, is a path in D and λ ∈ ∂D , we write l → λ if l(t)→ λ
as t → 1.

Lemma 5. Let eiθ0 be a singular point of the inner function g . For any
q ∈ ∂D and Stolz angle ∆ at q there exists θn → θ0 , θn �= θ0 , n ∈ N , so that
there is a path ln , n ∈ N , which tends to eiθn in D such that g(ln) = λn → q
in ∆ .

Proof. Let I be an interval on ∂D which contains eiθ0 . Since g(eiθ) exists
for almost all θ , while by the theorem of the brothers Riesz [21] the set θ for
which g(eiθ) has a given value is a set of measure zero, there are eiα , eiβ in I
such that α < θ0 < β and g(eiα), g(eiβ) exist, have modulus 1 and are different
from q . Fix r with 0 < r < 1 and let µ be the curve formed by the union
{seiα, r ≤ s ≤ 1} ∪ {reiθ , α ≤ θ ≤ β} ∪ {seiβ , r ≤ s ≤ 1} (see Figure 1). Then
g(µ) has distance δ > 0 from q . Let A denote the component of D \ µ whose
boundary contains eiθ0 .
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Figure 1. The curve µ .

Let ∆ be a Stolz angle at q which is contained in D(q, δ) ∩ D and whose
bisector is the radius 0q . Further, let wn ∈ ∆ ∩ 0q , rn > 0 where n ∈ N , be
such that all wn are different and wn−1 ∈ D(wn, rn) ⊂ ∆, wn → q as n→ ∞ . It
follows from Lemma 1 that there is some z′ ∈ A such that w′ = g(z′) is near w1

in D(w2, r2), w′ �= w1 and g′(z′) �= 0. The branch e of g−1 with e(w′) = z′ can
be continued, by Lemma 2, along some path λ1 in D(w2, r2) to a point w′

2 (near
w2 ) ∈ D(w3, r3) (see Figure 2). By repeating this process we see that e may be
continued along a path λ(t), 0 ≤ t < 1, which starts at w′ , lies in ∆, and tends
to q as t→ 1.

Now e(λ) is a path in D which starts at z′ in A and cannot cross µ , since
g
(
e(λ)

)
= λ is inside D(q, δ). Any limit point p of e

(
λ(t)

)
as t → 1 satisfies

g(p) = q , so p ∈ ∂D . If there is more than one such limit point then the set
of limit points forms an arc of ∂D on which g has radial limit q . Since this is
impossible there exists eiθ1 ∈ ∂D ∩ ∂A ⊂ I such that l(t) = e

(
λ(t)

)
→ eiθ1 as

t → 1 and g
(
l(t)

)
= λ(t)→ q in a Stolz angle ∆.

We note that g(eiθ1) exists and equals q . If g(eiθ0) either fails to exist or is
unequal to q we have θ1 �= θ0 and the theorem is proved by choice of successively
shorter intervals I in the preceding argument.

If g(eiθ0) = q , take any q′ ∈ ∂D \ {q} . Then there exist Sn ∈ ∂D , n ∈ N ,
such that Sn → eiθ0 and g(Sn) = q′ . We may suppose that Sn = eiφn , φn−1 <
φn < θ0 . If g is analytic on the arc σ = [Sn−1 Sn] of ∂D , then g(σ) ⊃ ∂D so
that there is a point eiθn ∈ σ where g is analytic with g(eiθn) = q . We may then
take ln in the theorem to be a radial path tending to eiθn . If on the other hand g
is singular at eiφn we may apply the argument of the first part to find a path ln
which tends to some eiθn ∈ [Sn−1 Sn] such that g(ln) → q in the Stolz angle ∆.
The proof is complete.

Corollary. With g , θn and q as in Lemma 5 we have g(eiθn) = q .
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Figure 2. e may be continued along λ(t) .

Definition. If the inner function g has at least one singularity on ∂D then
we define

H = {eiθ : eiθ is a singularity of gn for some n ∈ N}.

Lemma 6. Any singularity b of gm is a limit point of H .

Proof. By assumption g has a singularity p on ∂D . Now, taking b = eiθ0 ,
and q = p and applying Lemma 5 to gm , we see that there is a sequence θn such
that θn �= θ0 , θn → θ0 , and gm(eiθn ) = p .

Thus either eiθn is a singular point of gm and then eiθn ∈ H by definition,
or gm is analytic at eiθn . In the latter case C(gm+1, eiθn ) = C(g, p) = D(0, 1) so
that gm+1 has a singularity at eiθn which by definition is in H . This shows that
b = eiθ0 is a limit point of H .
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Lemma 7. ClosureH is a non-empty perfect set provided g has at least one
singularity on ∂D .

Proof. We assume that g has a singularity on ∂D so that H �= ∅ . Take
a = eiθ0 in H and let I be an open interval on ∂D with a ∈ I . The interval
I contains some b ∈ H , so that b is a singularity of say gm . It follows from
Lemma 6 that b is a limit point of H and also of H . Hence I contains infinitely
many points ofH therefore a is a limit point ofH . ThusH is a non-empty perfect
set in ∂D .

3. Dynamics of inner functions

An inner function g may fail to have singularities on ∂D . In this case it
follows from the Schwarz reflection principle that g has a continuation to Ĉ which
is analytic except for a finite number of poles and therefore rational. For a rational
function g the iterates gn , n ∈ N , are rational functions and the Fatou set F (g)
is the maximal set in which {gn} is a normal family while the Julia set J(g) is
Ĉ \ F (g). We make the following definition which applies to all inner functions
other than Möbius transformations, whether rational or not.

Definition. If g is an inner function which is not a Möbius transformation
the Fatou set F (g) is the maximal open set F such that D ⊂ F , that gn , n ∈ N ,
has an analytic continuation which is meromorphic in F , and (gn) forms a normal
family in F . The Julia set J(g) is D \ F (g).

We remark that with this definition F (g) is either (i) D or (ii) it consists of
D together with D′ = {z : |z| > 1} and some open subset of ∂D . In the case of
rational g this means that in case (i) our definition of F (g) differs from the usual
one, which gives D ∪D′ . We shall not, however, find any confusion arising from
this. Moreover J(g) = ∂D will agree with the usual definition for rational inner
functions.

If g is a non-rational inner function and F1 = ∂D\H then F1 is the maximal
open subset of ∂D in which all gn are analytic. If p ∈ F1 then p1 = g(p) ∈ ∂D and
if h is the branch of g−1 for which h(p1) = p , then for all n ∈ N , gn = gn+1(h)
shows that p1 ∈ F1 . Thus g(F1) ⊂ F1 . Suppose that we have F1 �= ∅ . Then
F = D ∪ F1 ∪D′ is the maximal open set containing D in which all gn , n ∈ N ,
are meromorphic and g(F ) ⊂ F . Since F c = H is perfect by Lemma 7, it
contains infinitely many points and (gn) is normal in F by Montel’s theorem.
Thus J(g) =H . The latter statement is also true if F1 = ∅ , which is equivalent
to H = ∂D , F = D .

Recalling also well-known results about rational iteration we state the follow-
ing lemma.

Lemma 8. For any non-Möbius inner function g the Julia set J(g) is a
perfect (non-empty) subset of ∂D . The Fatou set F (g) satisfies g(F ) ⊂ F . In
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the case of a non-rational inner function we have J(g) =H , where H is the set
defined above before Lemma 6.

We describe two cases when J(g) = ∂D . These will be used in proving the
main theorem.

Lemma 9. Suppose that g is a non-Möbius inner function which has a fixed
point α ∈ D . Then J(g) = ∂D .

Proof. If J(g) �= ∂D then the iterates gn extend analytically to F which
includes D and D′ . The fixed point α is attracting and gn → α in D as n→ ∞ ,
while the reflection principle shows that gn → 1/α in D′ . This contradicts the
normality of gn in F .

Lemma 10. Suppose that g is an inner function and α ∈ ∂D is such that
for each z ∈ D the orbit zn = gn(z) approaches α in an arbitrarily small Stolz
angle symmetric about [0α] . Then g is non-Möbius and J(g) = ∂D .

Proof. It is easy to see that g is not Möbius. Suppose that g is Möbius and
inner. By a conformal map we may replace D by H = {Im z > 0} , α by ∞
and suppose that all iterates gn(z)→ ∞ in a direction asymptotic to the vertical.
Then g(∞) =∞ so that g(z) has the form az + b , a > 0, b real. The behaviour
of gn(z) shows that a �= 1. Thus there is a second real fixed point which we
may suppose to be zero. Thus gn(z) = anz which does not have the assumed
asymptotic behaviour.

We may suppose that α = −1. We assume that J(g) �= ∂D so that F1 =
F ∩ ∂D is non-empty and contains some arc I . Then for each n ∈ N the arc
In = gn(I) ⊂ F1 and g is analytic on In . Denote by ω(z, I) the harmonic measure
of I at a point z with respect to D . It follows from the maximum principle that
ω
(
g(z), g(I)

)
≥ ω(z, I). By iteration we have ω

(
gn(z), In

)
≥ ω(z, I) for all z ∈ D

and n ∈ N .
Now take z0 ∈ D so that ω(z0, I) = 3

4 . Then zn = gn(z0) lies in the region
Dn in D which is bounded by In and a circular arc βn which passes through the
ends of In and makes an angle 1

4π with In .
Map D to the half plane H : Rew > 0 in such a way that z = −1 maps to

w = 0 and the real axes correspond.
Then Dn maps to a region D′

n bounded by an arc I ′n of ∂H and a circular
arc θ′n , as shown in Figure 3, while zn maps to wn in D′

n . Clearly D′
n contains

the isosceles triangle T cut out of D′
n by drawing lines through wn of inclination

± 1
4π . Since arg(zn + 1) and hence also argwn → 0 as n → ∞ , we see that for

large n the base of the triangle T is a segment of ∂H which contains w = 0. It
follows that −1 ∈ In ⊂ F (g).

In particular, g is analytic at −1 and g(−1) = −1. For the orbits to behave
as assumed, it is necessary that g′(−1) = 1 and this implies that −1 ∈ J(g), a
contradiction to −1 ∈ F (g). The lemma is proved.
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The above proof develops an argument used in [3, proof of Theorem 1].
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Figure 3. (left) T ⊂ D′
n , (right) 0 ∈ ∂T , then 0 ∈ I′n .

4. Proof of Theorems 1.1 and 1.2

Let f be an entire function such that U is an unbounded invariant component
of F (f). Let Ψ be a Riemann map from D to U and let Θ be the set defined in
the introduction. We shall assume that Θ �= ∅ and may then suppose that 1 ∈ Θ.

Then the open subset E = ∂D\Θ of D is a countable (possibly empty) union
of disjoint open intervals In . We note that Ψ conjugates fn , n ∈ N , to the inner
function gn = Ψ−1fnΨ. Indeed for almost all θ , as z approaches eiθ radially, so
Ψ(z) approaches a finite α ∈ ∂U , fnΨ(z)→ fn(α) ∈ ∂U and by Proposition 2.14
in [20] gn(z) = Ψ−1fnΨ(z) approaches a point of ∂D .

With this notation we have the following lemma.

Lemma 11. The inner function g is analytic on E .

Proof. Suppose that g has a singularity at some point eiθ0 of I ⊂ E , where I
is an interval of E . It follows from the proof of Lemma 5 that there exists eiθ1 ∈ I
and a path l in D which tends to eiθ1 , such that g(l) = λ tends to 1 in a Stolz
angle. Thus Ψ

(
g(l)

)
→ ∞ and so f

(
Ψ(l)

)
= Ψ

(
g(l)

)
→ ∞ which implies that

Ψ(l)→ ∞ . It follows from Corollary 2.17 in [20] that in fact Ψ(eiθ1) =∞ which
is impossible since eiθ1 ∈ I ⊂ E . The lemma is proved.

Lemma 12. We have g(E) ⊂ E .

Proof. Let I be an interval of E . If g(I), which is an open subset of ∂D ,
meets Θ, then g(I) contains points of Θ, that is, there is eiθ1 = g(eiθ0) where
eiθ0 ∈ I such that eiθ1 ∈ Θ. Thus limr→1Ψ(reiθ1 ) → ∞ . Also for the branch
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of g−1 with g−1(eiθ1 ) = eiθ0 we have that the path λ(r) = g−1(reiθ1 ) → eiθ0 in
D as r → 1 (in fact λ(r) lies in a Stolz angle at eiθ0 ). We have f

(
Ψ(λ(r)

)
=

Ψg
(
λ(r)

)
= Ψ(reiθ1 )→ ∞ as r → 1 . Thus f → ∞ on Ψ

(
λ(r)

)
so Ψ

(
λ(r)

)
→ ∞ ,

that is, I contains the points eiθ0 of Θ against the assumption (I ⊂ E = ∂D\Θ).
Thus g(I) ⊂ E .

Lemma 13. If g is a non-Möbius inner function, then J(g) ⊂ Θ.

Proof. If g is a rational function it has degree greater than one. If the inverse
orbit O−(1) = {g−n(1), n ∈ N} is finite, then 1 is a super-attracting periodic
point which is impossible for an inner function g . Thus Θ, which contains O−(1),
has infinitely many elements. In D ∪ D′ ∪ E the functions gn omit all values in
Θ, so that E ⊂ F (g).

In the case when g is non-rational, all gn are analytic on E so that again
E ⊂ F (g). This proves the lemma.

Proof of Theorem 1.1. Let f , U , Ψ, and Θ be as above. Further we suppose
that ∞ is an accessible boundary point of U along a path Γ(t), 0 ≤ t < 1, in
U such that Γ(t) → ∞ as t → ∞ . We prove first that Θ �= ∅ . It follows from
Proposition 2.14 in [20] that γ = Ψ−1(Γ) is a path in D which approaches ∂D ,
in fact γ tends to a single point of ∂D (or “lands” in ∂D). Without loss of
generality we can assume that γ lands at z = 1. It follows that the radial limit
at 1, Ψ(1) = limr→1Ψ(r), exists and is equal to ∞ . Thus 1 ∈ Θ and Θ �= ∅ .

(i) Suppose that U is an attracting basin of the fixed point α . We see that
0 = Ψ−1(α) is an attracting fixed point of g in D . Thus g cannot be a Möbius
inner function and so by Lemma 9 J(g) = ∂D and Θ= ∂D by Lemma 13.

(ii) Suppose that U is a Siegel disc. Then the component U contains a fixed
point α of the f(z) such that f ′(α) = eπi	 where � is irrational and f/U is
a homeomorphism. We may assume that Ψ(α) = 0. It follows that g = zeπi	 .
Suppose that E �= ∅ and let I be an interval of E . It follows from Lemma 12
that

⋃∞
n=1 g

n(I) ⊂ E . Now
⋃∞

n=1 g
n(I) = ∂D , but this is not possible because

1 /∈ E .
(iii) Suppose that U is a parabolic basin. Then ∂U contains a point α �=∞

such that fn(z) → α for z ∈ U as n → ∞ . We may assume that α = 0. The
Taylor expansion of f(z) about zero has the form

(2) f(z) = z +
∞∑

k=m+1

akz
k, am+1 �= 0,

for some m ∈ N . We may assume without loss of generality that am+1 < 0 and
that ∂U at zero has the tangential directions arg z = ±π/m . Indeed for any
ε > 0 there exists a positive r such that {z : |z| < r, | arg z| < (π/m) − ε} ⊂
U ∩D(0, r) ⊂ {z : |z| < r, | arg z| < (π/m) + ε} . See e.g. [4].
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We may assume that Ψ maps −1 ∈ ∂D to the the prime end of U at zero
corresponding to approach along R+ . Then (see Lemma 3 in [3]) we have that, as
z → 0 in | arg z| < (π/m)−δ , for any δ > 0, then arg

(
1+Ψ−1(z)

)
−(m/2) arg z →

0. In particular if z → 0, arg z → 0 in U then arg
(
1 + Ψ−1(z)

)
→ 0.

Now for any z ∈ U the orbit zn = fn(z)→ 0 tangent to the real direction. It
follows that the orbits of g = Ψ−1fΨ approach −1 tangent to the real direction.
By Lemmas 10 and 13 we have Θ⊃ J(g) = ∂D .

Proof of Theorem 1.2. We suppose that in this case fn → ∞ in the un-
bounded component U of F (f). It follows from Theorem 2 in [2] that there exists
a curve Γ which tends to ∞ in U . Thus ∞ is an accessible boundary point of U
along Γ (and we do not have to assume this). Hence Θ �= ∅ . We have assumed
further that f is not univalent in U so that g = Ψ−1fΨ is a non-Möbius inner
function and Theorem 1.2 follows from Lemmas 8 and 13.

5. An example which has a Baker domain

In this section our aim is to give an example of a transcendental entire function
f(z) whose domain of normality contains a Baker domain U in which f(z) is
conjugate to a rational map g(z) of D .

Consider the function f(z) = z + e−z . We shall prove the following theorem.

Theorem 5.1. There is an unbounded invariant component U which belongs
to the Fatou set F (f) and contains the real axis, and for every z ∈ U , Re fn(z)→
∞ as n→ ∞ . The Julia set of f(z) contains the lines y = ±π .

Proof. Consider the diagram (3) where C∗ is the punctured plane, π = e−z

and f(z) and h(z) are entire functions such that the diagram commutes.

(3)

C
f ��

π

��

C

π

��
C∗

h
�� C∗

It was shown by Bergweiler in [6] that provided h(z) is not linear or constant, so
provided f(z) is not of the form f(z) = kzn , k �= 0, n ∈ Z , we have π−1

(
J(h)

)
=

J(f).
In particular we shall put f(z) = z + e−z and obtain h(t) = te−t: C∗ → C∗ ,

where t = e−z , as a projection of f(z) to C∗ . The singularities of h−1 are 0,
e−1 and ∞ . Thus h(t) belongs to the class S of entire functions E such that
the set of singular points of the inverse function E−1 is finite. It follows from
Proposition 3 in [11] that all components of F (h) are simply-connected.
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The function h(t) has a parabolic fixed point at zero, which is in J(h), whose
domain of attraction G belongs to F (h) and contains R+ . The boundary of G
is tangent to the negative real axis at zero. It follows from Theorem 1 in [11] that
R− ⊂ J(h) since hn → ∞ on R− .

Lifting these results back to f(z) and using Bergweiler’s result we have a
component U of F (f) such that π(U) = G in which fn → ∞ and Re fn → ∞ .
Thus R ⊂ U , where ∂U is tangent to the lines y = ±π at x = +∞ . The
component U is contained in the strip |y| < π , while the lines y = ±π are
in J(f).

The function f(z) has the property f(z +2πi) = f(z) + 2πi . Thus for every
integer n the domain Un = U +2nπi is an invariant domain which lies within the
strip bounded by the lines y = (2n ± 1)π , n ∈ Z , and such lines are in J(f).

Theorem 5.2. Let f(z) and U be as in Theorem 5.1.The map f(z): U → U
is conjugate to the rational self-map g(z) = (3z2 + 1)/(3 + z2) of D .

Proof. Since f : U → U is a branched cover with U simply-connected and
just one branch point of order 2 over f(0) = 1 we see that the valency of f(z) in
U is 2, by the Riemann–Hurwitz relation.

Let Ψ: D → U be the Riemann map such that Ψ(0) = 0, Ψ maps R ∩D →
R , Ψ(1) = ∞ , and Ψ(−1) = −∞ . The inner function g: Ψ−1fΨ is a rational
map of degree two (since g has no singularities in ∂D and g is two to one by the
above result).

Now f(−∞) = ∞ , f(∞) = ∞ . Thus we have that g(±1) = 1, g is real on
[−1, 1] , and g has no fixed point in D since f(z) has no fixed point in U . Thus
g′(1) ≤ 1. Take α ∈ (0, 1) such that Ψ(α) = 1. We see that g(z) = α , z ∈ U , if
and only if f

(
Ψ(z)

)
= 1, that is Ψ(z) = 0 and hence z = 0. Consider the rational

map k: D → D , which is two to one, given by

(4) k(z) =
g(z)− α

1− αg(z)
.

The only solution of k(z) = 0 is z = 0. Since k is real on (−1, 1) and
k(1) = 1 it follows that k(z) = z2 . Therefore (4) can be written as

g(z) =
α+ z2

1 + αz2
.

Next we claim that g′(1) = 1 which implies that α = 1
3 .

Let d = distance (x, ∂U) for x ∈ R+ . Since the Poincaré metric �(x) on R+

lies between 1/4d and 1/d , that is 1/4d ≤ �(x) ≤ 1/d , we have some constants
γ, β > 0 so that γ < �(x) < β , x ≥ 0. The hyperbolic length of [0, xn]U is σn
where xn = fn(x0), x0 ∈ R , and γxn < σn < βxn , for large n .
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Now if vn = exn , then

vn+1 − vn = exn{exn+1−xn − 1} = {exn+1−xn − 1}/(xn+1 − xn).

Since xn → ∞ as n → ∞ we have xn+1 − xn = e−xn → 0 and vn+1 − vn → 1. It
follows that vn ∼ n and xn ∼ lnn as n → ∞ . If Ψ(tn) = xn we have

[0, tn]D = 2 ln
1 + tn
1− tn

= σn.

Thus
1 + tn
1− tn

= eσn/2

lies between nγ
′
, nβ

′
or n−γ′

< 1 − tn < 2n−β′
for some positive constants γ′

and β′ , as n → ∞ .
From the theory of iteration of an analytic function g near a fixed point the

above result can hold only if 1 is a parabolic fixed point of g . Thus in fact we
have g′(1) = 1 as claimed. Therefore α = 1

3 , so we have

g(z) =
1
3 + z2

1 + 1
3z

2
= 1 + (z − 1)− 1

4 (z − 1)
3 + · · · .

Since tn → 1 in the real direction we can already say that it is a case of two
‘petals’ for g at 1 separated by J(g) = ∂D . Also since g′′(1) = 0 and g′′′(1) �= 0,
convergence must be 1− tn = O(1/

√
n ).

Together with Lemma 13 the previous results imply the following corollary.

Corollary. For U the set Θ is dense in ∂D .

6. Further properties of the preceding example

Before proceeding we require some definitions and results which can be found
in [9] and [20].

Let Ω be a simply-connected domain in C . A simple Jordan arc γ with one
end-point on ∂Ω and all its other points in Ω is called an end-cut of Ω; if γ lies
in Ω except for its two end-points γ is called a cross-cut.

A point p of ∂Ω is accessible from Ω if p is an end-point of an end-cut in Ω.
We say that a sequence {γn} of cross-cuts is a chain of Ω if
1. γn ∩ γn+1 = ∅ , n = 0, 1, 2, . . . ,
2. γn separates Ω into two domains, one of which contains γn−1 and the other

γn+1 , n ∈ C , and
3. the diameter of γn → 0 as n → ∞ .
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It follows from 2 that one of the two sub-domains of Ω determined by γn , denoted
by Vn , contains all the cross-cuts γv , v > n , while the other contains all cross-cuts
γv , v < n .

Now let {γ′
n} be another chain of Ω. We say that {γ′

n} is equivalent to {γn}
if for all values of n , the domain Vn contains all but a finite number of cross-cuts
γ′
n and the domain V ′

n defined by γ′
n contains all but a finite number of cross-

cuts γn . This defines an equivalence relation between chains. The equivalence
classes are called the prime ends of Ω. A chain belonging to such a class is said
to belong to the prime end P . A sequence zm on Ω converges to P if for a chain
{γn} as above, and arbitrary choice of k , zm belongs to Vk for all but finitely
many m . Prime ends describe the correspondence between boundaries of domains
under conformal mapping. The impression of P is defined by I(P ) = ∩Vn where
Vn is the sub-domain of Ω given before. In particular if Ψ is a Riemann map
of D to Ω, Ψ induces a one-to-one correspondence between eiθ ∈ ∂D and prime
ends P (eiθ) of Ω. The set I

(
P (eiθ)

)
= C(Ψ, eiθ) which is a non-empty compact

connected set and thus either a single point or a continuum.
A point p ∈ C is a principal point of the prime end P if P can be represented

by a null-chain {γn} with γn ⊂ D(p, ε) for ε > 0, n > n0(ε); thus {γn} belongs
to P . We denote by Π(P ) the set of all principal points of P . In the above
notation Π(P ) = C	(Ψ, eiθ). Thus the set Π(P ) ⊂ I(P ) is not empty and is
closed. The prime ends fall into the four disjoint classes which were listed in the
introduction.

If Ei ⊂ ∂D , 1 ≤ i ≤ 4, consists of eiθ which correspond to the prime ends of
Ω of Type i , the results [9, p. 182–184] give the following lemma.

Lemma 14. E1 ∪ E2 has full measure in ∂D ; E1 ∪E3 is residual in ∂D .

Since the complement of a residual set has category I it follows that E2 has
category I.

We also note the following definition.

Definition. The left-hand cluster set C+(f, z0) at z0 ∈ ∂D consists of
all w ∈ Ĉ for which there are {zn} with zn ∈ D , arg zn > arg z0 , zn → z0 ,
f(zn) → w as n → ∞ . The right-hand cluster set C−(f, z0) is defined similarly
with arg zn < arg z0 . It is clear that C±(f, z0) ⊂ C(f, z0).

We say that a prime end is symmetric if C+(f, z0) = C−(f, z0) = C(f, z0);
otherwise it is asymmetric.

Lemma 15 ([9, Theorem 9.13, p. 189]). The asymmetric prime ends of any
simply-connected domain form a set which is at most countable.

Now we shall prove the following theorem using the above definitions. Let
L+(L−) be the line {x+ iy : −∞ < x <∞, y = π(y = −π)} .
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Theorem 6.1. Let f(z) and U be as in Theorem 5.1 . The lines L+ , L− are
in ∂U . Indeed, with the conformal map Ψ defined in the proof of Theorem 5.2
the prime end Q which corresponds to 1 ∈ ∂D has the impression L+∪L−∪{∞} .
Any end-cut l : l(t) , 0 ≤ t < 1 , of U which approaches ∞ in such a way that
Re l(t)→ +∞ as t→ 1 , must converge to Q .

Proof. As in the proof of Theorem 5.1 we put h(z) = ze−z and denote by G
the immediate domain of attraction of the parabolic fixed point 0 of h . We recall
that R+ ⊂ G , R− ⊂ J(h). The singularities of h−1 are 0, which is in J(h), and
the algebraic branch point at 1/e which corresponds to the critical point at z = 1.

Let g denote the branch of h−1 whose expansion near z = 0 is g(z) =
z + z2 + · · · . This may be continued analytically throughout H = {z : Im z > 0}
and remains analytic on R except for a branch point of order two at 1/e .

Now g is univalent on H and g maps R− to R− , while it maps R+ to a
curve Γ1 , formed by β1 = (0, 1] (the image of (0, 1/e] ) joined to a curve γ1 which
begins at 1 and enters H in the positive imaginary direction after which it runs
to ∞ in H ,

(
γ1 = g

(
[e−1,∞)

))
. As x → ∞ in [e−1,∞) then w = u+ iv = g(x)

satisfies x = |w|e−u+i(argw−v) . But 0 < argw < π so that 0 < v < π . Moreover
x = |u+ iv|e−u → ∞ so that u → −∞ while v = argw → π as x → ∞ (we note
for future use by the same calculation that if w and h(w) are both in H , then
argh(w) < argw ).

1

Γ

H

H

1/e

g (1)
Γ γ α

γ
γ

α

Γ

0

1

1

H 2

2 2

2

3
3

3

4 α
α

4

5

6

-R

πi

β 1

g

α 2

g(1)γ
1

Figure 4.
⋃∞

1 βn = β1 ∪ α2 ∪ α3 ∪ · · · is a Jordan curve C .

Denote the region in H bounded by R− and Γ1 by H1 , then g(H) = H1 ⊂
H . Since Hn = gn(H) ⊂ H the functions gn , n ∈ N , form a normal family
in H . Local iteration theory shows that gn → 0 in an open set close to zero in
the intersection of H with the left-hand plane. Hence gn → 0 locally uniformly
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in H .
Now we see inductively that ∂Hn = R−∪Γn where Γn = βn∪γn = gn(R+) ⊂

G and βn = g(βn−1), γn = g(γn−1). Moreover, βn = βn−1 ∪ αn , n ≥ 2, where
βn−1 and αn are arcs which meet only at their common end point gn−2(1), gn → 0
on α3 , which is a compact subset of H . We see that

⋃∞
1 βn = β1 ∪ α2 ∪ α3 ∪ · · ·

is a Jordan curve C (see Figure 4) which leaves zero along β1 and returns to zero
along a direction tangent to R− . We have g(C) = C and h(C) = C so that hn

is bounded in I = interiorC . Hence I ⊆ F (h) and indeed I ⊆ G .
Let Kn denote the unbounded domain in Hn cut off by the cross cut δn =⋃∞

j=n+2αj , n ∈ N , which runs from gn(1) to zero. The boundary of Kn is R− ,
δn and an arc γ′

n of γn . We have g(Kn) = Kn+1 , g(Kn) =Kn+1 . Let ∆ = ∩Kn .
Clearly R− ⊂ ∆. Also z ∈ ∆ implies that h(z) ∈ ∆. Suppose that ∆ contains
some point z which is not in R− , then we may suppose z chosen to have minimum
argument Θ, and 0 < θ since ∆ does not contain β1 . But then h(z) ∈ H and, as
observed earlier, arg h(z) < arg z = θ which gives a contradiction. Thus ∆ = R− .

Now by the symmetry of G we see that the curve ln formed by γ′
n ∪ δn

together with its reflection in R is in G , except for the point zero.
For a sufficiently small rn , n ∈ N , the circle C(0, rn) meets δn but not γ′

n .
Let pn = rne

iθn be the point with minimum θn > 0, n ∈ N , such that pn ∈ ∂G .
Since R− ⊆ ∂G we have θn ≤ π and indeed θn < π because the arcs Cn : rneiθ ,
−θn < θ < θn , determine a set of cross cuts which define a prime end P of G . If
θn = π the impression of this prime end is bounded but we know from Theorem A
that the impression contains infinity which is a contradiction. Thus θn < π .

γ
δ

C

g (1)

D
Kn

n

n

n

n

n

p

0

n

Figure 5. The component Dn .

The arc Cn divides G into two components Dn , D′
n . The component which

contains 1
2rn , n ∈ N , is denoted by Dn (see Figure 5). We can see that Dn ⊂
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(
Kn ∪ K−

n ∪ D(0, rn)
)
where K−

n is the reflection of Kn in R . (We note that
the finite points of ∂Kn ∪ ∂K−

n are in F (h) ∪ {0} .) Clearly the impression of
the prime end P is R− , since Dn ⊂

(
Kn ∪K−

n ∪D(0, rn)
)
we have I(P ) = ∩Dn

where ∩Dn ⊂ ∩Kn = R− . The impression is a continuum which contains zero and
infinity therefore I(P ) = R− .

Any end cut in G which tends to 0 must remain in Dn after some point.
(0, ε) is such an end cut for ε > 0. Suppose τ (t), t ∈ (0, 1) is an end cut in G
which tends to zero as t → 1. Thus given n , τ (t) is in D(0, rn) for t > t0 . If
τ (t) is not contained in Dn we may suppose that τ ⊂ D′

n and that Im τ (t) > 0.
Thus τ (t) lies in the part of D(0, rn) in the upper half-plane which lies below δn .
We may assume that τ (t0) is joined by 0 in D′

n to say 2rn so that the union
τ ′ of τ (t), t ≥ t0 with � and with [0, 2rn] is a Jordan curve Γ in G , except
for the point zero. Now pn lies in the interior of Γ. Since the transcendental
function h: G → G is 2 to 1 (by conjugacy with f | U ) there is some component
G1 = h−1(G) �= G .

For z1 ∈ G1 there is some m ∈ N such that there is a value of h−m(z1) so
close to pn that it is inside Γ. The corresponding component h−m(G1) of F (h)
is different to G and is unbounded. Hence h−m(G1) meets Γ in some open subset
of Γ, so in points which are different from zero. But all such points of Γ are in
G , this gives us a contradiction. Thus τ is in Dn .

We may now lift these results to the Baker domain U for the function f(t) =
t + e−t by noting that z = e−t maps U to G so we have that ∂U contains the
lines L+ , L− . Indeed e−t is univalent in the region between L+ , L− , which
includes U , so that the prime ends of U and G correspond under the mapping.
Thus, corresponding to Cn we have cross cuts C ′

n : x = − log rn , −θn < y < θn
of U which cut off domains D′

n in U such that e−D′
n = Dn . The prime end of

U defined by (C ′
n) is denoted by Q and has impression L+ ∪L− ∪ {∞} . For any

x > 0, [x,∞) is an end cut of U which converges to +∞ (and indeed to Q).
Any end cut in U which converges to +∞ must remain in D′

n from some point
onwards and thus converges to Q .

Theorem 6.2. If gn(eiθ) = 1 , n ≥ 0 , where g is the quadratic map of
Theorem 5.2 , then eiθ corresponds to an asymmetric prime end of Type 2 of the
domain U of Theorem 5.1 .

Since the pre-images of 1 are dense in ∂D we have a natural example of the
situation described in Lemma 15.

Proof. We denote by U+ the part of U above R and by U− the part of U
below R . In a similar way denote D+ and D− such that

Ψ: D+ → U+,

Ψ: D− → U−.
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Clearly as x → 1 in D so Ψ(x) → +∞ and Ψ(1) = Q thus Q is in the
second type (see the table about prime ends) with principal point ∞ .

Then ∞ is also the angular cluster set of Ψ at 1 [9]. Since Ψ is real on R the
cluster set of Ψ at 1, clearly splits into two ‘wings’ L+ ∪ {∞} for the left-hand of
Q and L− ∪ {∞} for the right-hand wing, corresponding to z → 1 in D+ or D− .
Thus Q is an asymmetric prime end of H .

Let z0 be a predecessor of 1 under the conjugate quadratic map g: D → D ,
say gm(z0) = 1. Then Ψ(z0) is also an asymmetric prime end, since if the left-
hand cluster set of Ψ at z0 is C+(z0) and at 1 is C+(1) then Ψgm = fmΨ gives
fmC+(z0) = C+(1) = L+ ∪{∞} while the right-hand cluster set has fmC−(z0) =
L− ∪ {∞} .

We return to the study of Θ for f and U .

Theorem 6.3. For f(z) = e−z + z and U as above the set Θ consists
precisely of the countable set of predecessors of 1 under the iterates gn , n ≥ 0 ,
with g as in Theorem 5.2 .

Lemma 16. Given ε > 0 there exists A(ε) < 0 so that z = x + iy in
U ∩ {z : x < A(ε)} we have either π − ε < |y| < π or |y| < ε .

Proof. Let S denote S = {z = x+ iy, | Im z| ≤ π} . We know that f : L± →
L± . We claim that the graph of f−1(L+) ∩ S = L+ ∪M− is as in Figure 6.

In particular, as z → ∞ on M− we have Re z → −∞ and Im z → 0− or
Im z → −π+ . We also have f−1(L−) ∩ S = L− ∪M+ where M+ is the reflection
of M− in R .

To prove the claim we note that in the half plane H = {w : Rew > 0} we
have Re f ′(w) > 0 so that f is univalent in H . Also f(H) ⊂ H − 1. Thus for
large |Re z| the solutions of f(w) = z , z ∈ L+ , w ∈ S \ L+ have Rew large and
negative. Therefore z = f(w) ∼ e−w so that w ∼ − ln z and more accurately
e−w = z − w ∼ z + ln z . Thus w ∼ − ln(z + ln z) ∼ − ln z − ln z/z as z → ∞ .
Hence M− = f−1(L+) ∩ {z = x+ iy, | Im z| ≤ π} has one end which goes to ∞
like

w ∼ − ln(x+ iπ)− ln(x+ iπ)
x+ iπ

as x → ∞

= −(lnx)
(
1 + o(1)

)
− iπ

x
(1 + o(1)) as x → ∞.

For the other end

w ∼ − ln(−x+ iπ)− ln(−x+ iπ)
−x+ iπ

as x → ∞

= −(lnx)
(
1 + o(1)

)
+ i

(
−π + 2π

x

)(
1 + o(1)

)
as x → ∞.

Further M− , M+ are symmetric with respect to the real axis. The assertion of
Lemma 16 follows from the above.
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Figure 6. f−1(L−) ∩ S = L− ∪M+ and f−1(L+) ∩ S = L+ ∪M− .

Proof of Theorem 6.3. Let σ : reiα be a radial path, 0 < r < 1, and suppose
that the Riemann map Ψ → ∞ on σ (i.e. eiα ∈ Θ). On gn(σ): Ψ

(
gn(σ)

)
=

fn
(
Ψ(σ)

)
→ ∞ (e−z + z → ∞ if z → ∞ , z ∈ U ). Thus Ψ

(
gn(σ)

)
→ ∞ for each

fixed n .
If ReΨ(σ)→ +∞ then by Theorem 6.1 Ψ(σ)→ Q , that is eiα = 1.
If ReΨ(σ)→ −∞ in |y| < ε , then f

(
Ψ(σ)

)
→ +∞ so Ψ

(
g(σ)

)
= f

(
Ψ(σ)

)
→

Q , so in this case g(σ)→ 1, and g(eiα) = 1 (eiα �= 1).
If Ψ(σ)→ −∞ in π−ε < |y| < π , then we can assume that A(ε) is chosen so

that x < A(ε) implies Re(e−z+z) ≤ −2Re z . Now for all n ∈ N Ψ
(
gn(σ)

)
→ ∞ .

If we always have ReΨ
(
gn(σ)

)
→ −∞ we must always have this happening in

π−ε < |y| < π , so Re fn
(
Ψ(σ)

)
< −2nReΨ(σ)→ −∞ . But for any fixed z ∈ U ,

Re fn(z)→ +∞ . Hence there is a first n so that Ψ
(
gn(σ)

)
→ −∞ in |y| < ε and

this implies that Ψ
(
gn+1(σ)

)
→ +∞ . Then gn+1(eiα) = 1, eiα = g−(n+1)(1).

Thus the set Θ consists entirely of the set of predecessors of one under gn , that is
the set corresponding to the asymmetric prime ends which were discussed before.
Thus the theorem is proved.

Theorem 6.4. For f(z) = e−z+z and U as above we have E1 = ∅ , Θ ⊂ E2

while E3 is residual.

Proof. Since Θ is dense in ∂D it follows that ∞ belongs to the impression of
every prime end of U (i.e. for any θ , ∞ ∈ C(Ψ, eiθ) because there exists θn → θ′ ,
eiθn ∈ Θ so ∞ ∈ C	(Ψ, eiθn)). Thus E1 ⊂ Θ. We have seen that Q , and similarly
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all members of Θ belong to E2 . Thus E1 = ∅ . From Lemma 14 it follows that
E3 is residual.

7. Further examples

1. J. Weinreich [23] showed that j(z) = e−z + z − 1 has an unbounded
invariant component U of F (j) in which j is conjugate to z2 . Thus U contains
a super-attractive fixed point at 0. Our results show that Θ = ∂D . Weinreich
showed that Θ is a countable subset of E2 while E1 = ∅ .

2. Our results in Section 5 showed that the domain of attraction G of the
parabolic fixed point 0 of h(z) = zez is unbounded. By projecting the results for
f , U in Section 6 we find that for h , G we have Θ= ∂D , Θ countable, E1 = ∅ .

3. Recalling the example f , U of Sections 6, 7 as well as 1, 2 above we have
examples where Θ is a dense countable subset of ∂D for cases when U is either an
attracting domain, a parabolic domain, or a Baker domain (with non-univalent f ).

4. In the case of f(z) = λez , 0 < λ < 1/e , discussed by R.L. Devaney
and L.R. Goldberg [10] where F (f) is a single unbounded attracting domain,
∂D = E1 ∪ E2 and, as explained in the introduction, Θ = E1 is residual, (that is
its complement is of first category), and hence Θ is, in particular, non-countable.

5. Kisaka studies the example f(z) = e−z + z + 1, which was one of the
functions discussed in Fatou’s fundamental paper [1926] on the dynamics of entire
functions. Kisaka proved that f has a Baker domain for which Θ contains a
perfect set in ∂D . We shall improve this by showing that Θ= ∂D .

In fact we shall consider a slightly more general class of functions.
Let ε ≥ 0 be a constant and let k be an entire function such that |k(z)| ≤

Min (ε, 1/|z|2) outside the strip S = {z = x+ iy : |y| < π, x < 0} .
The construction of a non-constant example of such functions is described for

example in [12, p. 81]. Our example is the function G(z) = f(z)+ ε+ k(z), where
f(z) = e−z + z + 1.

We claim that G(z) has a Baker domain U in which the valency of G is
infinite and for which Θ= ∂D .

We note that ε = 0 gives G(z) = f(z). In this case the result may be
obtained more rapidly by lifting the corresponding result for h(t) = e−1(te−t) by
π−1 , where π(z) = e−z , but the method does not extend to general G .

Since G(z) = e−z + z + (1 + ε) + k(z), we have in H = {z : Re z > 0}
that ReG(z) ≥ ε + Re k(z) ≥ 0. By the open mapping theorem we have indeed
ReG(z) > 0 so that G: H → H . Thus H ⊂ F (G) and zn = Gn(z) → ∞ in H
‘like n ’. Indeed for z ∈ H we have first that Re zn is strictly increasing and so
cannot have a finite limit. Then zn+1−zn = (1+ε)+e−zn+k(zn) = (1+ε)+o(1).
From this it follows that zn = O(n) and zn+1− zn = (1+ ε)+O(1/n2) and hence
zn = (1 + ε)n + O(1). The component U of F (G) which contains H is a Baker
domain.
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Now G has fixed points where e−z + 1 + k(z) = 0. Since |k(z)| < 1/|z|2 ,
Rouché’s theorem shows that for j ∈ Z there is a fixed point zj such that zj −
(2j + 1)iπ → 0 as |j| → ∞ . But H ⊂ F (G) and zj is not in U . It follows that
for each j there is a boundary point z′j of U such that z′j − (2j + 1)iπ → 0 as
|j| → ∞ .

Recall that the Poincaré metric �(z)|dz| in U satisfies

(5)
1
4d

≤ �(z) ≤ 1
d
,

where d = d(z, ∂U).
For any z0 in H we have zn = gn(z0) = (1 + ε)n + O(1) and for any z′0

in U we have z′n = gn(z′0) such that [z
′
n, zn] ≤ [z′0, z0] , where [ ] denotes the

hyperbolic distance in U . Since there is a constant K such that d(z, ∂U) < x+K
for z = x+ iy ∈ H it follows from (5) that

[zn, ∂H] >
∫ Re zn

0

dx

4(x+K)

which tends to ∞ as n → ∞ . This implies that z′n ∈ H for all sufficiently large n .
But then from our earlier results z′n = (1+ ε)n+O(1). Thus for any z′0 , z′n → ∞
in H in a horizontal direction.

We form a Riemann map Ψ: D → U , where Ψ(1) is the prime end P of U
which corresponds to the approach to ∞ in U with Re z → ∞ .

We quote a result of A. Ostrowski [18]: Suppose that S is a simply-connected
domain which satisfies A and B below.

A. For every φ in 0 < φ < 1
2π there exists u(φ) such that S(φ) = {w =

u+ iv : u > u(φ), |v| ≤ φ} ⊂ S .
B. There are sequences wn = un+ ivn , w′

n = u′
n+ iv′n in ∂S such that u0 <

u1 < · · · < un → ∞ , un+1 − un → 0 , vn → 1
2π , and u′

0 < u′
1 < · · · < u′

n → ∞ ,
u′
n+1 − u′

n → 0 , v′n → − 1
2π .

Suppose that z(w) maps S conformally onto the strip {z = x+ iy : |y| < 1
2π}

so that limu→0 z(u + i0) = ∞ . Then if 0 < φ < 1
2
π , we have as Rew → ∞ ,

w ∈ S(φ) , lim
(
y(w)− v

)
= 0.

By applying this result together with a suitable logarithmic transformation
we see that as z → ∞ in a horizontal direction in H , so Ψ−1(z) → 1 in D in a
direction tangent to the real axis.

We conclude that for the inner functions g = Ψ−1GΨ: D → D the orbit of
any z0 ∈ D is such that gn(z0) → 1 in a direction tangent to the real axis. By
Lemma 10 g is not a Möbius transformation and J(g) = ∂D . It follows from
Lemma 13 that Θ= ∂D . Our claim is proved.

It is not hard to show G has valency ∞ in U . For z = x+iy , Rv = R+2πiv ,
v ∈ Z − {0} we have ReG(z) ≥ e−x + x + (1 + ε) − |k(z)| ≥ e−x + x + 1 ≥ 2.
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Thus G(Rv) ⊂ H and, by the complete invariance of F (G), Rv belongs to the
component U of F (G) which contains H .

Let Tv = {z = x + iy : x < 0, (2v − 1)π < y < (2v + 1)π} , v �= 0,
and Γv = ∂Tv . Then for z on Γv we have ReG(z) ≤ 2 + 2ε . We may choose
z0 = x0 + 2πiv ∈ Rv ∩ Tv , so that w0 = G(z0) ∈ K = {z : Re z > 2 + 2ε} .

Let z = γ(w) denote the branch of the inverse of G such that γ(w0) = z0 . As
we continue g along any path δ which starts at w0 and remains in K we cannot
meet any transcendental singularity of γ , for a such a singularity would correspond
to an asymptotic path λ of G which runs to ∞ in Tv (since G(λ) ⊂ K) and
such that G has a finite limit as z → ∞ on λ . Clearly no such path exists since
G(z)→ ∞ as Re z → −∞ , z ∈ Tv .

Thus γ has at most algebraic singularities on δ and the values remain in Tv .
By complete invariance of F (G) we have γ(K) ⊂ U . Thus G(U ∩ Tv) ⊃ K for
each v ∈ Z− {0} and any value w ∈ K is taken infinitely often by G in U .

8. The results of Devaney and Goldberg on λez

Let C = {λ ∈ C : λ = te−t, |t| < 1} . Then for λ ∈ C the function f = fλ
given by fλ(z) = λez has an attracting fixed point z = t where f ′(t) = t . In fact
F (f) is a simply-connected completely invariant domain in which fn(z) → ∞ as
n → ∞ .

S

S

s

0

σ

σ

σ S

σ S

−1

s + 4 πi

0

−1

−2 −2

1 1

0

s + 2 πi

Figure 7. Sj , j ∈ Z .

Let Ψ denote the Riemann map of D = D(0, 1) onto F (f), which we may
normalize so that Ψ(0) = t , Ψ′(0) > 0. R.L. Devaney and R.L. Goldberg [10]
proved that the radial limit Ψ(eiθ) exists for every eiθ ∈ ∂D .
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This result is important for our present chapter and has also been the start-
ing point of further topological studies and conjectures (see e.g. W. Bula and
L.G. Oversteegen [8] and J.C. Mayer [16]). For this reason it seems appropriate to
give a proof, slightly different from that of Devaney and Goldberg, of their result.

First note that for any two values λ , λ′ ∈ C there is a quasiconformal homeo-
morphism of the plane which conjugates fλ to fλ′ and maps F (fλ) to F (fλ′ ).
Thus we may assume that λ is real in the range 0 < λ < e−1 corresponding to
0 < t < 1. From now on λ will have this fixed value.

Then f = fλ has two real fixed points t , s such that 0 < t < 1 < s .
The half-plane H = {z : Re z < s} is invariant under f and therefore belongs
to F (f). Clearly fn(z) does not tend to t for all z ∈ [s,∞). Hence [s,∞) and
all its translates by multiples of (2πi) belong to J(f). Since s → 1 as λ → 1/e
we may suppose λ has been chosen so that s < 2.

Let Sj = {z : Re z > s, 2πj < Im z < 2π(j+1)} , j ∈ Z , denote the half-strip,
see Figure 7.

If we take the branch of log z whose argument lies between 2πj and 2π(j+1)
defined in the plane cut along the positive real axis [0,∞), then lj(z) = log(z/λ)
is a branch of the inverse of f which maps the domain {z : |z| > s, arg z �= 0}
onto Sj .

The segments σj = {s + iy : 2πj < y < 2π(j + 1)} form cross cuts of F :
σj ⊂ F since f(σj ) ⊂ F .

Correspondingly τj = Ψ−1(σj) form cross cuts of D , disjoint (except for their
end points). We note that by the symmetries of F about R , Ψ is real on R ∩D
and Ψ(−1) =∞ , Ψ(1) = s .

We denote the inner function Ψ−1fΨ by g . Then g(0) = 0 and τj separates
0 from Ψ−1(Sj) (see Figure 8). In Ψ−1(S0) the function g takes each value at
most once, so that g must be analytic at points of ∂D in the boundary of Ψ−1(S0),
except perhaps at the ends of the arc τ0 . A slight variation of the cross cuts σ0 ,
σ1 , σ−1 allows us to show that g is analytic at the ends of τ0 also. Similarly for
the other τj so that g is analytic on ∂D − {−1} . Since g | D is infinitely many
valued (like f | F ) we see that g is singular at −1.

Suppose that for some k ∈ N , gk is analytic at eiθ and that gk(eiθ) = −1.
It follows from Ψgk = fkΨ that Ψ has the asymptotic value ∞ along some path
which tends to eiθ . Consequently the radial limit Ψ(eiθ) =∞ .

Similarly if gk(eiθ) = 1 for some k ∈ N it follows that Ψ(eiθ) exists and
satisfies fk

(
Ψ(eiθ)

)
= s .

Thus if eiθ is a preimage under g of +1 or −1 the radial limit Ψ(eiθ) exists.
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Figure 8. Ψ−1(S0) .

If eiθ is not a preimage of +1 or −1 under g we call it a ‘general’ eiθ . For
each fixed n ∈ N ∪ {0} , eiθ is not the end of any g−n(τj), nor a limit point of
such curves, since these are the singular points of gn , i.e. preimages of −1 (see
Figure 9). Hence eiθ is separated from 0 by one of g−n(τj), j = j(n) say, and in
fact one of the arcs, say τ (n) of g−n(τj(n)). We have fn

(
Ψ(τ (n))

)
= Ψgn(τ (n)) =

Ψ(τj(n)) = σj(n) .
By Lemma 9 we have J(g) = ∂D so that the predecessors of −1 are dense in

∂D and the distance apart on ∂D of end points of the arcs τ (n) → 0 as n→ ∞ .
Further, each general eiθ defines a unique sequence j(n), n ∈ N ∪ {0} , as above.

τ

τ

τ

1

-1

0

10

g (-1)
-1

Figure 9. Diagram showing τj , g−1(τj) = Ψ−1f−1(σj) .
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We shall now construct a path in F which corresponds to a ‘general’ eiθ .
For n = 1, 2, . . . let γn be the path shown in Figure 10, that is

[
−s,−s +(

2j(n) + 1
)
iπ

]
∪

[
−s +

(
2j(n) + 1

)
iπ,−s +

(
2j(n) + 1

)
iπ + s

]
. Thus γn ∈ F .

Then Γn = lj(0) ◦ lj(1) ◦ · · · lj(n−1)(γn), lies in F and joins qn−1 = lj(0) ◦ lj(1) ◦ · · · ◦
lj(n−1)(−s) with qn inside Sj(0) ∩ F . It follows that wn = Ψ−1(Γn) joins points
on τ (n−1) , τn in the component Kn−1 of D−τ (n−1) which does not contain 0. If
we orient wn from Ψ−1(qn−1) to Ψ−1(qn), then Ω =

⋃∞
1 wn is a path in D which

lies in Kn−1 from some point onwards. Since Ψ(Ω) = Γ, where Γ =
⋃∞

1 Γn , our
result will be proved if we prove the following theorem.

S

0 s-s

γ

γ

is

n

n
j ( n )

(2j(n) + 1) i

β
π + s =

j ( n )
(-s)

Figure 10. The path γn .

Theorem 8.1. Γ , parametrized from each qn−1 to qn , has a unique end
point, possibly ∞ .

For the end α of Γ is in J(f) since its orbit does not tend to t . Then Ψ−1(Γ)
lands at a point of ∂D which can only be eiθ .

To prove the theorem above we need two lemmas.
Let K denote a fixed constant such that K ≥ 4, which implies that eK >

1 +K + 1
2K

2 > 1 +K + 2π .

Lemma 17. Suppose that z1 , z2 ∈ Sj , j ∈ Z , and that Re z1 ≤ Re z2 +K .
Then |z1| < eK |z2| . Conversely, if |z1| ≥ eK |z2| , then Re z1 > Re z2 +K .

Proof. If zk = xk + iyk , then if x1 ≤ x2 we have

|z1| = |x1 + iy1| ≤ |x2 + iy1| = |z2 + iδ| ≤ |z2|+ 2π

for some real δ with |δ| < 2π .
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If x1 > x2 , then we have x2 < x1 < x2+K . Hence for some 0 < α < K and
some β with |β| < 2π we have z1 = z2 + α+ iβ and |z1| ≤ |z2|+K + 2π .

In either case we have, since |z2| ≥ s > 1, that

|z1| ≤ |z2|+K + 2π ≤ |z2|(1 +K + 2π) < eK |z2|.

Lemma 18. Suppose that α ∈ γn and β is either a point which lies on γn ,
after α in the orientation we have chosen, or is a point in Sj(n) . Then |α| ≤ |β|+c ,
where c = π + 2s .

Corollary. |α| < eK |β| , since |α| ≥ eK |β| implies that 3|β|+ π > |β|+ π +
2s = |β|+ c ≥ eK |β| which is impossible for |β| > 1 and K ≥ 4 .

Proof of Lemma 18. (i) If α , β are in the vertical segment of γn , then
|α| < |β| .

(ii) If α is in the vertical segment of γn , whose end point is denoted by β′ ,
and if β is on the horizontal segment of γn then |α| ≤ |β′| , |β′| ≤ |β|+2s so that
|α| ≤ |β|+ 2s .

(iii) If α , β are both in the horizontal segment of γn , then |α| ≤ |β|+ 2s .
(iv) If α ∈ γn , β ∈ Sj(n) , then |β| > |2j(n)|π and |α| ≤ (|2j(n) + 1|)π + s ≤

|β|+ π + s .

Proof of Theorem 8.1. 1. Suppose that there are points z , z′ on Γ with
z′ after z , such that Re z > Re z′ + K . We may suppose that z ∈ Γn . Then
fp(z), fp(z′) ∈ Sj(p) , 1 ≤ p ≤ n − 1. We obtain (inductively) from Lemma 17
that |fp(z)| > eK |fp(z′)| and hence Re fp(z) > Re fp(z′) +K . Hence we have
|fn(z)| > eK |fn(z′)| , and fn(z) ∈ γn , while fn(z′) is either on γn after z or
in Sj(n) . It follows from the corollary of Lemma 18 that |fn(z)| < eK |fn(z′)| ,
this contradiction shows in fact that for any z′ on Γ which comes after z we have
Re z′ ≥ Re z −K .

2. Recall that Γ lies in Sj(0) . If there is a sequence of zn in Γ such that
Re zn → ∞ , the result of 1 shows that Γ→ ∞ .

If Γ does not tend to ∞ it follows that Re z is bounded on Γ and, by 1,
lim supRe z − lim inf Re z ≤ K . Thus for all sufficiently large n ,

⋃∞
j=n Γj , which

we denote by Γ̃n , lies in a set of the form Sj(0) ∩ {z : a ≤ Re z ≤ a+K + 1} .
Fix m ∈ N . Then for n > m we have fm(Γ̃n) is a union of curves lj(m) ◦

. . . ◦ lj(n+p−1)(γn+p), p ≥ 0, defined in the same way as Γn+p . Hence for all
sufficiently large n , fm(Γ̃n) lies in the set Sj(m) ∩ {z : a′ ≤ Re z ≤ a′ +K + 1} ,
while fr(Γ̃n), r = 0, 1, . . . ,m all lie in {Re z > s} , where |f ′| > s . Thus Γ̃n is a
(univalent) image of fm(Γ̃n) under f−m , and diam Γ̃n ≤ (2π+K+1)s−m , for all
sufficiently large n . Since m may be chosen arbitrarily we see that in the present
case Γ has a unique finite end point. The proof is complete.
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Stockholm 1895. - Hermann, Paris, 1897.
[20] Pommerenke, Ch.: Boundary Behaviour of Conformal Maps. - Springer-Verlag, New

York, 1992.
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