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ON THE BERS FIBER SPACES
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Abstract. It is well known that a Bers fiber space F (Γ) for a torsion free finitely generated
Fuchsian group Γ of the first kind can be identified with a Teichmüller space. If Γ has torsion, a
theorem of Earle–Kra [9] asserts that in almost all cases, F (Γ) is not isomorphic to any Teichmüller
space. However, there are 39 cases which remain unsettled. Our results remove 27 from the 39
previously unknown cases.

1. Introduction

This paper is an investigation on relationships between Teichmüller spaces
and Bers fiber spaces. All Fuchsian groups considered in this paper are finitely
generated Fuchsian groups of the first kind which act on the upper half plane U .
Let Γ be a Fuchsian group which has signature (g, n; ν1, . . . , νn), where g is the
genus of the orbifold U/Γ, n is the number of distinguished points (denoted by
x1, . . . , xn ) and ν1, . . . , νn ∈ {2, 3, . . .} ∪ {∞} are the ramification numbers of
x1, . . . , xn , respectively. ν1, . . . , νn are arranged so that 2 ≤ ν1 ≤ · · · ≤ νn ≤ ∞ .
The pair (g, n) is called the type of Γ. There is a Fuchsian group Γ of signature
(g, n; ν1, . . . , νn) if and only if

2g − 2 +
n∑
j=1

(
1− 1

νj

)
> 0.

The Teichmüller space T (Γ), with g ≥ 0, n ≥ 0, and 3g− 3+ n > 0, admits
a representation as a simply connected domain in C3g−3+n . Associated to each
point x ∈ T (Γ) there is a certain Jordan domain Dx depending holomorphically
on x . The Bers fiber space F (Γ) over T (Γ) is the set of points (x, z) with
x ∈ T (Γ) and z ∈ Dx . The Bers fiber space F (Γ) is a simply connected domain
in C3g−2+n .
A theorem of Bers–Greenberg [7] implies that T (Γ) depends only on the type

of Γ. For this reason, we denote by T (g, n) the Teichmüller space T (Γ) for Γ
of type (g, n). On the other hand, some examples (which we will see later in
this paper) show that F (Γ) depends on the signature of Γ. We write F (Γ) =
F (g, n; ν1, . . . , νn) to emphasize this dependence.
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In this paper, we consider the problem of finding all biholomorphic maps
(we use the term “isomorphisms” throughout this paper) between Teichmüller
spaces and Bers fiber spaces. The motivation for tackling this question originally
stems from [19], in which Royden proved that all automorphisms of T (g, 0) with
g ≥ 3 are induced by self-maps of a surface of genus g . Later, Earle and Kra [9]
generalized this result to all cases of analytically finite Riemann surfaces. On the
other hand, in [18], Patterson gave a complete solution to the problem of finding all
isomorphisms among finite dimensional Teichmüller spaces. Since then, important
progress concerning the isomorphisms between Bers fiber spaces and Teichmüller
spaces has been made in [5], in which Bers proved that

(1.1) F (g, n;∞, . . . ,∞) ∼= T (g, n+ 1).

Then Bers asked whether F (Γ) is isomorphic to a Teichmüller space if Γ has
torsion. The study of this question was initiated by Earle and Kra [9]. They
proved that in most cases the answer to the Bers question is “no”. The statement
of their result is:

Theorem 1. Suppose that Γ contains elliptic elements and F (Γ) is isomor-
phic to T (Γ′) for some group Γ′ . If the types of Γ and Γ′ are (g, n) and (g′, n′) ,
respectively, then the pair

(
(g, n), (g′, n′)

)
is among the entries of the table:

((0, 3), (0, 4)) ((0, 3), (1, 1)) ((0, 4), (0, 5)) ((0, 4), (1, 2))
((1, 1), (1, 2)) ((1, 1), (0, 5)) ((0, 5), (1, 3)) ((0, 5), (0, 6))
((0, 5), (2, 0)) ((1, 2), (1, 3)) ((1, 2), (0, 6)) ((1, 2), (2, 0))
((0, 6), (1, 4)) ((0, 6), (2, 1)) ((0, 7), (2, 2)) ((0, 8), (3, 0))

Table A
Moreover, every elliptic element of Γ has order 2 , unless Γ is of type (0, 3) .

The remaining question is: what happens if the pair
(
(g, n), (g′, n′)

)
lies in Ta-

ble A? There are, of course, some obvious isomorphisms between F (g, n; ν1, . . . , νn)
and T (g′, n′) if the pair

(
(g, n), (g′, n′)

)
lies in Table A. To enumerate all well-

known isomorphisms, we note that if Γ is of type (0, 3), then T (Γ) is a single
point. So F (0, 3; ν1, ν2, ν3) is a disk for ν1 , ν2 , ν3 ∈ {2, 3, . . .} ∪ {∞} with

1
ν1
+
1
ν2
+
1
ν3

< 1.

This leads to the isomorphism:

(1.2) F (0, 3; ν1, ν2, ν3) ∼= T (0, 4) ∼= T (1, 1).

We also observe that a Riemann surface S of type (2, 0), (1, 2) or (1, 1) always
admits a hyperelliptic involution. Let j denote the hyperelliptic involution in each
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case, then S/〈j〉 is an orbifold of signature (0, 6; 2, . . . , 2) if S is of type (2, 0);
an orbifold of signature (0, 5; 2, . . . , 2,∞) if S is of signature (1, 2;∞,∞); and an
orbifold of signature (0, 4; 2, 2, 2,∞) if S is of signature (1, 1;∞). In addition,
any Riemann surface S of signature (0, 4;∞, . . . ,∞) admits three conformal invo-
lutions. To explain this fact, we take an arbitrary Riemann surface S of signature
(0, 4;∞, . . . ,∞), and let x1, . . . , x4 denote the punctures. By a result of [9] there
are three elliptic Möbius transformations (of order 2) j1 , j2 and j3 defined on S ,
where j1 maps x1 to x3 , x2 to x4 , j2 maps x1 to x4 , x2 to x3 , and j3 maps
x1 to x2 , x3 to x4 . Note that the three corresponding quotient spaces (orb-
ifolds) S/〈j1〉 , S/〈j2〉 and S/〈j3〉 are of signature (0, 4; 2, 2,∞,∞). The above
observation leads to the following equivalences:

F (0, 6; 2, . . . , 2) ∼= F (2, 0; ),
F (0, 5; 2, . . . , 2,∞) ∼= F (1, 2;∞,∞),
F (0, 4; 2, 2, 2,∞) ∼= F (0, 4; 2, 2,∞,∞) ∼= F (0, 4;∞, . . . ,∞).

On the other hand, (1.1) tells us that

F (2, 0; ) ∼= T (2, 1),
F (0, 4;∞, . . . ,∞) ∼= T (0, 5) ∼= T (1, 2)

and
F (1, 2;∞,∞) ∼= T (1, 3).

Thus, we obtain some other isomorphisms:

F (0, 6; 2, . . . , 2) ∼= T (2, 1),(1.3)
F (0, 5; 2, . . . , 2,∞) ∼= T (1, 3),(1.4)

F (0, 4; 2, 2, 2,∞) ∼= T (1, 2) ∼= T (0, 5) ∼= F (0, 4; 2, 2,∞,∞).(1.5)

Except for (1.1)–(1.5), it is not known whether or not there are any other isomor-
phisms between Bers fiber spaces and Teichmüller spaces. The following conjecture
was posed in 1974:

Conjecture (Earle–Kra [9]). If Γ contains elliptic elements, then (1.2)–
(1.5) exhaust all possible isomorphisms between Bers fiber spaces and Teichmüller
spaces.

As we see, Theorem 1 is a significant step towards this conjecture. What is left
unanswered is a finite number of cases. As a matter of fact, we can immediately
find that there remain 39 unknown cases, which are exhibited in Table B, where
row 5 and row 6 are distinct since T (0, 6) or T (2, 0) are not isomorphic to T (1, 3)
by Patterson’s result [18].
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signature (g, n; ν1, . . . , νn) type (g′, n′) # of cases
(0, 8; 2, . . . , 2︸ ︷︷ ︸

m

,∞, . . . ,∞︸ ︷︷ ︸
8−m

) , 0 < m ≤ 8 , (3, 0) 8

(0, 7; 2, . . . , 2︸ ︷︷ ︸
m

,∞, . . . ,∞︸ ︷︷ ︸
7−m

) , 0 < m ≤ 7 , (2, 2) 7

(0, 6; 2, . . . , 2︸ ︷︷ ︸
m

,∞, . . . ,∞︸ ︷︷ ︸
6−m

) , 0 < m < 6 , (2, 1) 5

(0, 6; 2, . . . , 2︸ ︷︷ ︸
m

,∞, . . . ,∞︸ ︷︷ ︸
6−m

) , 0 < m < 6 , (1, 4) 5

(0, 5; 2, . . . , 2︸ ︷︷ ︸
m

,∞, . . . ,∞︸ ︷︷ ︸
5−m

) , 0 < m ≤ 5 , m 
= 4, (0, 6) or (2, 0) 4

(0, 5; 2, . . . , 2︸ ︷︷ ︸
m

,∞, . . . ,∞︸ ︷︷ ︸
5−m

) , 0 < m ≤ 5 , m 
= 4, (1, 3) 4

(1, 2; 2, m) , m = 2 or m =∞ (1, 3) 2
(1, 2; 2, m) , m = 2 or m =∞ (0, 6) or (2, 0) 2

(0, 4; 2,∞,∞,∞) (0, 5) or (1, 2) 1
(1, 1; 2) (0, 5) or (1, 2) 1

Table B

This paper is a contribution to the Earle–Kra conjecture. What we attempt
to do is to eliminate most entries of Table B. More precisely, we prove

Theorem 2. Suppose that Γ has torsion and F (Γ) is isomorphic to T (Γ′)
for some group Γ′ . If Γ has signature (g, n; ν1, . . . , νn) and Γ′ has type (g′, n′) ,
then the pair

(
(g, n; ν1, . . . , νn), (g′, n′)

)
is among the entries of Table C:

signature (g, n; ν1, . . . , νn) of Γ type (g′, n′) of Γ′

(0, 8; 2, . . . , 2︸ ︷︷ ︸
m

,∞, . . . ,∞︸ ︷︷ ︸
8−m

) , m = 3, 6 , (3, 0)

(0, 7; 2, . . . , 2︸ ︷︷ ︸
m

,∞, . . . ,∞︸ ︷︷ ︸
7−m

) , m = 2, 4, 6 , (2, 2)

(0, 6; 2, . . . , 2︸ ︷︷ ︸
m

,∞, . . . ,∞︸ ︷︷ ︸
6−m

) , m = 1, 2, 3, 4, 6 , (2, 1)

(0, 6; 2, . . . , 2︸ ︷︷ ︸
m

,∞, . . . ,∞︸ ︷︷ ︸
6−m

) , m = 3, 4 , (1, 4)

(0, 5; 2, . . . , 2︸ ︷︷ ︸
m

,∞, . . . ,∞︸ ︷︷ ︸
5−m

) , m = 2, 4 , (1, 3)

(0, 4; 2, . . . , 2︸ ︷︷ ︸
m

,∞, . . . ,∞︸ ︷︷ ︸
4−m

) , m = 2, 3 , (1, 2) or (0, 5)

(0, 3; ν1, ν2, ν3) , ν1, ν2, ν3 ∈ {2, 3, · · ·} ∪ {∞} with 1/ν1 + 1/ν2 + 1/ν3 < 1 (1, 1) or (0, 4)

Table C
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An interesting consequence is:

Theorem 3. Let Γ be a finitely generated Fuchsian group of the first kind
of type (g, n) . Then the Bers fiber space F (Γ) is isomorphic to the Teichmüller
space T (g, n+ 1) if and only if one of the following conditions is satisfied:
(i) Γ is of type (0, 3) .
(ii) The signature of Γ is either (0, 4; 2, 2, 2,∞) , or (0, 4; 2, 2,∞,∞) .
(iii) Γ is torsion free.

Idea of proof of Theorem 2. To describe what we intend to do in this paper,
we need to review the method in [9] that was used to prove Theorem 1. The group
Γ is considered a group of holomorphic automorphisms of F (Γ). Assume that the
pair

(
(g, n), (g′, n′)

)
does not lie in Table A, where (g, n) and (g′, n′) are the types

of Γ and Γ′ , respectively. Then a cyclic subgroup G of Γ (with prime order) can
be chosen so that G acts on F (Γ) as a group of holomorphic automorphisms, but
G cannot act on T (Γ′) as a group of holomorphic automorphisms. In addition,
G acts trivially on the image of the holomorphic section of π: F (Γ) → T (Γ)
corresponding to the elliptic generator of G .
Our method is different from the above. We construct a cyclic group G ′ (with

prime order, too) of holomorphic automorphisms of F (Γ) satisfying the condition
that G ′ is not a subgroup of Γ, but it is still fiber-preserving and leaves invariant
the image of a special holomorphic section of π: F (Γ)→ T (Γ). This construction
depends essentially on the signature of Γ. We will check that if the signature
(g, n; ν1, . . . , νn) is in Table B but not in Table C and not (0, 6; 2, 2, 2, 2, 2,∞), then
G ′ cannot act as holomorphic automorphisms on the corresponding Teichmüller
space.
The above method must fail in handling the case that (g, n; ν1, . . . , νn) =

(0, 6; 2, 2, 2, 2, 2,∞) and (g′, n′) = (2, 1). To see this, we note that every peri-
odic authomorphism on F (0, 6; 2, 2, 2, 2, 2,∞) that we can construct, also acts
on F (0, 6; 2, 2, 2, 2, 2, 2), and all periodic automorphisms on F (0, 6; 2, 2, 2, 2, 2, 2)
act on T (2, 1) as well, by (1.3). We need to develop a new method. By us-
ing a construction of periodic self-maps of Ĉ = C ∪ {∞} (see Magnus [15]), we
prove that any two components of the hyperelliptic locus in T (2, 1) are modular
equivalent. Then we observe that the Teichmüller modular group Mod (2, 1) can
be identified with the modular group mod (2, 0). Note also that mod (2, 0) acts
fiber-preservingly on F (2, 0; ) ∼= F (0, 6; 2, 2, 2, 2, 2, 2), which leads to the argu-
ment that there is a parabolic automorphism which acts on F (0, 6; 2, 2, 2, 2, 2,∞)
but does not act on T (2, 1) as a parabolic transformation. This contradicts a
theorem of Royden [19] which states that the Techmüller metric coincides with
the Kobayashi metric in any finite dimensional Teichmüller space.

This paper is organized as follows. Section 2 is a background of Teichmüller
space theory. Some known results are reviewed. In Section 3, we reprove Theo-



358 Chaohui Zhang

rem 1. In Section 4, we construct certain useful automorphisms on special orb-
ifolds. These automorphisms are used in Section 5 to construct holomorphic au-
tomorphisms of various Bers fiber spaces which have some nice properties. In
Section 6, we study certain elliptic modular transformations of Teichmüller spaces
of low dimensions. Section 7 is devoted to the proofs of Theorem 3 and most cases
of Theorem 2. In Section 8, we introduce a new method to investigate the Bers
fiber space F (Γ) for Γ of type (0, 6), and complete the proof of Theorem 2. The
appendix is devoted to the proof of a topological fact that any two components of
hyperelliptic locus in the Teichmüller space T (2, 1) are modular equivalent. The
method is similar to [16].

Acknowledgment. I am grateful to Professor Irwin Kra for suggesting his
conjecture, criticizing this paper, and for all of his help.

2. The Teichmüller and Bers fiber spaces

In this section we review some basic definitions and fundamental results in
Teichmüller theory. We are mainly concerned with the Bers fiber space for a group
with torsion. For more background on this material, see Bers [5], Earle–Kra [9],
[10] and Kra [12].
Let Γ be a finitely generated Fuchsian group of the first kind acting on the

upper half plane U . Assume that the orbifold U/Γ is of the type (g, n). Let
M(Γ) denote the space of Beltrami coefficients for Γ; that is, M(Γ) consists of
all measurable functions µ on U satisfying
(i) (µ ◦ γ) · γ′/γ′ = µ , for all γ ∈ Γ, and
(ii) ‖µ‖∞ = ess sup {|µ(z)| : z ∈ U} < 1.

Two elements µ , µ′ ∈ M(Γ) are equivalent (write µ ∼ µ′ ) if wµ = wµ
′
on

R̂ = ∂U , where wµ is the unique quasiconformal self-map of Ĉ = C ∪ {∞}
which fixes 0, 1, ∞ , is conformal on the lower half plane L , and satisfies the
Beltrami equation wz̄ = µwz on U (see Ahlfors–Bers [3]). Note that the theorem
of Ahlfors–Bers also implies that for a fixed z ∈ C , µ �→ wµ(z) is a holomorphic
function on M(Γ). The Teichmüller space T (Γ) is the space of equivalence classes
[µ] for µ ∈ M(Γ). An important theorem of Ahlfors [2] (see also Bers [4]) asserts
that T (g, n) is a complex manifold of dimension 3g − 3 + n .
Let Q(Γ) denote the group of quasiconformal self-maps w of U with wΓw−1 a

Fuchsian group. The Teichmüller distance between two points [µ] and [µ′] ∈ T (Γ)
is defined by

〈[µ], [µ′]〉 = 1
2 log infK(w),

where w runs over those quasiconformal self-maps w′ in Q(Γ) for which w′ agrees
with wµ◦(wµ′)−1 on R and K(w) is the maximal dilatation of w . It is well known
that

(
T (Γ), 〈 , 〉) is a complete metric space.
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Since T (Γ) is a complex manifold, the Kobayashi pseudo-metric on T (Γ) can
be defined as the largest pseudo-metric d so that

d
(
f(z1), f(z2)

)
≤ �U (z1, z2),

for all holomorphic maps f of U into T (Γ) and for all z1 , z2 ∈ U , where �U
is the Poincaré metric (with constant negative curvature −1) on U . A theorem
of Royden [19] asserts that the Kobayashi metric on T (Γ) coincides with the
Teichmüller metric.
It is well known that as a complex manifold T (Γ) depends only on the type of

Γ (see Bers–Greenberg [7]). We usually denote by T (g, n) the Teichmüller space
T (Γ) for Γ of type (g, n).
For a moment, let Γ be of signature (2, 0; ). Then U/Γ admits a hyperel-

liptic involution j which leaves precisely 6 points (which are called Weierstrass
points) fixed. Lifting j to U , we obtain a j̃ ∈ PSL (2,R) such that j̃ and
Γ generate a Fuchsian group Γ0 . It is clear that Γ is the normal subgroup
of Γ0 with index 2 and the signature of Γ0 is (0, 6; 2, . . . , 2). Note also that
dim T (Γ0) = dimT (Γ) = 3. This implies that T (Γ0) ∼= T (Γ). Similar phenomena
occur when Γ is of signature (1, 2;∞,∞) or (1, 1;∞). We thus obtain

(2.1) T (0, 6) ∼= T (2, 0), T (0, 5) ∼= T (1, 2), T (0, 4) ∼= T (1, 1).

A natural question arises as to whether or not there are any other isomorphisms
between Teichmüller spaces. This question is answered by a theorem of Patter-
son [18] which states that (2.1) exhausts all isomorphisms between Teichmüller
spaces with distinct types.
An automorphism θ of Γ is called geometric if there is a w ∈ Q(Γ) such that

θ(γ) = w ◦ γ ◦ (w)−1 , for all γ ∈ Γ. Let w′ ∈ Q(Γ). Then w′ ◦ γ ◦ (w′)−1 = w ◦ γ ◦
(w)−1 , for all γ ∈ Γ if and only if w|R = w′|R . The Teichmüller modular group
Mod Γ is defined as the group of geometric automorphisms (denoted by mod Γ)
modulo the normal subgroup of inner automorphisms. The action of χ ∈ ModΓ
on T (Γ) is defined as follows: let χ be the image of θ under the quotient map
q: modΓ→ ModΓ, and let w ∈ Q(Γ) be chosen so that θ(γ) = w ◦ γ ◦ (w)−1 , for
all γ ∈ Γ. For every µ ∈ M(Γ), the Beltrami coefficient µ′ of the map wµ ◦ w−1

is given by the formula:

(2.2) µ′(z) =
ν(z) + (µ ◦w−1)(z) · (∂w−1/∂z)/(∂w−1/∂z)
1 + ν̄(z) · (µ ◦ w−1)(z) · (∂w−1/∂z)/(∂w−1/∂z)

,

where ν is the Beltrami coefficient of w−1 . It is easy to check that µ′ belongs to
M(Γ) and [µ′] ∈ T (Γ) depends on χ but not on θ and w . Hence, (2.2) induces
an action of χ on T (Γ) as a holomorphic automorphism. We see that the group
Mod Γ acts on T (Γ) as a group of holomorphic automorphisms.
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Let Mod (g, n) denote the Teichmüller modular group Mod Γ for a torsion free
Fuchsian group Γ of type (g, n), and let Mod (g, n; ν1 · · · νn) denote Mod Γ for Γ
of signature (g, n; ν1 · · · νn). Royden’s theorem [19] and its generalization, due to
Earle–Kra [9], assert that the full group of holomorphic automorphisms of T (g, n)
is isomorphic to Mod (g, n) except when (g, n) = (0, 3), (0, 4), (1, 1), (1, 2) or (2, 0);
for any one of these special cases, the action of Mod (g, n) on T (g, n) is not faithful,
by which we mean that distinct elements of Mod (g, n) do not necessarily induce
distinct holomorphic automorphisms of T (g, n). Let Aut T (g, n) denote the group
of holomorphic automorphisms of T (g, n). Precisely, we have

(2.3)

AutT (2, 0) ∼= Mod (2, 0)/Z2
∼= Mod (0, 6; 2, 2, 2, 2, 2, 2) ∼= Mod (0, 6),

AutT (1, 2) ∼= Mod (1, 2)/Z2
∼= Mod (0, 5; 2, 2, 2, 2,∞) � Mod (0, 5),

AutT (1, 1) ∼= Aut T (0, 4) ∼= PSL (2,R),
AutT (0, 3) = {id},

where Z2 stands for the subgroup of Mod (2, 0) (respectively Mod (1, 2)) deter-
mined by the hyperelliptic involution on a surface of type (2, 0) (respectively a
surface of type (1, 2)).
In [6] Bers introduced a classification for elements χ of the Teichmüller mod-

ular group Mod Γ for a torsion free group Γ of type (g, n), 3g − 3 + n > 0.
Let

a(χ) = inf
τ∈T (Γ)

〈τ, χ(τ )〉,

where 〈 , 〉 is the Teichmüller metric. χ is called elliptic if it has a fixed point
in T (Γ); parabolic if there is no fixed point and a(χ) = 0; hyperbolic if a(χ) > 0
and a(χ) is assumed; and pseudo-hyperbolic if a(χ) > 0 and a(χ) is not as-
sumed.
The element χ is induced by a self-map f of a surface S of type (g, n). The

isotopy class of a self-map f of S can be topologically classified as follows (see
Thurston [20]). A (non-empty) finite set of simple curves c = {c1, . . . , cr} , r ≥ 1,
is called admissible if ci is not homotopic to a point, a puncture, or some cj , for
j 
= i . f is called a reduced map if it keeps c invariant. f is reducible if it is isotopic
to a reduced map. f is irreducible if it is not reducible. A theorem of Bers [6]
states that an element χ ∈ ModΓ is elliptic if and only if f is isotopic to a periodic
map; if f is not isotopic to a periodic map, then χ ∈ ModΓ is hyperbolic if and
only if f is an irreducible map. A reducible non-periodic self-map f corresponds
to either parabolic or pseudo-hyperbolic element χ . More precisely, let f be a
reduced non-periodic self-map which induces a parabolic element χ , then there
exists an n ∈ Z+ such that fn restricts to id on all parts S − {N(c)} , where
N(c) is an arbitrarily small neighborhood of c .
The Bers fiber space over T (Γ), denoted by F (Γ), is a subset of T (Γ) × C

consisting of pairs ([µ], z), where µ ∈ M(Γ), and z ∈ wµ(U). Let π: F (Γ)→ T (Γ)
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denote the natural (holomorphic) projection onto the first factor. By definition,
the fiber of π over a point [µ] ∈ T (Γ) is the quasidisk wµ(U) which depends only
on the equivalence class of µ . F (Γ) is an open connected and simply connected
subset of C3g−2+n . As mentioned in the introduction, F (Γ) depends on the
signature of Γ. Let F (g, n; ν1, . . . , νn) denote the Bers fiber space F (Γ) for Γ of
signature (g, n; ν1, . . . , νn).

Examples (Dependence of Bers fiber spaces on the signatures of their groups).
If the signature (g, n; ν1, . . . , νn) of Γ has the property that 2 < νi < ∞ for
some i , i ∈ {1, . . . , n} , then Theorem 1 asserts that F (g, n; ν1, . . . , νn) cannot
be isomorphic to any Teichmüller space. On the other hand, (1.1) states that
F (g, n;∞, . . . ,∞) is isomorphic to T (g, n + 1). Hence, F (g, n; ν1, . . . , νn) is not
isomorphic to F (g, n;∞, . . . ,∞) if 2 < νi < ∞ for some i ∈ {1, 2, . . . , n} .
Another example is given implicitly by Theorems 1 and 2. From (1.5) we have

F (0, 4; 2, 2,∞,∞) ∼= F (0, 4; 2, 2, 2,∞) ∼= F (0, 4;∞,∞,∞,∞) ∼= T (0, 5) ∼= T (1, 2).
Theorem 2 asserts that F (0, 4; 2,∞,∞,∞) is not isomorphic to T (0, 5) ∼= T (1, 2).
By Theorem 1, we know that when Γ is of type (0, 4) or (1, 1), T (0, 5) and T (1, 2)
are the only two possible Teichmüller spaces to which F (Γ) could be isomorphic.
We conclude that F (0, 4; 2,∞,∞,∞) is isomorphic to neither F (0, 4; 2, 2,∞,∞)
nor F (0, 4; 2, 2, 2,∞), while F (0, 4; 2, 2,∞,∞) and F (0, 4; 2, 2, 2,∞) are isomor-
phic to each other. This example shows that two Bers fiber spaces F (Γ) and F (Γ′)
may or may not be isomorphic to each other even if Γ and Γ′ have the same type,
both contain only elliptic elements of the same order, but their signatures are
distinct.
The modular group mod Γ is defined as the group of geometric automorphisms

of Γ. An element θ ∈ modΓ acts biholomorphically on F (Γ) as follows: let θ be
represented by w ∈ Q(Γ), then

(2.4) θ([µ], z) = ([ν], ẑ),

where ν is the Beltrami coefficient of the map wµ◦w−1 , and ẑ = wν◦w◦(wµ)−1(z).
By Theorem 6 of Bers [5], the action of mod Γ on F (Γ) is effective, by which we
mean that there is an x ∈ F (Γ) with θ(x) 
= x whenever θ ∈ modΓ is non-trivial.
We usually identify the group mod Γ with its action on F (Γ).
Since Γ is centerless, Γ is isomorphic to the group of inner automorphisms

of Γ by associating to each δ ∈ Γ the automorphism γ �→ δ ◦ γ ◦ δ−1 ; namely, Γ
acts by conjugation as automorphisms of Γ. Thus Γ is isomorphic to a normal
subgroup of mod Γ which we denote by Γ also. Γ, as a subgroup of mod Γ, now
also acts on F (Γ) as a group of holomorphic automorphisms. The action of γ ∈ Γ
on F (Γ) is given by

(2.5) γ([µ], z) =
(
[µ], γµ(z)

)
=

(
[µ], wµ ◦ γ ◦ (wµ)−1(z)

)
for all z ∈ wµ(U).

By definition, the Teichmüller modular group Mod Γ is the factor group
modΓ/Γ. If θ ∈ modΓ, and χ is the image of θ in Mod Γ via the natural quotient
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homomorphism q: modΓ → ModΓ, then the following diagram is commutative:

F (Γ)

π

��

θ �� F (Γ)

π

��
T (Γ)

χ �� T (Γ).

Note that the action of θ ∈ modΓ on F (Γ) is biholomorphic, fiber-preserving,
and effective. Moreover, every element of Γ can be viewed as a holomorphic
automorphism of F (Γ) which leaves invariant each fiber of π: F (Γ)→ T (Γ).
Let e ∈ Γ be an elliptic element, and let z0 denote the fixed point of e

in U . For any [µ] ∈ T (Γ), there is only one fixed point zµ = wµ(z0) of eµ =
wµ◦e◦(wµ)−1 in the quasidisk wµ(U). This implies that the map s: T (Γ)→ F (Γ)
defined by sending [µ] ∈ T (Γ) to ([µ], zµ) ∈ F (Γ) is a section of π: F (Γ)→ T (Γ).
Since wµ depends holomorphically on µ ∈ M(Γ), the section s is a holomorphic
section. The image s

(
T (Γ)

)
under the map s is a complex manifold which is

embedded in F (Γ) and is isomorphic to T (Γ). The section defined by an elliptic
element of Γ is called a canonical section of π (see Earle–Kra [9]).

3. Proof of Theorem 1

The objective of this section is to give another proof of Theorem 1. The
information obtained from our argument is also useful in proving Theorem 2.
A Riemann surface S of type (g, n) with 2g − 2 + n > 0, n ≥ 1, is called

hyperelliptic if S admits a hyperelliptic involution. Here by a hyperelliptic involu-
tion on S we mean a conformal involution on S (hence on the compactification S)
which has 2g+2 fixed points on S , interchanges pairwise the n punctures if n is
even, and fixes one puncture and interchanges the other n− 1 punctures pairwise
if n is odd. The subset of a Teichmüller space consisting of hyperelliptic Riemann
surfaces is called the hyperelliptic locus. In general, the hyperelliptic locus is not
connected, but each component has the same dimension. The dimension of the
hyperelliptic locus is defined by the dimension of one of its components. We need

Proposition 3.1. Let Γ be a torsion free finitely generated Fuchsian group
of type (g, n) with 2g − 2 + n > 0 , and let χ ∈ ModΓ be an elliptic modular
transformation of prime order, with the property that the restriction of χ to a
non-empty component l of the hyperelliptic locus is id . Then χ is either id or a
hyperelliptic involution.

Proof. Suppose that χ ∈ ModΓ is non-trivial. Let T (g, n)χ = {x ∈ T (g, n) :
χ(x) = x} . By hypothesis, l ⊂ T (g, n)χ . It is well known that T (g, n)χ is again
a Teichmüller space of type (g∗, n∗) (see Kravetz [13], or Earle–Kra [10]), where
g∗ and n∗ are defined as follows. Let χ be induced by a conformal self-map h
on a Riemann surface S of type (g, n) (Nielsen’s theorem [17] asserts that such
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an S exists), g∗ is the genus of the surface S/〈h〉 , and n∗ is the number of the
distinguished points (including punctures) on S/〈h〉 . Since we assume that l is
a non-empty component of the hyperelliptic locus, Lemma 1 of Patterson [18]
implies that

(3.1) dim l = 2g − 1 +
[
1
2n

]
,

where [x] denote the largest integer less than or equal to x . Let k denote the
number of fixed points of h on the compactification S of S , and let m be the
number of the punctures fixed by h . Since h defines a branched covering S →
S/〈h〉 , the Riemann–Hurwitz formula (see for example, Theorem I.2.7 of Farkas–
Kra [11]) shows that

(3.2) 2g − 2 = ord (h) · (2g∗ − 2) +B,

where B is the total branch number. The number of fixed points of a conformal
automorphism on S is at most 2g + 2. By definition, there are n−m punctures
on S which are not fixed by h . Since the order of h is ≥ 2, the number of orbits
of these n− m points under h is at most 1

2 (n −m). Note that any one of these
orbits projects to a distinguished point on S/〈h〉 . We thus obtain

(3.3) n∗ ≤ k + 1
2 (n−m).

Our claim is g∗ = 0. Suppose that g∗ ≥ 1. There are three possibilities to
consider.
Case I. g = 0. The left-hand side of (3.2) is negative, while the right-hand

side is positive (since g∗ ≥ 1, by hypothesis). We see that this case cannot occur.
Case II. g ≥ 2. Since ord (h) ≥ 2, and k ≤ B , from (3.2), we obtain

2g − 2 = ord (h) · (2g∗ − 2) +B ≥ 2(2g∗ − 2) + k,

or

(3.4) g∗ ≤ 1
2g +

1
2 − 1

4k.

Since h is not a hyperelliptic involution (otherwise g∗ = 0), by Corollary 2 to V.1.5
and Proposition III.7.11 of Farkas–Kra [11], we see that k ≤ 4 if S is hyperelliptic,
and k ≤ 2g − 1 otherwise. Since g ≥ 2, we have

(3.5) k ≤ 2g.

Now from (3.1), (3.3), (3.4), and (3.5), we obtain

(3.6)

2g − 1 +
[

1
2
n
]
= dim l ≤ dimT (g∗, n∗) = 3g∗ − 3 + n∗

≤ 3
(

1
2g +

1
2 − 1

4k
)
− 3 + k + 1

2 (n−m) ≤ 2g − 3
2 +

1
2n

=
{
2g − 3

2 +
[
1
2n

]
, if n is even;

2g − 3
2 +

[
1
2n

]
+ 1

2 , if n is odd.
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So (3.6) is a contradiction if n is even. If n is odd, we claim that either ord (h)
is not 2, or m > 0. Otherwise, these n points produce 1

2n orbits, contradicting
that n is odd. We see that (3.6) is also impossible when n is odd. It follows that
(3.6) cannot hold in any case.
Case III. g = 1. In this case, from (3.2) and the hypothesis that g∗ ≥ 1, we

see that g∗ = 1, B = k = m = 0, and n∗ ≤ 1
2n . A similar computation as (3.6)

shows that
1 +

[
1
2n

]
≤ 3g∗ − 3 + n∗ ≤ 1

2n.

But this is impossible. In summary, we conclude that the case of g∗ ≥ 1 cannot
occur.
Next, we consider the case of g∗ = 0. From (3.3), we have

(3.7)
2g − 1 +

[
1
2
n
]
= dim l ≤ −3 + k + 1

2
(n −m)

≤ −3 + 2g + 2 + 1
2(n −m) = 2g − 1 + 1

2 (n−m).

If n is even, then
[

1
2
n
]
= 1

2
n . (3.7) cannot hold unless m = 0 and all equalities

in (3.7) hold. It follows that k = 2g + 2 and that h is a hyperelliptic involution.
If n is odd, then m ≤ 1. We claim that m is not zero. Suppose for the contrary
that m = 0. Then n cannot be one, and we must have n ≥ 3. From (3.7) once
again, we have ord (h) = 2. Observe that

n = m1 + 2m2,

where mi is the number of orbits of the punctures with period i . Note also that
m1 = m . We conclude that m = 1 if n is odd, and zero if n is even. It follows
from the definition that h is a hyperelliptic involution. This completes the proof.

As an easy consequence, we obtain

Corollary 3.2. A modular transformation χ of T (Γ) is id if its restriction
to a subspace with dimension greater than the dimension of the hyperelliptic locus
is id .

Proof. χ must be an elliptic modular transformation. Let a = bp be the order
of χ , where p is a prime number. By the same computation as in Proposition 3.1,
we conclude that χb is id, which occurs only if χ is id , as claimed.

Now we are able to prove Theorem 1. Let Γ, Γ′ be finitely generated Fuchsian
groups of the first kind. Assume that Γ contains at least one elliptic element and
is of type (g, n), and that Γ′ is torsion free with type (g′, n′). We need two simple
lemmas.

Lemma 3.3. Assume that (g′, n′) is not (0, 5) , (1, 3) , (0, 6) , (1, 4) , (2, 1) ,
(2, 2) , or (3, 0) . Then the codimension of the hyperelliptic locus of T (Γ′) is not
one, and the codimension of the hyperelliptic locus of T (Γ′) is zero if and only if
(g′, n′) is (0, 3) , (0, 4) , (1, 1) , (1, 2) , or (2, 0) .
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Proof. Suppose that the codimension of the hyperelliptic locus is one. The
dimension of the hyperelliptic locus can be computed; it is 2g′ − 1 +

[
1
2n

′] . By
assumption, we have

2g′ − 1 +
[

1
2n

′]+ 1 = 3g′ − 3 + n′,

which says that (g′, n′) = (0, 5), (1, 3), (0, 6), (1, 4), (2, 1), (2, 2), or (3, 0), contra-
dicting our hypothesis. The second statement is true because there is a non-trivial
modular transformation with order 2 which acts trivially on the Teichmüller space
T (g′, n′) when (g′, n′) = (0, 3), (0, 4), (1, 1), (1, 2) or (2, 0). See (2.3).

Lemma 3.4. Assume that (g′, n′) = (0, 5) , (1, 3) , (0, 6) , (1, 4) , (2, 1) , (2, 2)
or (3, 0) , and that there is an isomorphism ϕ: F (Γ) → T (Γ′) . Then the pair of
types

(
(g, n), (g′, n′)

)
is among the entries of the following table:

((0, 4), (0, 5)) ((1, 1), (0, 5)) ((0, 5), (1, 3)) ((0, 5), (0, 6))
((1, 2), (1, 3)) ((1, 2), (0, 6)) ((0, 6), (1, 4)) ((0, 6), (2, 1))
((0, 7), (2, 2)) ((0, 8), (3, 0))

Table D

Proof. The Teichmüller space T (Γ) is biholomorphically equivalent to the
image of a canonical section which has codimension one in the fiber space F (Γ).
We thus have

dimT (Γ) = dimF (Γ)− 1 = dimT (Γ′)− 1.
That is,

3g − 3 + n = 3g′ − 4 + n′.

The assertion then follows by solving this equation.

Remark. Table D constitutes a core part of Table A in the introduction.
Table A can be easily obtained by adding relations (2.1) into Table D.

Proof of Theorem 1. Suppose that there is an isomorphism ϕ: F (Γ)→ T (Γ′),
and that the pair

(
(g, n), (g′, n′)

)
does not belong to the entries of Table A in

the introduction. In particular,
(
(g, n), (g′, n′)

)
does not belong to the entries

of Table D. By Lemma 3.4, (g′, n′) is not of (0, 5), (1, 3), (0, 6), (1, 4), (2, 1), (2, 2),
or (3, 0). Since Γ has torsion, we can choose an elliptic element γ ∈ Γ with
prime order. The image of holomorphic section s of π: F (Γ) → T (Γ), which is
determined by the fixed point of γ in U , is equivalent to T (Γ). It is obvious that
ϕ ◦ s

(
T (Γ)

)
has codimension one in T (Γ′). On the other hand, Lemma 3.3 says

that the codimension of a component of the hyperelliptic locus of T (Γ′) is at least
of codimension two. We conclude that

dimϕ ◦ s
(
T (Γ)

)
> dim{hyperelliptic locus of T (Γ′)}.
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Now γ ∈ modΓ fixes s
(
T (Γ)

)
pointwise, which implies that γ′ = ϕ ◦ γ ◦ ϕ−1 ∈

ModΓ′ fixes ϕ ◦ s
(
T (Γ)

)
pointwise as well. It follows from Corollary 3.2 that γ′

is id . This leads to a contradiction.
Also, from the proof of Proposition 3.1, we can deduce that every elliptic

element of Γ must be of order 2n for some positive integer n if an isomorphism
of F (Γ) onto T (Γ′) exists. Now the second part of Theorem 1 follows from the
fact that any non-trivial modular transformation of T (Γ′) which acts trivially on
another Teichmüller space T (Γ′′) (∼= a component of the hyperelliptic locus in
T (Γ′)) must be of order 2. Details are omitted.

We proceed to investigate the cases when the pair of types
(
(g, n), (g′, n′)

)
lie

in Table A. Obviously, the argument of this section fails to derive a contradiction.
As a matter of fact, if we denote by s: T (Γ) → F (Γ) the canonical section which
is determined by the fixed point of an elliptic element e ∈ Γ, we have

Lemma 3.5. Assume that Γ is not of type (0, 3) and that there is an
isomorphism ϕ: F (Γ) → T (Γ′) for a torsion free Fuchsian group Γ′ . Assume
also that

(
(g, n), (g′, n′)

)
lies in Table D. Then ϕ ◦ s

(
T (Γ)

)
is a component of the

hyperelliptic locus in T (Γ′); that is, any marked Riemann surface S ′ ∈ ϕ◦s
(
T (Γ)

)
admits a hyperelliptic involution j ′ determined by J ′ = ϕ ◦ e ◦ ϕ−1 .

Proof. We only prove the case that Γ is of type (0, 6). Other cases can be
handled similarly. By Royden’s theorem [19], [9], J ′ = ϕ ◦ e ◦ ϕ−1 is an elliptic
modular transformation of order 2. Next, by examining Table D, we see that Γ′

must be of type (2, 1) or (1, 4).
Case I. Γ′ is of type (2, 1). In this case, by Lemma 1 of Patterson [18], we

conclude that

(3.8) dimϕ ◦ s
(
T (Γ)

)
≤ 2g′ − 1 +

[
1
2n

′] = 3.
Since s

(
T (Γ)

)
⊂ F (Γ) is equivalent to T (Γ), from (3.8), we obtain

3 = dimT (Γ) = dimϕ ◦ s
(
T (Γ)

)
≤ 3.

We thus have equality in the above inequality. In particular, we have

(3.9) dimϕ ◦ s
(
T (Γ)

)
= 2g′ − 1 +

[
1
2n

′] = 3.
From (3.9) and the second part of Lemma 1 of Patterson [18], we conclude that
J ′ = ϕ ◦ e ◦ ϕ−1 ∈ Mod(2, 1) is induced by a hyperelliptic involution j ′ of a
hyperelliptic Riemann surface of type (2, 1), which in turn implies that ϕ◦s

(
T (Γ)

)
is a component of the hyperelliptic locus.
Case II. Γ′ is of type (1, 4). We use the same argument as above. Note that

(3.8) and (3.9) also hold in this case.

In order to extend Theorem 1 we need to introduce more delicate methods
which will allow us to construct new periodic holomorphic automorphisms of F (Γ).
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4. Periodic automorphisms of special orbifolds

The purpose of this section is to construct certain useful periodic automor-
phisms of some special orbifolds. In what follows, we use the term “self-map in
the sense of orbifolds” to denote a quasiconformal self-map of an orbifold which
carries regular points to regular points, punctures to punctures, and branch points
to branch points of the same order.
Let Γ be a finitely generated Fuchsian group of the first kind with signature

sig = (g, n; ν1, . . . , νn). Assume that Γ contains at least one elliptic element.

Lemma 4.1. In each of the following cases, we may choose a self-map f (in
the sense of orbifolds) of U/Γ so that f fixes at least one branch point of U/Γ
and there is an integer α with fα isotopic to id on U/Γ − {all branch points} ,
where

(1) α = 3 when sig = (0, 8; 2, . . . , 2︸ ︷︷ ︸
m

,∞, . . . ,∞︸ ︷︷ ︸
8−m

) , m = 1, 2, 4, 5, 7, 8 ,

(2) α = 2 when sig = (0, 7; 2, . . . , 2︸ ︷︷ ︸
m

,∞, . . . ,∞︸ ︷︷ ︸
7−m

) , m = 1, 3, 5, 7 ,

(3) α = 4 when sig = (0, 6; 2, . . . , 2︸ ︷︷ ︸
m

,∞, . . . ,∞︸ ︷︷ ︸
6−m

) , m = 1, 2, 5 ,

(4) either α = 4 or α = 3 when sig = (0, 5; 2,∞, . . . ,∞) or (0, 5; 2, . . . , 2) ,
(5) α = 3 when sig = (0, 5; 2, 2,∞,∞,∞) ,
(6) α = 2 when sig = (0, 5; 2, 2, 2,∞,∞) , and
(7) α = 3 when sig = (0, 4; 2,∞,∞,∞) .

Proof. Take the standard unit sphere

S2 = {(x, y, z) | x2 + y2 + z2 = 1}

in R3 . Let A be the rotation around z -axis with rotation angle β . Then A leaves
invariant the circle Σ = {(x, y, 0) | x2 + y2 = 1} .
Let xi , i = 1, . . . , n , be distinguished points on S2 (see Figure 1). Each xi

is either a puncture or a branch point of order 2. Let x1 be the point (0, 0, 1).
All distinguished points xi which lie in Σ must divide Σ into equal pieces. The
following table provides various special orbifolds as well as certain periodic auto-
morphisms of the orbifolds. Set νi = 2 if the distinguished point xi is a branch
point; and νi = ∞ if xi is a puncture. The special orbifolds so obtained are
denoted by S .
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m The orbifold S of type (0, 8) : Figure 1(a) β f α

1 ν1 = 2; νj =∞ , j = 2, . . . , 8 . 2π/6 A2 3
2 νi = 2, i = 1, 2 ; νj =∞ , j = 3, . . . , 8 . 2π/6 A2 3
4 νi = 2, i = 1, 3, 5, 7 ; νj =∞ , j = 2, 4, 6, 8 . 2π/6 A2 3
5 νi = 2, i = 1, 2, 3, 5, 7 ; νj =∞ , j = 4, 6, 8 . 2π/6 A2 3
7 νi = 2, i = 1, 3, 4, 5, 6, 7, 8; ν2 =∞ . 2π/6 A2 3
8 νi = 2, i = 1, . . . , 8 . 2π/6 A2 3

m The orbifold S of type (0, 7) : Figure 1(b) β f α

1 ν1 = 2; νj =∞ , j = 2, . . . , 7 . 2π/6 A3 2
3 νi = 2, i = 1, 2, 5 ; νj =∞ , j = 3, 4, 6, 7 . 2π/6 A3 2
5 νi = 2, i = 1, 2, 3, 5, 6 ; νj =∞ , j = 4, 7 . 2π/6 A3 2
7 νi = 2, i = 1, . . . , 7 . 2π/6 A3 2

m The orbifold S of type (0, 6) : Figure 1(c) β f α

1 ν1 = 2; νj =∞ , j = 2, . . . , 6 . 2π/4 A 4
2 νi = 2, i = 1, 2 ; νj =∞ , j = 3, 4, 5, 6 . 2π/4 A 4
5 νi = 2, i = 1, 3, 4, 5, 6 ; ν2 =∞ . 2π/4 A 4

m The orbifold S of type (0, 5) : Figure 1(d) or Figure 1(e) β f α

1 ν1 = 2; νj =∞ , j = 2, . . . , 5 . (Figure 1(d)) 2π/4 A 4
1 ν1 = 2; νj =∞ , j = 2, . . . , 5 . (Figure 1(e)) 2π/3 A 3
2 νi = 2, i = 1, 2 ; νj =∞ , j = 3, 4, 5 . (Figure 1(e)) 2π/3 A 3
3 νi = 2, i = 1, 3, 5 ; νj =∞ , j = 2, 4 . (Figure 1(d)) 2π/4 A2 2
5 νi = 2, i = 1, . . . , 5 . (Figure 1(d)) 2π/4 A 4
5 νi = 2, i = 1, . . . , 5 . (Figure 1(e)) 2π/3 A 3

m The orbifold S of type (0, 4) : Figure 1(f) β f α

1 ν1 = 2; νj =∞ , j = 2, 3, 4 . 2π/3 A 3

Notice that in each case f is a conformal self-map (Möbius transformation)
of S in the sense of orbifolds. Suppose that Γ is a Fuchsian group whose signature
is in (1)–(7) of the lemma. Then there is an orbifold S , chosen from the above
table, so that a quasiconformal map h (in the sense of orbifolds) of S onto U/Γ
is defined. It is obvious that the map h ◦ f ◦ h−1 is the required quasiconformal
self-map of U/Γ.

Consider now an orbifold S of signature (1, 1; 2). By removing the branch
point, one obtains a punctured torus S0 which can then be represented as C/Gτ−
{0} , where Gτ = 〈B1, Bτ 〉 is the group generated by translations B1: z �→ z + 1
and Bτ : z �→ z + τ , for some τ ∈ U . A fundamental region for Gτ is shown in
Figure 2(A), where the origin projects to the puncture. Consider the involution
j: z �→ −z . A computation shows that

(4.1) j ◦ C(z) = C−1 ◦ j(z) for any C ∈ Gτ .
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This means that j can be projected to a hyperelliptic involution of S0 . Hence,
a hyperelliptic involution (call it j also) on S is defined. Note that S/〈j〉 is an
orbifold of signature (0, 4; 2, 2, 2, 4).

Lemma 4.2. A similar assertion as in Lemma 4.1 is true if Γ is of signature
(1, 1; 2) ; that is, there exists a self-map f of U/Γ so that f3 is isotopic to id on
the corresponding punctured torus.

Proof. A Fuchsian group Γ0 of signature (0, 4; 2, 2, 2, 4) can be chosen so that
U/Γ0 is the orbifold drawn in Figure 1(f), where x1 is a branch point of order 4,
and x2, x3, x4 are branch points of order 2. There is a subgroup Γ ⊂ Γ0 of index 2.
Γ has signature (1, 1; 2) and the two-sheeted branched covering U/Γ → U/Γ0

is holomorphic. The self-map A described in Lemma 4.1(7) is in the sense of
orbifolds, and hence it can be lifted to a self-map f of U/Γ which fixes the branch
point (see Birman–Hilden [8]). Since A3 = id, f3 is either id or the hyperelliptic
involution j . If f3 = id, we are done; otherwise we take f0 = j ◦ f .
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Figure 1.

We need to introduce another method to discuss the case that Γ is of type
(1, 2). The method will also be used in Section 8.
Let ∆ = {z : |z| < 2} be parametrized by the polar coordinates (r, α). Define

σ̂: ∆→ ∆ as σ̂(r, α) = (r, α − rπ). Let xi , i = 1, 2, . . . , n , n ≥ 3, be n distinct
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points on Ĉ = C ∪ {∞} , and let τi , i = 1, . . . , n − 1, be embeddings of ∆ into
Ĉ with the properties that τi(∆) contains xi and xi+1 , but is disjoint from all
xj for j 
= i, i + 1. Suppose that τi(1, 0) = xi , and τi(1, π) = xi+1 . We obtain
self-maps σi on Ĉ defined by

(4.2) σi(x) =
{

x if x ∈Ĉ − τi(∆),
τi ◦ σ̂ ◦ τ−1

i (x) if x ∈ τi(∆).

(A) (B)

x̃

x

c1

c1

c1
c2

c2

c2

Figure 2.

Consider the following self-map of Ĉ:

(4.3) σ = σn−2 ◦ · · · ◦ σ1.

It is easily seen that σ fixes xn and realizes a permutation of the set {x1, . . . , xn} .
A theorem of Magnus [15] shows that, as a self-map of Ĉ− {x1, . . . , xn} , σ is
periodic and its order is n − 1 (up to isotopy). The isotopy I: Ĉ× [0, 1] → Ĉ
between σn−1 and id may be chosen so that I(xi, t) = xi , for 0 ≤ t ≤ 1 and
i = 1, . . . , n .
Let S be a hyperelliptic Riemann surface, and let j be the corresponding

hyperelliptic involution. Let ζ : S → S/〈j〉 denote the natural projection. j has
2g + 2 fixed points on S , which are Weierstrass points of S . We see that S/〈j〉 is
an orbifold with signature (0, 2g + 2; 2, . . . , 2). In what follows, S is always taken
as a symmetrically embedded surface (about x-axis) in R3 . In this setting, j
is a 180◦ rotation around x-axis. Choose a simple closed curve c on S that is
symmetric about the x-axis. It is obvious that
(i) j(c) = c ; and
(ii) j reverses the orientation of c .

The curve which has properties (i) and (ii) is called a canonical curve. A Dehn
twist hd about a simple closed curve d on a surface S is defined as follows. Let
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N(d) be an annular neighborhood of d parametrized by the polar coordinates
(r, θ), −1 ≤ r ≤ 1, and 0 ≤ θ ≤ 2π such that d is defined by r = 0. Then,
hd = id outside of N(d). For x = (r, θ) ∈ N(d), we have

hd(r, θ) =
{
(r, θ + 2πr), 0 ≤ r ≤ 1,
(r, θ), −1 ≤ r ≤ 0.

Obviously, the homotopy class of the map hd depends only on the free homotopy
class of the curve d . Thus, the modular transformation induced by hd depends
only on the free homotopy class of d . Another property of hd is that if f is a
self-map of S , then

(4.4) f ◦ hd ◦ f−1 = hf(d).

Let ci be a canonical curve on S which passes through the Weierstrass points
xi and xi+1 , and let hci be the Dehn twist about ci . Recall that σi is defined
by (4.2).

Lemma 4.3. The Dehn twist hci of S is isotopic to a self-map h′
ci
which

can be projected to a self-map σ′
i of S/〈j〉 in the sense of orbifolds. Furthermore,

σ′
i is isotopic to σi defined by (4.2).

Proof. See Birman–Hilden [8].

Lemma 4.4. The same assertion as in Lemma 4.1 remains true if Γ is of
signature (1, 2; 2, 2) or (1, 2; 2,∞) ; namely, there is a self-map f of U/Γ so that
it fixes a branch point and f4 is isotopic to id on the corresponding surface of
signature (1, 2;∞,∞) .

Proof. We only deal with the case that Γ is of signature (1, 2; 2,∞). The
other case can be handled similarly. Let S be an orbifold of signature (1, 2; 2,∞).
By removing the branch point, one obtains a surface S0 of signature (1, 2;∞,∞).
Let x1 and x2 denote the two punctures.
Let Gτ be as above. Consider the universal covering C of the torus S0 .

The preimages of the pair of punctures (x1 , x2) form two lattices. Let us denote
(x̃1, x̃2) one pair of preimages of (x1, x2). Any fundamental region for Gτ contains
exactly one pair of preimages of (x1, x2). By composing with an Euclidean motion
of C if necessary, one may assume that (x̃1, x̃2) are symmetric about the origin.
In this case a fundamental domain (parallelogram) D for Gτ can be chosen so that
D is symmetric with respect to the origin and one pair of sides of D is parallel to
the x-axis. See Figure 3(A).
Let c3 = D ∩ {x-axis} . Without loss of generality, we assume that x̃1 and

x̃2 are not in c3 . Otherwise we choose D ∩ {c̃3} as c3 , where c̃3 is drawn in Fig-
ure 3(A). Again, the map j: z �→ −z interchanges the two punctures x̃1 and x̃2 in
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D and satisfies (4.1). Hence, S0 admits a hyperelliptic involution j interchanging
the two punctures.
Observe that S0/〈j〉 is an orbifold of signature (0, 5; 2, . . . , 2,∞). S0 can

be drawn in Figure 3(B), where c′1 , c′2 , come from the boundary of D by “past-
ing procedure” and c′3 comes from c3 or c̃3 by identifying the endpoints (see
Figure 3(A)). One sees that j(c′i) = c′i , for i = 1, 2, 3.
Define f = hc′3 ◦ hc′2 ◦ hc′1 . By Lemma 4.3, f is isotopic to a lift of σ

(described in (4.3)). By Magnus’ result, σ4 is isotopic to id. So f4 is isotopic to
id or j . Obviously, f4 does not interchange the two punctures. It follows that f4

is isotopic to id on S0 . Clearly, f extends to a self-map of an orbifold of signature
(1, 2; 2,∞). This completes the proof of the lemma.

c1

c1

c2

c2

c1

c2

(A) (B)

c3

c3

c3

x1

x2

x2t

x1t

Figure 3.

5. Periodic automorphisms of Bers fiber spaces

Let Γ be a finitely generated Fuchsian group of the first kind which acts on
U and contains at least one elliptic element, and let f be a self-map of U/Γ in
the sense of orbifolds. Then f can be lifted to a quasiconformal self-map of U .
See Birman–Hilden [8] for an exposition.
The map f induces a modular transformation χf on T (Γ). Let s denote a

canonical section of π: F (Γ)→ T (Γ). Then s induces a map

s∗: ModΓ→ Aut s
(
T (Γ)

)
defined by the formula

s∗(χf )(x) = s ◦ χf ◦ π(x) for x ∈ s
(
T (Γ)

)
.

It is easy to check that s∗(χf ): s
(
T (Γ)

)
→ s

(
T (Γ)

)
is a holomorphic automor-

phism. Unfortunately, it is not true that for an arbitrary s and an arbitrary f ,
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s∗(χf ) can be extended holomorphically to the whole Bers fiber space. Our objec-
tive is to choose a specific self-map f of U/Γ and a specific canonical section s of
π: F (Γ) → T (Γ) so that the automorphism s∗(χf ) of s

(
T (Γ)

)
is the restriction

of a global holomorphic automorphism.
Let f be a self-map of U/Γ which fixes the branch point ẑ0 determined by

an elliptic element e of Γ, and let s be the canonical section of π: F (Γ) → T (Γ)
which is determined by the fixed point of e in U . Let s

(
T (Γ)

)s∗(χf ) denote the
set of all points in s

(
T (Γ)

)
which are fixed by s∗(χf ). Similarly, we denote by

F (Γ)χ the set of all points in F (Γ) which are fixed by an element χ ∈ modΓ. We
have

Lemma 5.1. (1) s∗(χf ) ∈ Aut s
(
T (Γ)

)
can be extended to an element χ of

mod Γ .
(2) 〈χ, e〉 is an abelian subgroup of mod Γ .
(3) F (Γ)χ = F (Γ)e◦χ = s

(
T (Γ)

)s∗(χf )
.

Proof. Lift f to a map f̂ on U so that f̂ fixes the fixed point z0 of e and
makes the following diagram commutative:

U
f̂ ��

p

��

U

p

��
U/Γ

f �� U/Γ.

Thus we have f̂ ◦ e ◦ f̂−1 = e . The equivalence class [f̂ ] of f̂ (that is, all
f̂ ∈ Q(Γ) which lie in the normalizer of Γ with the property that f̂ |R = f̂ ′|R )
is an element of mod Γ. Let χ = [f̂ ] . We claim that χ is an extension of
s∗(χf ): s

(
T (Γ)

)
→ s

(
T (Γ)

)
. To see this, first we note that

χf ([µ]) = [Beltrami coefficient of (wµ ◦ f̂−1)]

for [µ] ∈ T (Γ). We see that the diagram

(5.1)

F (Γ)
χ ��

π

��

F (Γ)

π

��
T (Γ)

χf �� T (Γ)

commutes. Let [ν] = χf ([µ]) . The diagram (5.1) shows that χ maps the fiber
wµ(U) over [µ] to the fiber wν(U) over [ν] . In particular, χ maps the fiber that
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the point s([µ]) ∈ s
(
T (Γ)

)
lies in to the fiber that the point s([ν]) ∈ s

(
T (Γ)

)
lies

in. But we have

(5.2)
s([ν]) = s ◦ χf ([µ]) = s ◦ χf ◦ π

(
[µ], wµ(z0)

)
= s∗(χf )

(
[µ], wµ(z0)

)
∈ s

(
T (Γ)

)
.

To prove that χ ∈ modΓ is an extension of s∗(χf ) (that is, χ|s(T (Γ)) = s∗(χf )),
we only need to show

χ
(
s([µ])

)
= s∗(χf )

(
[µ], wµ(z0)

)
∈ s

(
T (Γ)

)
.

Now by (5.2), it remains to show that

(5.3) χ
(
s([µ])

)
= s([ν]).

Note that the action of χ on F (Γ) is given by χ([µ], z) = ([ν], ẑ), for z ∈ wµ(U),
where ẑ = wν ◦ f̂ ◦ (wµ)−1(z). Recall that s is the canonical section of π deter-
mined by the fixed points of e ∈ modΓ. Clearly, s([µ]) =

(
[µ], wµ(z0)

)
∈ s

(
T (Γ)

)
is the fixed point of eµ = wµ ◦ e ◦ (wµ)−1 , and s([ν]) =

(
[ν], wν(z0)

)
∈ s

(
T (Γ)

)
is

the fixed point of eν = wν ◦ e ◦ (wν)−1 . Thus, (5.3) is equivalent to the statement
that eµ(z) = z implies that eν(ẑ) = ẑ . Now let z = s([µ]) . We get

(5.4)

eν(ẑ) = eν ◦
(
wν ◦ f̂ ◦ (wµ)−1

)
(z) = wν ◦ e ◦ f̂ ◦ (wµ)−1(z)

= wν ◦ f̂ ◦ e ◦ (wµ)−1(z) = wν ◦ f̂ ◦ (wµ)−1 ◦ eµ(z)

= wν ◦ f̂ ◦ (wµ)−1(z) = ẑ.

It follows that ẑ = s∗(χf )(z) equals s([ν]) .
To prove (2), we use a computation similar to (5.4). In fact, to each point

([µ], z) ∈ F (Γ), we have

χ ◦ e([µ], z) = χ
(
[µ], eµ(z)

)
=

(
[ν], wν ◦ f̂ ◦ (wµ)−1 ◦ eµ(z)

)
=

(
[ν], wν ◦ f̂ ◦ e ◦ (wµ)−1(z)

)
=

(
[ν], wν ◦ e ◦ f̂ ◦ (wµ)−1(z)

)
=

(
[ν], eν ◦ wν ◦ f̂ ◦ (wµ)−1(z)

)
= e

(
[ν], wν ◦ f̂ ◦ (wµ)−1(z)

)
= e ◦ χ([µ], z).

(3) We only prove that F (Γ)χ = s
(
T (Γ)

)s∗(χf ) ; the proof of the other equality
is the same. Since χ is a fiber-preserving extension of s∗(χf ), it is trivial that

s
(
T (Γ)

)s∗(χf ) ⊂ F (Γ)χ.
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Suppose now that there is a point x ∈ F (Γ)χ which is not in s
(
T (Γ)

)s∗(χf ) ,
and that x ∈ s

(
T (Γ)

)
. Since χ is an extension of s∗(χf ), we have x = χ(x) =

s∗(χf )(x). This implies that x ∈ s
(
T (Γ)

)s∗(χf ) , a contradiction. We conclude
that x /∈ s

(
T (Γ)

)
. Therefore, in the fiber π−1

(
π(x)

)
, there are at least two

points, x and the intersection π−1
(
π(x)

)
∩ s

(
T (Γ)

)
, which are fixed by χ . But

the restriction of χ to the fiber π−1
(
π(x)

)
is a conformal automorphism. It follows

that χ = id on π−1
(
π(x)

)
.

We need to investigate the action of χ on π−1
(
π(y)

)
for any y ∈ F (Γ).

Following Bers [5], let hµ be defined by

wµ = hµ ◦ wµ | U

for µ ∈ M(Γ). Then hµ: wµ(U)→ U is a conformal map keeping 0, 1, ∞ fixed.
It is easy to see that hµ depends only on [µ] . For each x = ([µ], z) ∈ F (Γ), we have
χ([µ], z) = ([ν], ẑ), where ẑ = wν ◦ f̂ ◦ (wµ)−1(z). Recall that wν = α ◦wµ ◦ f̂−1 ,
where α ∈ PSL (2,R) is such that α ◦ wµ ◦ f̂−1 is normalized. We thus have

(5.5)
ẑ = wν ◦ f̂ ◦ (wµ)−1(z) = (hν)−1 ◦ wν ◦ f̂ ◦ (wµ)−1 ◦ hµ(z)

= (hν)−1 ◦ α ◦ wµ ◦ f̂−1 ◦ f̂ ◦ (wµ)−1 ◦ hµ(z) = (hν)−1 ◦ α ◦ hµ(z).

Set [µ] = π(x) ∈ T (Γ). χ must keep the fiber π−1
(
π(x)

)
invariant. This means

that [µ] = [ν] and χ([µ], z) =
(
[µ], (hµ)−1 ◦ α ◦ hµ(z)

)
. By the above argument,

the restriction of χ to π−1
(
π(x)

)
is id. We see from (5.5) that α = id, and hence

that f̂ is normalized. Since wµ = wµ ◦ f̂−1 , f̂ restricts to id on R . It follows
that f̂ commutes with all elements of Γ, which in turn implies that f is isotopic
to id on U/Γ − {all branch points} , which leads to a contradiction. Therefore,
F (Γ)χ = s

(
T (Γ)

)s∗(χf ) . Lemma 5.1 is proved.

The following lemma shows that there are periodic automorphisms of the
Bers fiber spaces F (Γ) for certain special Fuchsian groups Γ. We also see that
the dimensions of the fixed point sets of these automorphisms are computable.
This will lead to the settlement of most cases of Theorem 2. Again, let Γ be of
signature sig = (0, n; ν1, . . . , νn), where νi is 2 or ∞ , and let e ∈ Γ denote an
elliptic element of order 2.

Lemma 5.2. Associated to e ∈ Γ there is a non-trivial automorphism χ ∈
modΓ , χ 
= e , so that 〈χ, e〉 is an abelian subgroup of mod Γ . Further, we have
(1) χ3 = id , and dimF (Γ)χ = dimF (Γ)e◦χ = 1 if

sig = (0, 8; 2, . . . , 2︸ ︷︷ ︸
m

,∞, . . . ,∞︸ ︷︷ ︸
8−m

), m = 1, 2, 4, 5, 7, 8,
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(2) χ2 is either id or e , and dimF (Γ)χ = dimF (Γ)e◦χ = 2 if

sig = (0, 7; 2, . . . , 2︸ ︷︷ ︸
m

,∞, . . . ,∞︸ ︷︷ ︸
7−m

), m = 1, 3, 5, 7,

(3) χ4 is either id or e . Furthermore, dimF (Γ)χ = dimF (Γ)e◦χ = 0 , and
dimF (Γ)χ

2
= dimF (Γ)e◦χ

2
= 1 if

sig = (0, 6; 2, . . . , 2︸ ︷︷ ︸
m

,∞, . . . ,∞︸ ︷︷ ︸
6−m

), m = 1, 2, 5,

(4) if sig = (0, 5; 2,∞, . . . ,∞) or (0, 5; 2, . . . , 2) , then there are two automor-
phisms χ1 , χ2 ∈ modΓ , both 〈χ1, e〉 and 〈χ2, e〉 are abelian, such that χ4

1 is
either id or e , and χ3

2 = id . Further, dim F (Γ)χ2 = dimF (Γ)e◦χ2 = 0 ,
(5) if sig = (0, 5; 2, 2,∞,∞,∞) , then χ3 = id . Furthermore, dimF (Γ)χ =

dimF (Γ)e◦χ = dimF (Γ)χ
2
= dimF (Γ)e◦χ

2
= 0 ,

(6) χ2 is either id or e , and dimF (Γ)χ = dimF (Γ)e◦χ = 1 if

sig = (0, 5; 2, 2, 2,∞,∞),

(7) χ3 = id if sig = (0, 4; 2,∞,∞,∞) ,
(8) χ3 = id if sig = (1, 1; 2) , and
(9) χ4 is either id or e , and dimF (Γ)χ

2
= dimF (Γ)e◦χ

2
= 1 if

sig = (1, 2; 2, 2) or (1, 2; 2,∞).

Proof. Notice that Lemma 4.1(1) provides a self-map f of the orbifold U/Γ
which has order 3 (up to isotopy) and fixes the branch point x1 of order 2. See
Figure 1(a). Let e ∈ Γ be the elliptic element corresponding to the branch point
x1 ∈ U/Γ, and s the canonical section of π: F (Γ) → T (Γ) determined by the
fixed point of e in U . By using Lemma 5.1(1) and (2), we conclude that there
exists a χ ∈ modΓ with the following properties:
(i) χ leaves invariant the set s

(
T (Γ)

)
which is isomorphic to T (Γ);

(ii) χ commutes with e ; and
(iii) χ3 restricts to id on s

(
T (Γ)

)
.

From (iii) we see that q(χ3) ∈ ModΓ is id, where q: modΓ → ModΓ is the
quotient homomorphism. Thus χ3 lies in the kernel of q . Since Mod Γ is defined
by the quotient group mod Γ/Γ, χ3 ∈ Γ. Now χ and hence χ3 leave invariant
the set s

(
T (Γ)

)
. It follows that χ3 is either id or e . If χ3 = id, we are done. If

χ3 = e , then we take χ0 = e ◦ χ . χ0 has properties (i), (ii) and (iii) above. Thus
χ3

0 = id. We see that χ0 is the required automorphism.
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The proof of existence of automorphisms in each case (2)–(9) is omitted. To
calculate the dimensions of the fixed point sets, we apply the theorem of Kravetz
[13] described in Proposition 3.1. We know that for any elliptic modular transfor-
mation χ of T (Γ), the set T (Γ)χ of the fixed points of χ is identified with another
Teichmüller space T (g∗, n∗), where g∗ and n∗ are defined in the proof of Propo-
sition 3.1. By definition, to each x ∈ s

(
T (Γ)

)
, we have s∗(χf )(x) = s ◦χf ◦ π(x).

Thus
T (Γ)χf = s

(
T (Γ)

)s◦χf◦π = s
(
T (Γ)

)s∗(χf)
.

In particular, since each χf ∈ ModΓ is elliptic, the set s
(
T (Γ)

)s∗(χf ) is not empty.

Further, we have dim s
(
T (Γ)

)s∗(χf ) = dimT (Γ)χf . From Lemma 5.1(3), we see
that

dimF (Γ)χ = dimT (Γ)χf .

Now the rest of proof of Lemma 5.2 only involves rather simple computations.

Computations of dimensions. Lemma 5.2(1). Notice that f = A2 and that
S/〈A2〉 is a Riemann sphere with 4 distinguished points (Figure 1(a)). Thus,

dimF (Γ)e◦χ = dimF (Γ)χ = dimT (S/〈A2〉) = dimT (0, 4) = 1.

Lemma 5.2(2). In this case f = A3 and S/〈A3〉 is a Riemann sphere with 5
distinguished points (Figure 1(b)). This yields

dimF (Γ)e◦χ = dimF (Γ)χ = dimT (S/〈A3〉) = dimT (0, 5) = 2.

Lemma 5.2(3). From Lemma 4.1(3), we see that f = A and S/〈A〉 is a
Riemann sphere with 3 distinguished points (Figure 1(c)). Hence,

dimF (Γ)e◦χ = dimF (Γ)χ = dimT (S/〈A〉) = dimT (0, 3) = 0.

Similarly, we have

dimF (Γ)e◦χ
2
= dimF (Γ)χ

2
= dimT (S/〈A2〉) = dimT (0, 4) = 1.

Lemma 5.2(4). To compute the dimension of the fixed point set of χ2 , we
refer to Figure 1(d). Observe that f = A and S/〈A〉 is a Riemann sphere with 3
distinguished points. It turns out that

dimF (Γ)e◦χ2 = dimF (Γ)χ2 = dimT (S/〈A〉) = dimT (0, 3) = 0.

Lemma 5.2(5). The computation for dim F (Γ)χ is the same as (4). We refer
to Figure 1(e). Similarly, we obtain

dimF (Γ)e◦χ
2
= dimF (Γ)χ

2
= dimT (S/〈A2〉) = dimT (0, 3) = 0.
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Lemma 5.2(6). In this case, f = A2 and S/〈A2〉 is a Riemann sphere with
signature (0, 4; 2, 2, 4,∞) (Figure 1(d)). Thus we obtain

dimF (Γ)e◦χ = dimF (Γ)χ = dimF (Γ)e◦χ = dimT (S/〈A2〉) = 1.
Lemma 5.2(9). f is constructed in Lemma 4.4. Since χf ∈ ModΓ is elliptic,

χf has a fixed point in T (1, 2). We assume that f2 is conformal on the orbifold
S of signature (1, 2; 2,∞). f2 has order 2. By Lemma 5.1(3), we have

dimF (Γ)e◦χ
2
= dimF (Γ)χ

2
= dimT (Γ)χf2 = dimT (S/〈f2〉).

Let g′ denote the genus of S/〈f2〉 , and let n′ denote the number of fixed points
of f2 on S . Clearly, n′ ≥ 2 since the branch point and the puncture on S are
fixed by f2 . Now the Riemann–Hurwitz formula gives us

0 = 2(2g′ − 2) + n′.

So n′ = 4. It follows that

dimT (S/〈f2〉) = 3g′ − 3 + n′ = 1.

Therefore, dim F (Γ)e◦χ
2
= dimF (Γ)χ

2
= 1.

This completes the proof of Lemma 5.2.

6. Elliptic transformations on Teichmüller spaces

In this section, we calculate the dimensions of the fixed point sets of some
elliptic modular transformations of Teichmüller spaces in some low dimensional
cases. With the aid of the periodic automorphisms constructed in the previous
section, certain elliptic modular transformations of Teichmüller spaces are defined
whose orders are known. Our purpose is to show that, under the condition of
Lemma 5.2, the dimensions of the fixed point sets of these elliptic modular trans-
formations are actually different from those we obtained from Lemma 5.2.
Throughout this section we assume that Γ is a torsion free finitely generated

Fuchsian group of the first kind whose type is (g, n). Let χ ∈ ModΓ be an elliptic
element. As before, let T (Γ)χ denote the non-empty fixed point set of χ in T (Γ).
Let J denote the element of Mod Γ which is induced by a hyperelliptic invo-

lution on a surface of type (g, n).

Lemma 6.1. In each of the following cases we assume that there is an elliptic
element χ ∈ ModΓ , χ 
= J , such that 〈χ, J〉 is an abelian subgroup of Mod Γ .
(1) If Γ is of type (3, 0) and χ3 = id , then dimT (Γ)χ = 2 .
(2) If Γ is of type (2, 2) and χ2 = id or J , then either dimT (Γ)χ = 3 or

dimT (Γ)J◦χ = 3 .
(3) If Γ is of type (1, 4) and χ4 = id or J , then either dimT (Γ)χ ≥ 1 , or

dimT (Γ)J◦χ ≥ 1 , or dimT (Γ)J◦χ
2 ≥ 2 .

(4) If Γ is of type (0, 6) and χ3 = id , then dimT (Γ)χ = 1 .
(5) If Γ is of type (0, 6) and χ2 = id or J , then either dimT (Γ)χ = 2 , or

dimT (Γ)J◦χ = 2 .
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Proof. Since 〈χ, J〉 is abelian, χ leaves invariant the component of hyperel-
liptic locus in T (Γ) which is determined by J . From Kravetz’s theorem [13], there
is a fixed point of χ in this component of the hyperelliptic locus. We conclude
that there exists a common fixed point x ∈ T (Γ) of J and χ .
Let S denote the hyperelliptic Riemann surface of type (g, n) which repre-

sents x , let h be the conformal automorphism of S which induces χ , and let j
be the hyperelliptic involution of S which induces J .
Let k the number of the fixed points of h on the compactification S . The

symbol B stands for the total branch number of the corresponding branched
covering: S →S/〈h〉 , and g∗ stands for the genus of the orbifold S∗ = S/〈h〉 .
(1) From the Riemann–Hurwitz formula, we have

(6.1) 4 = 3(2g∗ − 2) +B = 3(2g∗ − 2) + 2k.

If g∗ = 1, then from (6.1), one sees that k = 2. By Kravetz’s theorem [13], one
obtains

dimT (Γ)χ = dimT (S∗) = 3g∗ − 3 + k = 2.

The second equality holds because S is compact and the number of the fixed
points of h on S is the number of the branch points of S .
If g∗ = 0, then k = 5 and again, it is easy to see that dimT (Γ)χ = 2. This

proves (1).
(2) By hypothesis, χ2 is either id or J . Observe that χ2 is induced by the

self-map h2 . Since h2 fixes the two punctures on S , χ2 cannot be J . Hence
χ2 = id. Now the Riemann–Hurwitz formula tells us that

(6.2) 2 = 2(2g∗ − 2) + k.

If g∗ = 0, then k = 6 = 2g + 2 and χ is another hyperelliptic involution of S .
Observe also that the hyperelliptic involution on S is unique. Hence, h = j ,
contradicting our hypothesis. Therefore, by (6.2), the only possibility is that
g∗ = 1, and k = 2. There are two cases to consider.
Case I. h fixes the two punctures. In this case, h has no other fixed points.

Since χ commutes with J , h can be projected to a conformal automorphism h′

of the orbifold S0 = S/〈j〉 in the sense of orbifolds. h′ is an elliptic Möbius
transformation. This means that h′ has two fixed points a and b , one of which,
say a , comes from the projection of the punctures. The set {ζ−1(b)} (where
ζ : S → S/〈j〉 is the two-sheeted branched covering) must contain exactly 2 points,
otherwise {ζ−1(b)} would be a fixed point of h . This is impossible. It follows that
h must interchange the two points {ζ−1(b)} .
Consider the modular transformation J ◦ χ which is induced by j ◦ h . Since

h commutes with j , the self-map j ◦ h is of order 2. Moreover, j ◦ h has the
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property that it fixes {ζ−1(b)} pointwise, and interchanges the two punctures.
Now we apply the formula (6.2) for the map j ◦ h to conclude that S/〈j ◦ h〉 is of
signature (1, 3; 2, 2,∞) and that dimT (Γ)J◦χ = dimT (S/〈j ◦ h〉) = 3.
Case II. h interchanges the two punctures. In this case, h has two fixed points

elsewhere which are symmetric with respect to j (by assumption h commutes
with j ). It is rather easy to see that these two points cannot be Weierstrass points
on the compactification S (otherwise, h′ would have three fixed points). Thus,
S/〈h〉 is of signature (1, 3; 2, 2,∞) and we obtain dimT (Γ)χ = dimT (S/〈h〉) = 3.
This proves (2).
(3) Notice that h4 fixes all of the punctures (which are denoted by x1 , x2 ,

x3 , x4 ), χ4 is not a hyperelliptic involution. Hence χ4 = id. Assume that S
is a hyperelliptic Riemann surface and that x1 , x2 , x3 , and x4 are arranged so
that j(x1) = x2 and j(x3) = x4 . By hypothesis, h commutes with j , h can
be projected to a conformal automorphism h′ of the orbifold S0 = S/〈j〉 in the
sense of orbifolds. Hence, h′ is a Möbius transformation. Observe that S0 is of
signature (0, 6; 2, 2, 2, 2,∞,∞). Let x′

1 , x
′
2 denote the two punctures, and let x

′
3 ,

x′
4 , x

′
5 , x

′
6 denote the four branch points of order 2 on S0 . Then h′ either fixes

both x′
1 and x′

2 , or interchanges these two punctures.
Case I. h′ interchanges x′

1 and x′
2 . In this case, since h′ is an elliptic Möbius

transformation, it has two fixed points a′ and b′ . If {a′, b′} ⊂ {x′
3, x

′
4, x

′
5, x

′
6} ,

then h′2 fixes the set {x′
3, x

′
4, x

′
5, x

′
6} pointwise, which implies that h′2 = id, a

contradiction. If {a′, b′}∩{x′
3, x

′
4, x

′
5, x

′
6} is a′ or b′ , then h′ induces a permutation

of the three points in {x′
3, x

′
4, x

′
5, x

′
6}−{a′, b′} , contradicting the fact that h′4 = id.

Finally, if {a′, b′} and {x′
3, x

′
4, x

′
5, x

′
6} are disjoint, then h′2 fixes {a′, b′, x′

1, x
′
2} ,

and h′2 = id. So the case that h′ interchanges x′
1 and x′

2 cannot occur.
Case II. h′ fixes both x′

1 and x′
2 . In this case, there are three possibilities:

(i) h fixes all punctures x1 , x2 , x3 , and x4 ,
(ii) h(xi) = j(xi) for i = 1, 2, 3, 4,
(iii) h(xi) = j(xi) for i = 1, 2, and h(xi) = xi for i = 3, 4.

If h fixes all punctures x1 , x2 , x3 , and x4 , then S/〈h〉 has at least 4 distinguished
points, which means that dimT (Γ)χ = dimT (S/〈h〉) ≥ 1.
If h(xi) = j(xi) for i = 1, 2, 3, 4, then j ◦ h has order 4 and fixes all the

punctures. It follows that S/〈j ◦ h〉 has at least 4 distinguished points coming
from the fixed points (punctures) of j ◦ h . This implies that dimT (Γ)J◦χ =
dimT (S/〈j ◦ h〉) ≥ 1.
If h(xi) = j(xi) for i = 1, 2, and h(xi) = xi for i = 3, 4, then again, h2

fixes all the punctures x1 , x2 , x3 , and x4 . In this case, j ◦ h2 has order 2 and
fixes no punctures, and therefore, by the Riemann–Hurwitz formula, the argument
is reduced to discuss two subcases. If the genus g′ of S/〈j ◦ h2〉 is one and k′

(k′ is the number of the fixed points of j ◦ h2 on S ) is zero, then S/〈j ◦ h2〉 is
of signature (1, 2;∞,∞), which implies that dim T (Γ)J◦χ

2
= 2. If g′ = 0 and



On the Bers fiber spaces 381

k′ = 4, then S/〈j ◦h2〉 is a Riemann sphere with 6 distinguished points including
the two punctures x′

1 and x′
2 . It follows that dim T (Γ)J◦χ

2
= 3. This proves (3).

(4) By hypothesis, χ is of order 3, so h is also of order 3. If h fixes two
punctures, then h permutes the remaining 4 punctures, which is impossible since
h is of order 3. If h fixes one puncture, then again, h permutes the remaining
5 punctures, but this case cannot happen either. It remains to consider the case
that h fixes no punctures. In this case, all 6 punctures of S must be divided into
two orbits under the iteration of h . It follows that the surface S/〈h〉 has 4 distin-
guished points; more precisely, S/〈h〉 has signature (0, 4; 2, 2,∞,∞). Therefore,
we obtain T (Γ)χ = T (S/〈h〉) = T (0, 4). This proves (4).
(5) h is an elliptic Möbius transformation; it has two fixed points. Obviously,

h cannot fix one puncture and one regular point; otherwise the number of remain-
ing punctures would be 5, contradicting that h has order 2 or 4. We assume first
that h fixes two punctures, say x1 and x2 . In this case, h has order 2. Since h
commutes with j , x1 and x2 must be j -symmetric; that is, we have j(x1) = x2 .
Also, it is easily seen that h interchanges the two fixed points (not punctures)
of j . Observe that the remaining 4 punctures cannot be a single orbit under
the iteration of h since h2 = id. The map h can be projected to a self-map h′

of S0 = S/〈j〉 which is of signature (0, 5; 2, 2,∞,∞,∞). Moreover, h′ fixes one
puncture, interchanges the other two punctures and the two branch points. There
is one more fixed point y′ of h′ . This implies that h interchanges the two points
{ζ−1(y′)} .
Consider the conformal automorphism j ◦ h of S . Since j commutes with

h , j ◦ h is of order 2 and thus divides the 6 punctures into 3 orbits. There are
also 2 branch points on S/〈j ◦ h〉 , which come from the fixed points {ζ−1(y′)} .
We see that S/〈j ◦ h〉 is of signature (0, 5; 2, 2,∞,∞,∞). Therefore, we obtain
dimT (Γ)J◦χ = 2.
Next, if h fixes two regular points, then h cannot be of order 4 unless h = id

(since h defines a permutation of the 6 punctures). It follows that the 6 punctures
are divided into three orbits under the iteration of h , which means that S/〈h〉 is
of signature (0, 5; 2, 2,∞,∞,∞). In particular, dim T (Γ)χ = 2. This proves (5)
and hence the proof of Lemma 6.1 is complete.

Lemma 6.2. We assume in each of the following cases that there is a non-
trivial elliptic element χ ∈ ModΓ , χ 
= J , so that 〈χ, J〉 is an abelian subgroup
of Mod Γ .
(1) If Γ is of type (1, 3) , then χ3 = id or J .
(2) If Γ is of type (0, 5) , then χ2 = id or J .

Proof. (1) First we assume that Γ is of type (1, 3). Let h , j , and S be as in
Lemma 6.1. Then clearly, h◦j◦h−1 = j on S . This means that h can be projected
to a Möbius transformation h′ of S0 = S/〈j〉 in the sense of orbifolds. Note that
S0 is an orbifold of signature (0, 5; 2, 2, 2,∞,∞), where one puncture comes from
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the puncture of S fixed by h (since S is of type (1, 3) and h commutes with j ).
It follows that h′ fixes the two punctures pointwise. Since h′ is periodic, either
h′ or h′3 is id . In the first case, h is either id or j , both of which cannot occur.
If h′3 = id, then either h3 or h6 is id .
(2) Once again, h can be projected to an elliptic Möbius transformation h′ of

S0 = S/〈j〉 in the sense of orbifolds. Observe that S0 is an orbifold of signature
(0, 4; 2,∞,∞,∞), where one puncture comes from the fixed point (puncture) of j .
It follows that h′ fixes both the branch point and the puncture coming from the
fixed point of j . So h′2 = id on S0 . Therefore, either h2 or h4 is id.

7. Proofs of the theorems

Let Γ and Γ′ be finitely generated Fuchsian groups of the first kind. Assume
that Γ contains at least one elliptic element and is of signature (g, n; ν1, . . . , νn).
By applying the theorem of Bers–Greenberg [7], we may assume, without loss of
generality, that Γ′ is torsion free. Let Γ′ be of type (g′, n′).
Suppose that there is an isomorphism ϕ: F (Γ)→ T (Γ′). Then by Theorem 1,

the pair
(
(g, n), (g′, n′)

)
lies in Table A in the introduction. Assume that (g, n) 
=

(0, 3). Theorem 1 also asserts that every elliptic element e of Γ is of order 2. Let
s be the canonical section of π: F (Γ)→ T (Γ) determined by the fixed point of e .
Lemma 3.5 says that l′ = ϕ ◦ s

(
T (Γ)

)
must be a component of the hyperelliptic

locus in T (Γ′). Further, l′ is the fixed point set of the hyperelliptic involution
J ′ = ϕ ◦ e ◦ ϕ−1 ∈ ModΓ′ . More precise information can be captured by the
following lemma.

Lemma 7.1. Suppose that (g, n; ν1, . . . , νn) is in Lemma 4.1 and that there is
an isomorphism ϕ: F (Γ) → T (Γ′) . Then the Teichmüller modular group Mod Γ′

contains an abelian subgroup which is generated by an elliptic element χ′ and a
hyperelliptic involution J ′ .

Proof. The assertion follows immediately from Lemma 3.5, Lemma 5.2, Roy-
den’s theorem [19] as well as its generalization (Earle–Kra [9]).

Proof of 26 cases of Theorem 2. (1) The signature (g, n; ν1, . . . , νn) is in
Lemma 4.1(1). By Theorem 1, (g′, n′) = (3, 0). Now Lemma 5.2(1) tells us that
we can find a χ ∈ modΓ so that χ3 = id and dim F (Γ)χ = 1. But Lemma 7.1
and Lemma 6.1(1) assert that dim T (Γ′)ϕ◦χ◦ϕ−1 = 2. This is a contradiction.
(2) (g, n; ν1, . . . , νn) is in Lemma 4.1(2). In this case, (g′, n′) = (2, 2). Simi-

larly, the assertion follows from Lemma 5.2(2), Lemma 7.1 and Lemma 6.1(2).

(3) (g, n; ν1, . . . , νn) is in Lemma 4.1(3). In this case (g′, n′) is either (2, 1),
or (1, 4). Our method leads to no contradiction if (g′, n′) = (2, 1). We only
assume that (g′, n′) = (1, 4). Again, by using Lemma 7.1, one sees at once that
Lemma 5.2(3) contradicts Lemma 6.1(3).
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(4) (g, n; ν1, . . . , νn) is in Lemma 4.1(4). In this case, (g′, n′) is either (0, 6),
or (2, 0), or (1, 3). We do not need to deal with the case that (g′, n′) = (2, 0)
since T (0, 6) ∼= T (2, 0) (see Section 2). We first assume that (g′, n′) = (1.3). By
Lemma 5.2(4), there is a χ ∈ modΓ, whose order is 4 or 8, such that χ commutes
with an elliptic element e ∈ Γ. By Lemma 7.1 and Lemma 6.2(1), we see that this
case cannot happen.
If (g′, n′) = (0, 6), then by Lemma 5.2(4), there is another χ ∈ modΓ (with

order 3) so that dim F (Γ)χ = 0. But Lemma 6.1(4) excludes this possibility.

(5) (g, n; ν1, . . . , νn) is in Lemma 4.1(5). Then again (g′, n′) = (0, 6), (2, 0),
or (1, 3). Our method does not work for the case that (g′, n′) = (1, 3). We only
assume that (g′, n′) is (0, 6) or (2, 0). But this case can be treated in the same
way as (4).

(6) (g, n; ν1, . . . , νn) is in Lemma 4.1(6). If (g′, n′) = (1, 3), by using Lemma
7.1, one sees that Lemma 6.2(1) contradicts Lemma 5.2(6). If (g′, n′) = (0, 6),
then Lemma 6.1(5) contradicts Lemma 5.2(6). The case that (g′, n′) = (2, 0) can
also be settled since T (0, 6) ∼= T (2, 0).

(7) (g, n; ν1, . . . , νn) is in Lemma 4.1(7). Then (g′, n′) = (0, 5) or (1, 2). We
only need to treat the case that (g′, n′) = (0, 5) since T (0, 5) ∼= T (1, 2). The
assertion follows from Lemma 6.2(2) and Lemma 5.2(7).

(8) (g, n; ν1, . . . , νn) is in Lemma 4.2. Then (g′, n′) = (1, 2) or (0, 5). Again,
it suffices to consider the case that (g′, n′) = (0, 5). The assertion follows from
Lemma 6.2(2) and Lemma 5.2(8).

(9) (g, n; ν1, . . . , νn) is in Lemma 4.4. Then (g′, n′) = (1, 3), (0, 6), or (2, 0).
Once again, we do not need to consider the case that (g′, n′) = (2, 0).
Case I. (g′, n′) = (0, 6). Then Lemma 4.4 and Lemma 7.1 guarantee that

there exists a χ′ ∈ ModΓ′ so that χ′4 is either id or a hyperelliptic involution J ′ .
If χ′4 = id, then Lemma 6.1(5) contradicts Lemma 5.2(9) since F (Γ)χ ⊂ F (Γ)χ

2
.

If χ′4 = J ′ , then χ′2 satisfies the condition of Lemma 6.1(5). Hence,
dim T (Γ′)χ

′2
= 2. But this contradicts Lemma 5.2(9).

Case II. (g′, n′) = (1, 3). Then Lemma 4.4 implies that there is χ′ ∈ ModΓ′
so that χ′4 is either id or equal to J ′ . This contradicts Lemma 6.2(1).

Proof of Theorem 3. First we prove the if part. If Γ is of type (0, 3), then
the assertion follows from (1.2) in the introduction. If Γ is torsion free, then we
have (1.1). If Γ is of signature (0, 4; 2, 2, 2,∞) or (0, 4; 2, 2,∞,∞), then from
(1.5) of the introduction, one sees that F (0, 4;∞,∞,∞,∞) ∼= F (0, 4; 2, 2, 2,∞) ∼=
F (0, 4; 2, 2,∞,∞) ∼= T (0, 5).
Now we prove the only if part. Assume that Γ contains elliptic elements,

whose type is not (0, 3), and whose signature is neither (0, 4; 2, 2,∞,∞) nor
(0, 4; 2, 2, 2,∞). Also assume that F (Γ) is isomorphic to a Teichmüller space
T (Γ′) for some Fuchsian group Γ′ of type (g, n+1). The hypothesis implies that
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the condition of Theorem 1 is satisfied. By using Theorem 1, one finds that all
elliptic elements of Γ must be of order 2. Moreover, by examining all entries of
Table B in the introduction, one sees at once that several cases are possible, which
are:
(1) (g, n; ν1, . . . , νn) = (0, 5; 2, . . . , 2︸ ︷︷ ︸

k

,∞, . . . ,∞︸ ︷︷ ︸
5−k

), 0 < k ≤ 5 and (g′, n′) =

(0, 6);
(2) (g, n; ν1, . . . , νn) = (1, 2; 2, 2) or (1, 2; 2,∞) and (g′, n′) = (1, 3);
(3) (g, n; ν1, . . . , νn) = (1, 1; 2), and (g′, n′) = (1, 2);
(4) (g, n; ν1, . . . , νn) = (0, 4; 2,∞,∞,∞) and (g′, n′) = (0, 5).

But all of these cases are excluded by Theorem 2. Hence, the proof of Theorem 3
is complete.

8. Continuation of the proof of Theorem 2

Let Γ1 be a finitely generated Fuchsian group of the first kind whose signature
is (2, 0; ). Γ1 is a normal subgroup of a Fuchsian group Γ0 with Γ0 of signature
(0, 6; 2, . . . , 2). See Section 2 for an exposition. Note that Γ1 <Γ0 is of index 2 and
T (Γ0) ∼= T (Γ1). Let Φ denote this isomorphism. The considerations of Section 5
in Earle–Kra [9] lead to an isomorphism:

λ: F (Γ0)→ F (Γ1)

defined by sending ([µ], z) ∈ F (Γ0) to
(
Φ([µ]), z

)
∈ F (Γ1).

To see that λ is well defined, we observe that for every µ ∈ M(Γ0), there
corresponds to a ν ∈ M(Γ1) with [ν] = Φ([µ]) and vise versa (since Φ is an
isomorphism). This implies that the set wµ

′
(U) coincides with wν

′
(U) for µ′ ∼ µ

and ν′ ∼ ν .
To see that λ is holomorphic, note first that Φ is a biholomorphic map. Next,

when [µ′] ∈ T (Γ0) lies in a sufficiently small neighborhood of [µ] ∈ T (Γ0), z stays
in wµ

′
(U). It is trivial that λ is biholomorphic.
Let π0: F (Γ0) → T (Γ0) ∼= T (0, 6) and π1: F (Γ1) → T (Γ1) ∼= T (2, 0) be the

natural projections. Since Γ0 is of signature (0, 6; 2, . . . , 2), all canonical sections
s0 of π0 are determined by elliptic elements of Γ0 . Let S0 denote the set of all
images s0

(
T (Γ0)

)
. We first prove:

Lemma 8.1. Let θ ∈ modΓ1 and θ0 = λ−1 ◦ θ ◦ λ . Then θ0 ∈ modΓ0 .
Furthermore, θ0 keeps the set S0 invariant; that is, for any canonical section s0

of π0 , θ0

(
s0

(
T (Γ0)

))
is the image of a canonical section of π0 .

Proof. Let θ ∈ modΓ1 be induced by a self-map f of U , and f1 the projec-
tion of f to the surface U/Γ1 . Note that U/Γ1 is a compact Riemann surface of
genus 2 which is, of course, hyperelliptic.
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A theorem of Lickorish [14] tells us that f1 is isotopic to a self-map f ′
1 which

is a product of Dehn twists about the curves belonging to the set of Lickorish’s
generators. But the set of Lickorish’s generators are invariant under the hyperel-
liptic involution j . It follows that any Dehn twist about a Lickorish’s generator
is isotopic to a twist about that generator which commutes with j . This implies
that f ′

1 is isotopic to a map (still called f ′
1 ) which commutes with j as well. It

follows that f ′
1 projects to a self-map f0: U/Γ0 → U/Γ0 in the sense of orbifolds.

Now lift the self-map f ′
1 of U/Γ1 to the map f ′: U → U . Since f1 is isotopic

to f ′
1 on U/Γ1 , we can choose a lift so that f ′ is isotopic to f . On the other

hand, f ′ is also a lift of f0 ; that is, f ′ ∈ N(Γ0), the normalizer of Γ0 in Q(Γ0).
Hence, by definition of λ , the geometric isomorphism of Γ0 induced by f ′ is
exactly θ0 . It follows that θ0 ∈ modΓ0 . Since f0 is a self-map in the sense of
orbifolds (all branch points here are of order 2), it sends a branched point to a
branched point. This implies that θ0 sends an image of a canonical section to an
image of a canonical section. The lemma is proved.

We need to study the relationships among components of the hyperelliptic lo-
cus in T (2, 1). Observe that every component of the hyperelliptic locus of T (2, 1)
is the fixed point set of an elliptic modular transformation induced by a hyperel-
liptic involution of a marked Riemann surface in T (2, 1); it is a connected, closed
submanifold of T (2, 1).

Lemma 8.2. Any two components l1 , l2 of the hyperelliptic locus in T (2, 1)
are modular equivalent; that is, there exists a χ ∈ Mod (2, 1) so that χ(l1) = l2 .
Furthermore, if we denote by J1, J2 ∈ Mod (2, 1) the hyperelliptic involutions
corresponding to l1 and l2 , respectively, we have χ ◦ J1 ◦ χ−1 = J2 .

Proof. See the appendix.

Let Γ0 and Γ1 be as above. We choose a torsion free group Γ′ of type (2, 1),
and let ψ: F (Γ1)→ T (Γ′) be the Bers isomorphism.
Let Γ be a finitely generated Fuchsian group of the first kind whose signature

is (0, 6; 2, . . . , 2,∞). Suppose that there is an isomorphism ϕ: F (Γ) → T (Γ′). It
turns out that ψ′ = ψ ◦ λ: F (Γ0) → T (Γ′) is an isomorphism, we thus obtain
an equivalence ω = ψ′−1 ◦ ϕ: F (Γ) → F (Γ0). For convenience we exhibit these
isomorphisms in the following diagram:

(8.1)

F (Γ0)
λ ��

ψ′

������
���

��
F (Γ1)

ψ

��
F (Γ)

ω

��

ϕ �� T (Γ′).

Note that the diagram (8.1) is commutative. Let S denote the set of all images
s
(
T (Γ)

)
under canonical sections s of π: F (Γ)→ T (Γ) ∼= T (0, 6). We have
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Lemma 8.3. (1) ω carries S into S0 .
(2) Let e denote an elliptic element of Γ (e can be thought of as an element

of modΓ). Then ω ◦ e ◦ω−1 ∈ modΓ0 . Furthermore, ω ◦ e ◦ω−1 is defined by an
elliptic element of Γ0 .

Caution. The isomorphism ω need not be fiber-preserving.
Proof. Let e0 ∈ Γ0 be an elliptic element of order 2, let s and s0 be

the canonical sections of π: F (Γ) → T (Γ) ∼= T (0, 6) and π0: F (Γ0) → T (Γ0) ∼=
T (0, 6) corresponding to the fixed points of e and e0 , respectively. We define
l′ = ϕ

(
s
(
T (Γ)

))
and l′0 = ψ′(s0

(
T (Γ0)

))
. Lemma 3.5 asserts that both l′ and

l′0 are the components of the hyperelliptic locus in T (Γ′) and that both e′ =
ϕ ◦ e ◦ϕ−1 and e′0 = ψ′ ◦ e0 ◦ψ′−1 are the corresponding hyperelliptic involutions.
By Lemma 8.2, we see that there is a modular transformation χ′ ∈ ModΓ′ such
that χ′(l′) = l′0 , and χ′ ◦ e′ ◦ χ′−1 = e′0 . From a theorem of Bers (Theorem 10 of
Bers [5]), we know that θ = ψ−1 ◦ χ′ ◦ ψ is a modular transformation of F (Γ1).
Lemma 8.1 then says that θ0 = λ−1 ◦ θ ◦λ keeps the set of the images of canonical
sections invariant. We claim that ω

(
s
(
T (Γ)

))
= θ−1

0

(
s0

(
T (Γ0)

))
.

Indeed, from the diagram (8.1) we can obtain

ω
(
s
(
T (Γ)

))
= ψ′−1 ◦ ϕ

(
s
(
T (Γ)

))
= ψ′−1(l′)

= ψ′−1 ◦ χ′−1(l′0) = ψ′−1 ◦ χ′−1 ◦ ψ′(s0

(
T (Γ0)

))
= λ−1 ◦ ψ−1 ◦ ψ ◦ θ−1 ◦ ψ−1 ◦ ψ ◦ λ

(
s0

(
T (Γ0)

))
= λ−1 ◦ θ−1 ◦ λ

(
s0

(
T (Γ0)

))
= θ−1

0

(
s0

(
T (Γ0)

))
.

To prove the second statement of this lemma, we note that e ∈ modΓ fixes
s
(
T (Γ)

)
pointwise. Hence, ω ◦ e◦ω−1 fixes θ−1

0

(
s0

(
T (Γ0)

))
pointwise as well. By

Lemma 3.5, we see that

ψ′(θ−1
0

(
s0

(
T (Γ0)

)))
= l′′0

is a component of the hyperelliptic locus in T (Γ′). Now ψ′ ◦ (ω ◦ e ◦ω−1) ◦ψ′−1 ∈
ModΓ′ has the property that its restriction to l′′0 is id . By Proposition 3.1 and
Corollary 2 to Proposition III.7.9 of Farkas–Kra [11], we conclude that ψ′ ◦ (ω ◦
e ◦ω−1) ◦ψ′−1 is either id or the hyperelliptic involution e′′0 corresponding to l′′0 .
But evidently, ψ′ ◦ (ω ◦ e ◦ ω−1) ◦ ψ′−1 is not id. Thus

(8.2) ψ′ ◦ (ω ◦ e ◦ ω−1) ◦ ψ′−1 = e′′0 .

On the other hand, if we denote by e0 the elliptic element of Γ0 corresponding
to θ−1

0

(
s0

(
T (Γ0)

))
, by Proposition 3.1, ψ′ ◦ e0 ◦ ψ′−1 = e′′0 . It follows from (8.2)

that e0 = ω ◦ e ◦ ω−1 . This completes the proof of the lemma.
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Proof of the case
(
(g, n; ν1, . . . , νn), (g′, n′)

)
=

(
(0, 6; 2, 2, 2, 2, 2,∞), (2, 1)

)
.

Assume that U is the central fiber of both F (Γ0) and F (Γ1) (by a central fiber
we mean the fiber π−1

0 ([0])). By investigating the diagram (8.1), we know that
the restriction of ϕ to U is a holomorphic map into T (Γ′) (here U is also thought
of as the central fiber of F (Γ)). Hence

(8.3) d
(
ϕ([0], x), ϕ([0], y)

)
≤ �

(
([0], x), ([0], y)

)
for all x, y ∈ U,

where d is the Kobayashi metric on T (Γ′). By Royden’s theorem [19], the
Kobayashi metric is the same as the Teichmüller metric. Therefore,

(8.4) 〈ϕ([0], x), ϕ([0], y)〉 ≤ �
(
([0], x), ([0], y)

)
.

Unfortunately, there is no guarantee that ω(U) is a fiber in F (Γ0). To get rid
of this difficulty, let e1, . . . , e5 , and e∞ be a set of generators of Γ, where ei ,
i = 1, . . . , 5, are elliptic Möbius transformations of order 2, and e∞ is a parabolic
Möbius transformation. These generators may be chosen so as to satisfy the
following relation:

(8.5) e5 ◦ · · · ◦ e1 = e∞.

Choose a point x ∈ U so that

(8.6) �
(
([0], x), e∞([0], x)

)
< ε

for an arbitrarily small positive number ε . This is possible because e∞ is parabolic.
Observe that ω([0], x) ∈ F (Γ0). Let π−1

0 ([µ]) ∈ F (Γ0) be the fiber to which
the point ω([0], x) belongs. Then we construct a Bers’ allowable mapping of
F (Γ0) onto another isomorphic Bers fiber space, this Bers’ allowable mapping
can be defined by carrying the fiber π−1

0 ([µ]) to the central fiber of the new
Bers fiber space. In this regard, we may assume, without loss of generality, that
ω([0], x) ∈ ω(U)∩U ⊂ F (Γ0), and hence also that λ ◦ω([0], x) ∈ U ⊂ F (Γ1). Let
τ ′ = ϕ([0], x) ∈ T (Γ′), and let χ′

∞ = ϕ ◦ e∞ ◦ ϕ−1 . By Royden’s theorem [19]
(and its generalization [9]), χ′

∞ ∈ ModΓ′ . Moreover, (8.4) and (8.6) imply that

(8.7)
〈τ ′, χ′

∞(τ
′)〉 = 〈ϕ([0], x), ϕ ◦ e∞ ◦ ϕ−1(τ ′)〉
=

〈
ϕ([0], x), ϕ ◦

(
e∞([0], x)

)〉
≤ �

(
([0], x), e∞([0], x)

)
< ε.

As a holomorphic automorphism, e∞ ∈ mod Γ has no fixed point in F (Γ), thus
χ′
∞ has no fixed point in T (Γ′) either. It turns out that χ′

∞ is a parabolic modular
transformation of T (Γ′).
From Theorem 6 of Bers [5], χ′

∞ is induced by a reducible self-map f ′
∞

of a Riemann surface S ′ of type (2, 1) (the puncture is denoted by x′ ). Let



388 Chaohui Zhang

S ′ = ϕ([0], x), and let c′ = {c′1, . . . , c′r} , r ≥ 1, be the corresponding admissible
system of curves on S ′ which completely reduces f ′

∞ .
Since χ′

∞ is parabolic, the restriction of f ′
∞ to all parts of S ′ − N(c′) is

either trivial or periodic (but not necessarily componentwise), where N(c′) is an
arbitrary small neighborhood of c′ = {c′1, . . . , c′r} . A basic observation shows that
if all restrictions of f ′

∞ to S ′ − N(c′) are trivial, then f ′
∞ must be isotopic to

some product of Dehn twists about c′1, . . . , c′r (see Abikoff [1]).
We need the following lemma.

Lemma 8.4. Suppose that χ′
∞ is defined as above. Then r = 2 , and either

χ′
∞ or χ′

∞
2
is actually induced by a spin about x′ ; that is, either χ′

∞ or χ′
∞

2
is

induced by a self-map of S ′ which is a power of the composition h−1
c′2

◦ hc′1 , where
c′1 and c′2 bounds a cylinder which contains the puncture x′ .

Proof. Recall that χ′
∞ is induced by f ′

∞ , and f ′
∞ fixes the puncture x′ . From

the proof of Lemma 8.1, λ−1 ◦ψ−1 ◦χ′
∞ ◦ψ ◦ λ = ψ′−1 ◦χ′

∞ ◦ ψ′ is an element of
mod Γ0 . In particular, ψ′−1◦χ′

∞◦ψ′ is a fiber-preserving automorphism of F (Γ0).
Consider the following commutative diagram

(8.8)

T (Γ′)

π′
1

��

χ′
∞ �� T (Γ′)

π′
1

��
T (Γ1)

χ′
�� T (Γ1)

where π′
1 = π1 ◦ ψ−1 , and as before, ψ: F (Γ1)→ T (Γ′) is the Bers isomorphism.

Note that U/Γ1 is a surface of type (2, 0) which is always hyperelliptic. The map
χ′ is defined by the formula π′

1 ◦ χ′
∞ = χ′ ◦ π′

1 . Since π′
1 is defined by forgetting

the puncture x′ , χ′ is defined by f ′
∞ by filling in the puncture x′ . By f∞

′
we

denote the self-map on S ′ (type (2, 0)) inducing χ′ . Suppose that χ′ is neither
induced by id nor induced by the hyperelliptic involution. The action of χ′ on
T (Γ1) is non-trivial. We see from (8.8) that there is a fiber which is sent by χ′

∞
to a different fiber. This implies that ψ′−1 ◦ χ′

∞ ◦ ψ′ sends a fiber of F (Γ0) to
another different fiber of F (Γ0). We may assume that ψ′−1 ◦χ′

∞ ◦ψ′ ◦ (ψ′−1(τ ′))
and ψ′−1(τ ′) lie in different fibers.
On the other hand, the group Γ is generated by e1, . . . , e5 , and e∞ . From

Lemma 8.3, the ω -image of Γ is a subgroup of Γ0 . It follows that

(8.9) ψ′−1(τ ′) = ψ′−1 ◦ ϕ([0], x) = ω([0], x).

We also have

(8.10)
ψ′−1 ◦ χ′

∞ ◦ ψ′ = ψ′−1 ◦ ϕ ◦ e∞ ◦ ϕ−1 ◦ ψ′ = ω ◦ e∞ ◦ ω−1

= ω ◦ (e5 ◦ · · · ◦ e1) ◦ ω−1 = e0,5 ◦ · · · ◦ e0,1,
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where e0,i , i = 1, . . . , 5, are ω -images of ei in Γ0 . From (8.9) and (8.10) we
conclude that

(8.11) ψ′−1 ◦ χ′
∞ ◦ ψ′ ◦ (ψ′−1(τ ′)) = e0,5 ◦ · · · ◦ e0,1 ◦ (ω([0], x)).

Since Γ0 <modΓ0 keeps all fibers of F (Γ0) invariant, and since x ∈ U , by (8.11),
we see that ψ′−1 ◦χ′

∞ ◦ψ′ ◦ (ψ′−1(τ ′)) and ψ′−1(τ ′) lie in the same fiber U . This
is a contradiction.
We conclude that χ′ is either induced by id or induced by the hyperelliptic

involution. If χ′ is induced by id, the lemma is proved by using the fact that the
map (reduced by c′ ) f ′

∞ is a power of a spin if and only if f∞
′
is isotopic to id.

If χ′ is induced by the hyperelliptic involution, then χ′2 is induced by id. From
a similar argument as above, we conclude that χ′

∞
2 is induced by a spin.

This completes the proof of the lemma.
By taking squares of maps if necessary, without loss of generality we may

assume that χ′
∞ is induced by a spin throughout this section.

Observe that the spin described in the above lemma defines a closed c′0 curve
in S ′ passing through x′ . In fact, c′0 is freely homotopic to both c′1 and c′2 in S ′ .
Thus the homotopy class of c′0 in S ′ determines an element of the fundamental
group π1(S ′, x′), and hence corresponds to an element γ1 ∈ Γ1 which is hyperbolic.
To proceed, we need to construct a certain automorphism on F (Γ) which does

not act on the corresponding T (Γ′). The method was introduced in Sections 4
and 5.
Let S be the orbifold drawn as as in Figure 1(b); except that instead of

putting x2, . . . , x7 on Σ, we place five (order 2) branch points x2, . . . , x6 on Σ.
Let x1 be a puncture, and let A denote the rotation about the z axis with rotation
angle 2π/5. Clearly, A is an automorphism of S in the sense of orbifolds.

Lemma 8.5. Suppose that Γ is of signature (0, 6; 2, 2, 2, 2, 2,∞) . There is
a non-trivial automorphism δ ∈ modΓ − Γ (not unique) with the property that
δ5 = e∞ ∈ Γ is parabolic.

Proof. We may assume that Γ is a Fuchsian group so that U/Γ = S is the
surface described above. There is a self-map A of S in the sense of orbifolds such
that A fixes x1 and A5 is isotopic to the identity. Moreover, A can always be
lifted to self-maps Â of U . See Birman–Hilden [8].
Let e∞ ∈ Γ be a parabolic Möbius transformation corresponding to the punc-

ture x1 . Since A fixes x1 , Â can be chosen so that Â fixes the fixed point of e∞
(which lies in R). We obtain the following commutative diagram:

U
Â ��

!

��

U

!

��
U/Γ A �� U/Γ,
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where � is the natural projection. Now Â induces an element [Â] , which consists
of those quasiconformal self-maps of U which lie in the normalizer of Γ and are
isotopic to Â , in mod Γ. Let δ = [Â] . Clearly, ζ(δ) ∈ ModΓ is induced by the
self-map A . Since A is not isotopic to the identity, δ is not in Γ. To prove that
δ5 = e∞ , we note that ζ(δ5) = ζ(δ)5 = A5 = id. It turns out that δ5 lies in the
kernel of ζ : modΓ→ ModΓ.
Assume that the group Γ is normalized so that x1 corresponds to the parabolic

transformation e∞ which is of the form e∞(z) = z+1. The local coordinate chart
near the puncture x1 can be written as ξ = e2πiz , where z = x + iy and y is
sufficiently large. Take a small loop c around x1 in the coordinate patch, and
choose x ∈ c . Choose x̃ ∈ U so that �(x̃) = x . The loop c can be lifted to a
horizontal segment

c̃ = {z = x+ iy ∈ C : Re x̃ ≤ x ≤ Re x̃+ 1 and y = Im x̃}.

Since A leaves the loop c invariant, Â5 sends x̃ to x̃ + 1. In particular, δ5 is
not the identity. It follows that the restriction of δ5 to each fiber is a parabolic
Möbius transformation.

Recall that f ′
∞ induces χ′

∞ = ϕ ◦ e∞ ◦ ϕ−1 . From Lemma 8.5, f ′
∞ is a spin

about the puncture x′ . This in particular implies that f ′
∞ is a reducible map

with respect to the system c′ = {c′1, c′2} and that the restrictions of f ′
∞ to each

modular part of S ′ − {N(c′)} is id. On the other hand, χ′′
∞ = ϕ ◦ δ ◦ ϕ−1 is

another modular transformation with χ′′
∞

5 = χ′
∞ . Let χ′′

∞ be induced by the
map f ′

δ . It is easy to see that f ′
∞ and f ′

δ share the common system c′ = {c′1, c′2}
of admissible curves.
We need to prove that there is at least one component Si of S − {N(c′)} on

which f ′
δ is non-trivial. Suppose that both f ′

δ and f ′
∞ are products of Dehn twists

about the system c′ . Since γ ∈ Γ is parabolic, we can choose a point [µ] ∈ T (Γ)
but not in T (Γ)ζ(δ) , and a sequence {[µ], zm)} in wµ(U) tending to the fixed
point of γµ so that

�
(
([µ], zm), γ([µ], zm)

)
→ 0.

Note that ϕ|wµ(U): wµ(U) → T (Γ′) is distance non-increasing. If necessary, a
convergent subsequence of {[µ], zm)} may be chosen, and we may assume that the
sequence ym = ϕ([µ], zm) also converges and satisfies

〈ym, χ′
∞(ym)〉 → 0, → ∞.

We can write f ′
δ = τα1

1 ◦ τα2
2 , and f ′

∞ = τ 5α1
1 ◦ τ 5α2

2 , where αi are non-trivial
integers and τi are the modular transformations induced by the Dehn twists about
c′i , i = 1, 2.
We claim that

(8.12) 〈ym, χ′′
∞(ym)〉 → 0, as m → ∞.
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Indeed, for sufficiently large m , the surfaces Sm representing ym have long thin
disjoint cylinders with central curves c′1 and c′2 . These cylinders are twisted
(defined by f ′

∞ ) about these central curves, but with small distortion of twist
factors. It follows that for the sequence {Sm} , 〈χ′′

∞(ym), ym >〉 = 〈χ′′
∞

(1−5) ◦
χ′′
∞

5(ym), ym〉 is also arbitrarily small for large m .
We conclude that (8.12) holds. Consider the holomorphic map ψ = π ◦ ϕ−1

of T (Γ′) onto T (Γ). ψ is distance non-increasing. So

〈π(ϕ−1(χ′′
∞(ym))), π(ϕ

−1(ym))〉 → 0.

On the other hand, ϕ−1(ym) and ϕ−1(χ′′
∞(ym)) lie in two different fibers (by

construction) of π: F (Γ)→ T (Γ). More precisely, ϕ−1 ◦ χ′′
∞(ym) lies in the fiber

over ζ(δ)([µ]) , and we must have

〈π(ϕ−1(χ′′
∞(ym))), π(ϕ

−1(ym))〉 = 〈ζ(δ)(π(ym)), π(ym)〉,

which does not depend on m . So it is a constant. This is a contradiction. The
same argument also shows that χ′′

∞
j , j = 2, 3, 4, are non-trivial on at least one Si .

It follows that χ′′
∞ is of order 5 on Si .

There remain two cases to consider.

Case I. c′1 (and hence c′2 ) is a dividing curve. A geometric observation shows
that S ′−{N(c′)} = S ′

1+S ′
2+S ′

3 , where S ′
1 is of type (1, 1), S ′

2 is of type (1, 1),
and S ′

3 is of type (0, 3). If f
′
δ acts on S ′ − {N(c′)} componentwise, it follows

from the above argument that at least one of the maps f ′
δ|S′

1
, f ′
δ|S′

2
is non-trivial.

Suppose that f ′
δ|S′

1
is non-trivial. It is easy to see that f ′

δ|S′
1
can be extended

to a periodic map of the corresponding finite-analytic type surface and hence to
a periodic map on the corresponding closed surface. Thus an automorphism of
order 5 on a torus is defined, which is absurd. If f ′

δ interchanges S
′
1 and S ′

2 , so
does f ′

δ
5 , which contradicts the fact that f ′

δ
5 is a spin about x′ .

Case II. c′1 (and hence c′2 ) is a non-dividing curve. In this case, S ′−{N(c′)} =
S ′

1 + S ′
2 , where S ′

1 is of type (1, 2), and S ′
3 is of type (0, 3). Once again, from

the above argument, f ′
δ|S′

1
is non-trivial, and the map can be easily extended to

a periodic map (order 5) of the corresponding closed surface which is once again
a torus. This also leads to a contradiction.

This completes the proof of Theorem 2.

9. Appendix

The purpose of this section is to prove Lemma 8.2. It is well known that for
any Teichmüller space of compact Riemann surface, any two components of the
hyperelliptic locus are modular equivalent. Our argument is similar to [16].
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Let S be a hyperelliptic Riemann surface (with the hyperelliptic involution j )
of type (g, 1). Then the puncture (denoted by x2g+2 ) is a Weierstrass point of S .
From a discussion in Section 2, we know that S/〈j〉 is an orbifold with signature
(0, 2g + 2; 2, . . . , 2). Let f be a self-map of S/〈j〉 in the sense of orbifolds. f
always lifts to a self-map f̃ : S → S (see Birman–Hilden [8] for a construction) so
that the following diagram is commutative:

S
f̃ ��

ζ

��

S

ζ

��
S/〈j〉 f �� S/〈j〉,

where ζ : S → S/〈j〉 is the natural projection. It is easy to see that f̃ and j ◦ f̃
are all possible lifts of f .

Lemma 9.1. f is isotopic to id on S/〈j〉 − {all branch points} if and only
if either f̃ or j ◦ f̃ (but not both) is isotopic to id on S .

Proof. See Birman–Hilden [8].

The geometric intersection number of two unoriented non-separating, simple
closed curves α and β of S , denoted by i(α, β), is the minimal number of in-
tersections of α̃ and β̃ as α̃ and β̃ run over free homotopy classes of α and
β , respectively. By definition, a canonical curve α satisfies the condition that
j(α) = α . Since j: S → S is considered a 180◦ rotation around the x-axis, α
must contain only two fixed points. Moreover, α can be parametrized as α(θ),
0 ≤ θ ≤ 2π , so that α(θ) contains only two Weierstrass points α(0) and α(π).

A chain for x2g+2 is a 2g -tuple (α1, β1, . . . , αg, βg) of canonical curves on S
with the following properties:

(i) i(αj , αk) = 0, i(βj , βk) = 0, i(αj , βj) = 1, for 1 ≤ j, k ≤ g ;

(ii) i(βj , αj+1) = 1, for 1 ≤ j ≤ g − 1;
(iii) i(αj , βk) = 0, for 1 ≤ j, k ≤ g , j 
= k, k + 1.

Figure 4 below shows a chain for x12 in the case of g = 5.
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β1

α1

β2

α2

β3

α3

β4

α4

β5

α5

x12

Figure 4.

As in Section 2, let hc denote the Dehn twist about the simple closed curve
c on S . Let C = (α1, β1, . . . , αg, βg) be a chain for x2g+2 . Define

(9.1) h = hβg ◦ hαg ◦ · · · ◦ hβ1 ◦ hα1 .

From Lemma 4.3, one sees immediately that h is isotopic to a lift of σ (defined
by (4.2) and (4.3)). By Magnus [15], σ2g+1 is isotopic to id on S/〈j〉 − {2g +
1 branch points} . By Lemma 9.1, h2g+1 is either isotopic to j , or isotopic to id.
But it is easy to see that h2g+1 reverses the orientation of the chain for x2g+2

of canonical curves (give arbitrarily an orientation to the curves before doing the
Dehn twists). We see that h2g+2 is isotopic to j . We thus have

Lemma 9.2. As a self-map of S , the hyperelliptic involution j is isotopic to
the product of Dehn twists (hβg ◦ hαg ◦ · · · ◦ hβ1 ◦ hα1)2g+1 .

The set of components of the hyperelliptic locus in T (2, 1) is one-to-one cor-
respondent with the set of isotopy classes of orientation-preserving self-maps rep-
resented by hyperelliptic involutions. Let l be a component of the hyperelliptic
locus in T (2, 1). By using Lemma 9.2, we see that the corresponding hyperelliptic
involution j is isotopic to (hβ2 ◦hα2 ◦hβ1 ◦hα1)5 for a chain (α1, β1, α2, β2). Two
chains for x6 are called equivalent if they are invariant under the same hyperel-
liptic involution. From (9.1), one observes that h is uniquely determined by the
chain (α1, β1, α2, β2). This leads to the following lemma.

Lemma 9.3. There is a bijection between the set of components of the
hyperelliptic locus in T (2, 1) and the set of chains for x6 modulo the equivalence
relation.
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x-axis

y-axis

z-axis

a1 a2

b1
b2

Figure 5.

Now S is considered a hyperelliptic Riemann surface of type (2, 1). Our
purpose is to show that any chain for x6 is homeomorphic (as a set of points) to
a standard chain drawn in Figure 5, where

a1 = {(x, y, 0) ∈ R3 : (x− 1)2 + y2 = 1},
b1 = {(x, 0, z) ∈ R3 : (x− 3)2 + z2 = 1},
a2 = {(x, y, 0) ∈ R3 : (x− 5)2 + y2 = 1},

and
b2 = {(x, 0, z) ∈ R3 : (x− 7)2 + z2 = 1}.

Indeed, the desired homeomorphism w can be easily obtained by gluing 4 simple
maps w1, . . . , w4 together, where w1: α1 → a1 , w2: β1 → b1 , w3: α2 → a2 , and
w4: β2 → b2 are only defined on curves and can be constructed as follows. First,
w1 is defined as a homeomorphism of α1 to a1 with w1(α1 ∩ β1) = a1 ∩ b1 ; w2 is
a homeomorphism of β1 to b1 with the properties that w2(α1 ∩β1) = a1 ∩ b1 and
w2(β1∩α2) = b1∩a2 . Since both β1−{α1∩β1, β1∩α2} and b1−{a1∩b1, b1∩a2}
consist of two open intervals, w2 can be easily constructed so as to satisfy the
above properties. The constructions of w3 and w4 are similar to those of w1 and
w2 , respectively. We thus have

Lemma 9.4. Any two chains for x6 are homeomorphic in the sense of one
dimension.

We are in the position to prove Lemma 8.2. Lemma 9.3 asserts that one can
choose two chains C1 and C2 for x6 on S corresponding to l1 and l2 , respectively.
By Lemma 9.4, there is a homeomorphism w: C1 → C2 . w extends to a homeo-
morphism w0 of a tubular neighborhood N(C1) onto a tubular neighborhood
N(C2), where N(C1) is drawn in Figure 7. Hence, w determines a homeomor-
phism (call it w also) of ∂N(C1) onto ∂N(C2). The Euler characteristic of S is
2 − 2g = −2. On the other hand, by looking at the chain C1 , we see that the
number V of vertices of S− C1 is 3, the number E of edges of S − C1 is 6. Let
F denote the number of faces of S − C1 . By computing the Euler characteristic
via the formula V + F − E , one obtains

−2 = F + 3− 6.
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So F = 1. In particular, we conclude that S−N(C1) is conformally equivalent to
the punctured disk ∆̇ = {z : 0 < |z| < 1} . We denote by ξ1 this conformal map.
Similarly, there is a conformal map ξ2 of S −N(C2) onto ∆̇.
Now S − N(C1) and S − N(C2) are considered polygons. Then ξ1 and ξ2

can be extended to the closed polygons of S−N(C1) and S−N(C2), respectively.
Notice that w establishes a boundary correspondence between the two polygons.
It follows that the map ξ2 ◦w ◦ ξ−1

1 is a homeomorphism of S1 onto S1 . Clearly,
ξ2 ◦w ◦ ξ−1

1 can be extended to a self-map η of the closed unit disk by the radial
extension. It turns out that

f(x) =
{

ξ−1
2 ◦ η ◦ ξ1(x), if x ∈ S −N(C1);
w0(x), if x ∈ N(C1)

is a self-map of S which fixes x6 , and hence defines a self-map of S which carries
C1 to C2 . Let C1 = (α1, β1, α2, β2) and C2 = (α′

1, β
′
1, α

′
2, β

′
2). By (4.3) and (9.1),

we obtain

f ◦ (hβ2 ◦ hα2 ◦ hβ1 ◦ hα1)
5 ◦ f−1 = (hβ′

2
◦ hα′

2
◦ hβ′

1
◦ hα′

1
)5.

N(C)

x6

Figure 6.

It follows from Lemma 9.2 that f ◦ j ◦ f−1 is isotopic to j ′ . This implies
that χ ◦ j ◦ χ−1 = j ′ , where χ ∈ Mod (2, 1) is induced by f . This completes the
proof.
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