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Abstract. In this paper, we will introduce a new kind of isomorphism theorem (we call it
the reducing theorem) for asymptotic Teichmüller spaces. Our isomorphism theorem is induced
by (conformal) 2-surgery operations along simple closed loops on surfaces, and yields several
interesting and pathological phenomena on the structures of asymptotic Teichmüller spaces.

1. Introduction

In this paper, we will give a new kind of isomorphism theorem for asymptotic Te-
ichmüller spaces of Riemann surfaces. By definition, asymptotic Teichmüller spaces
are recognized as the deformation space of ends of Riemann surfaces. Intuitively,
one would think that asymptotic Teichmüller space admits “product structures” in-
herited from the structure of the end of corresponding Riemann surface, since each
neighborhood of any end is deformed independently of the other ends. In this paper,
we will give a certain concrete expression for this intuition.

To be more precise, let AT (R) denote the asymptotic Teichmüller space of a
Riemann surface R. Let c be a homotopically non-trivial simple closed curve on
R. We apply a conformal 2-surgery to R along c (cf. §4.1 and see also Figure 2).
Then, the resulting manifold consists of either two surfaces S1 and S2 when c is a
separating loop, or one surface S0 otherwise.

Main Theorem (Reducing Theorem). One of the following holds:
(1) AT (R) is biholomorphically equivalent to the product AT (S1) × AT (S2) if

c is a separating loop, or
(2) AT (R) is biholomorphically equivalent to AT (S0) otherwise.

Namely, our reductions allow us to represent any asymptotic Teichmüller space
as the direct product of two asymptotic Teichmüller spaces of “simpler” Riemann
surfaces than given one. We will deal with the detail of our main theorem in §4.3
(Theorem 4.1).
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Usually (or from empirical observations), conformal 2-surgery operations do not
seem to fit to the complex analytic theory of Teichmüller spaces. However, these
operations adjust to the complex analytic theory of asymptotic Teichmüller spaces.
One reason why the operations work in this theory is that we can always ignore
deformations on any compact sets (rel the ideal boundaries).

Structures of asymptotic Teichmüller spaces. From our main theorem,
we obtain several observations on the structures of asymptotic Teichmüller spaces.
Indeed, the following corollaries will be discussed in §5.

Corollary 1. (Deformations are realized at ends.) Let R be a Riemann surface
and Z a regular domain in R. Suppose C1, ...,Cn are the common boundary curves
of Z and R − Z, and S1, ...,Sm are the components of R − Z, with capping disks
along the boundary curves Cj. Then, AT (R) is biholomorphically equivalent to the
product

∏m
i=1 AT (Si).

See §3 for the definition of regular domains. Corollary 1 immediately leads the
following two results.

Corollary 2. Let R be a Riemann surface of finite genus. Then there is a
closed set E in Ĉ such that AT (R) is biholomorphically equivalent to AT (Ĉ−E).

Corollary 3. Let R be a Riemann surface of topologically finite type. Then,
AT (R) is biholomorphically equivalent to the product space AT (D)m, where m is
the number of funnels of R and D is the unit disk in C.

The structures of asymptotic Teichmüller spaces seem to be well-behaved with
the self-similarity of the ends as follows (see also §3 of [2]):

Corollary 4. Let C ⊂ Ĉ be the middle thirds Cantor set and Ω = Ĉ − C.
Then AT (Ω) is biholomorphically equivalent to the product space AT (Ω)m for all
m ∈ N.

Since AT (D) is homogeneous (cf. [3]. See also [11]), by Corollary 3, we have

Corollary 5. When R is of topologically finite type, the automorphism group
of AT (R) acts transitively on AT (R).

The main theorem and its corollaries intimate that asymptotic Teichmüller
spaces have intriguing (or pathological) structures. The author hopes that some
of the results in this paper, when used more carefully, will yield more informations
about the structures of asymptotic Teichmüller spaces.

This paper is organized as follows: In §3, we will give modifications of quasicon-
formal mappings and quasiconformal isotopies, which are important for the proof
of our main theorem. In §4 our main theorem will be restated and proved. In §5,
we will prove corollaries stated above.

Acknowledgements. The author wishes to thank Osaka University for financial
support from October 2003 to March 2004, and Dr. Ege Fujikawa for giving him
nice introduction to the theory of asymptotic Teichmüller spaces.
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2. Notation

2.1. Quasiconformal isotopies. Let R be a hyperbolic Riemann surface.
Let Γ be the Fuchsian group acting on D with D/Γ = R and denote by Λ(Γ) the
limit set of Γ. Then R = (D − Λ(Γ))/Γ is an orbifold with interior R = D/Γ and
boundary (∂D− Λ(Γ))/Γ. We say that (∂D− Λ(Γ))/Γ is the ideal boundary of R,
and denote it by ∂idR. When R is not hyperbolic, we define ∂idR to be the set of
its punctures (possibly empty). In any case, we set R = R ∪ ∂idR. Notice that any
quasiconformal mapping between two Riemann surfaces can be extended to their
ideal boundaries (e.g. §8 of Chapter I in [8]).

Let R and S be Riemann surfaces and C a set in R. We say that a continuous
map H : R× [0, 1] → S is a homotopy rel C (which we denote by H(p, t) or Ht(x))
if for each t ∈ [0, 1], Ht extends to R continuously and Ht(p) = H0(p) for all (p, t) ∈
C × [0, 1]. A quasiconformal isotopy rel C is a homotopy rel C with the additional
property that there is a constant K > 1 such that Ht |R is a K-quasiconformal
homeomorphism for all t ∈ [0, 1]. Two quasiconformal mappings f and g from R
to S are said to be quasiconformally isotopic (resp. homotopic) rel C if there is a
quasiconformal isotopy (resp. a homotopy) H rel C with H0 = f and H1 = g.

The following is due to Earle and McMullen.

Proposition 2.1. (Theorem 1.1 in [5]) The following three conditions are equiv-
alent for any two quasiconformal mappings f and g between hyperbolic Riemann
surfaces R and S:

(1) f and g are quasiconformally isotopic rel ∂idR;
(2) f and g are homotopic rel ∂idR; and
(3) f and g have lifts to the universal cover D which agree on ∂D.

It is easy to check that (1) and (2) above are also equivalent even in the case
when R and S are not hyperbolic.

2.2. Asymptotic Teichmüller spaces. Let R be a Riemann surface and
L∞(R) denote the space of bounded measurable (−1, 1)-forms on R. We say that
µ ∈ L∞(R) vanishes at infinity on R when for any ε > 0, there is a compact set
C ⊂ R such that |µ| < ε a.e. on R−C. We denote by L∞0 (R) the closed subspace of
L∞(R) consisting of all µ ∈ L∞(R) vanishing at infinity. A quasiconformal mapping
f on R is said to be asymptotically conformal if its complex dilatation vanishes at
infinity. Set L̂(R) = L∞(R)/L∞0 (R).

The asymptotic Teichmüller space AT (R) of R is, by definition, the space of the
equivalence classes of quasiconformal mappings f from R onto a variable Riemann
surface f(R). Two mappings f from R to R0 and g from R to R1 are equivalent if
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there is an asymptotically conformal mapping h : R0 → R1 such that h◦f and g are
quasiconformally isotopic rel ∂idR. We denote by [f ] the equivalence class of f in
AT (R). It is known that AT (R) admits the natural structure of a complex Banach
manifold (cf. [2]). The Teichmüller space T (R) of R has the same definition with
one exception. The mapping h has to be conformal. Since conformal mappings are
asymptotically conformal, there is a canonical projection T (R) → AT (R).

If R is a Riemann surface of analytically finite type, AT (R) consists of one
point (cf [2]). Indeed, any quasiconformal mapping on R is isotopic (rel ∂idR)
to a quasiconformal mapping which is conformal outside a compact set in R (cf.
Proposition 3.2).

2.3. Complex structure on AT (R). Let R be a Riemann surface. Let M(R)
be the open unit ball in L∞(R). Then there is a canonical projection Φ: M(R) →
T (R). Namely, Φ(µ) is the equivalence class (in T (R)) of a quasiconformal mapping
on R whose complex dilatation is µ. This projection is called the Bers projection.

Let M̂(R) is the unit ball in L̂(R). In [2], Earle, Gardiner and Lakic proved
the existence of a holomorphic splitting submersion Φ̂R : M̂(R) → AT (R) with the
following diagram is commutative:

M(R)
Φ−−−→ T (R)

PR

y
y

M̂(R)
bΦR−−−→ AT (R),

where the vertical directions are canonical projections.

Lemma 2.1. Let S1, S2 and R be Riemann surfaces (possibly S2 = ∅). Let
Ψ: AT (S1)×AT (S2) → AT (R) be a map. Suppose that there is a C-linear mapping
L from L∞(S1)× L∞(S2) to L∞(R) such that

(1) L (M(S1)×M(S2)) ⊂ M(R),
(2) L (L∞0 (S1)× L∞0 (S2)) ⊂ L∞0 (R), and
(3) Ψ and L satisfy the following commutative diagram:

M(S1)×M(S2)
L−−−→ M(R)

(bΦS1
◦PS1

)×(bΦS2
◦PS2

)

y
ybΦR◦PR

AT (S1)× AT (S2)
Ψ−−−→ AT (R).

Then Ψ is a holomorphic mapping.

Proof. We deal only with the case where all AT (S1), AT (S2) and AT (R2) are
not trivial. The other cases can be treated in a similar way.
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By the assumption (2), L descends to a C-linear mapping L̂ from L̂(S1)×L̂(S2)

to L̂(R) satisfying the following commutative diagram

M(R1)
PS1

×PS2−−−−−→ M̂(S1)× M̂(S2)
bΦS1

×bΦS2−−−−−→ AT (S1)× AT (S2)

L

y cL
y Ψ

y

M(R)
PR−−−→ M̂(R)

bΦR−−−→ AT (R).

Since Φ̂Si
is a holomorphic split submersion, by the implicit function theorem (cf.

p. 89 of [12]), we get a neighborhood Ui of [fi] and a local holomorphic section
si : Ui → M̂(Si) with Φ̂Si

◦ si = id on Ui. Therefore, Ψ satisfies

Ψ([g1], [g2]) = Ψ(Φ̂S1 ◦ s1([g1]), Φ̂S2 ◦ s2([g2]))

= Φ̂R ◦ L̂ (s1([g1]), s2([g2])),

for all ([g1], [g2]) ∈ U1 × U2. Thus Ψ is holomorphic at ([f1], [f2]). ¤

3. Modifications of qc mappings and qc isotopies

The aim of this section is to prove Proposition 3.3, which tells us the existence of
some kind of modifications of asymptotically conformal mappings on compact sets
of Riemann surfaces. Our modification is described as follows: Given a compact set
C and two quasiconformal mappings f and g which are mutually homotopic rel the
ideal boundary, our modification allows us to find a quasiconformal mapping h (a
modification of f) which coincides with f “at infinity” and is homotopic to g rel the
ideal boundary and C. This modification adapts to the equivalence relation in the
definition of asymptotic Teichmüller spaces and will be used at important parts of
the proof of the well-definedness of our reductions.

3.1. Lemmas on qc and qc isotopies. This section collects three lemmas
concerning quasiconformal mappings and quasiconformal isotopies. Since all of these
follow from well-known facts, we state these lemmas without proofs.

We first note a distortion lemma for quasiconformal mappings which is deduced
from the compactness of the set of normalized quasiconformal mappings (cf. Theo-
rem 5.1 in p. 51 of [8]).

Lemma 3.1. Let R be a hyperbolic Riemann surface and f a quasiconformal
automorphism of R homotopic to the identity rel ∂idR. Then, for any p ∈ R, the
hyperbolic distance between p and f(p) is bounded by a constant depending only
on the maximal dilatation of f .

The second lemma easily follows from (3) of Proposition 2.1.

Lemma 3.2. Let R be a hyperbolic Riemann surface and H : R × [0, 1] → R
a quasiconformal isotopy rel ∂idR with H1 = id. Let S → R be a covering surface.
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Then there is a lift H̃ : S × [0, 1] → S of H which is a quasiconformal isotopy rel
∂idS with H̃1 = id.

We will use the third lemma to glue two quasiconformal isotopies along real an-
alytic curves (see the proof of Propositions 3.1 and 3.2). Indeed, this lemma follows
from the fact that any real analytic arc is removable with respect to quasiconformal
mappings (cf. Theorem 8.3 of p. 45 in [8]).

Lemma 3.3. Let R and S be Riemann surfaces and {γi}N
i=1 (possibly N =

∞) a collection of real analytic simple closed curves on R. Suppose that every
compact set on R intersect at most finitely many curves in {γi}N

i=1. Then a homotopy
H : R × [0, 1] → S rel ∂idR is a quasiconformal isotopy when for each t ∈ [0, 1], Ht

is a homeomorphism from R to S and K-quasiconformal outside
⋃N

i=1 γi with some
K ≥ 1.

3.2. Lemmas on subsurfaces. Let R be a Riemann surface and Z a subsurface
of R. We say that Z is incompressible in R if the inclusion Z ↪→ R induces a
monomorphism π1(Z) → π1(R).

Lemma 3.4. Let Z be a subsurface of R. If ∂Z (in R) consists of homotopically
non-trivial simple closed curves on R, then Z is incompressible in R.

Proof. Fix p ∈ Z and let c be a closed loop in Z with initial point p. Suppose
that the homotopy class of c is trivial in R. We may assume that c is a simple closed
curve. Then c bounds a disk Dc in R. We claim Dc is contained in Z. Otherwise,
Dc intersects a component c1 of ∂Z ∩R. Since ∂Dc = c ⊂ Z, by the connectivity of
c1 we deduce that c1 ⊂ Dc. Therefore, c1 is homotopic to a point, which contradicts
our assumption. ¤

A domain Z in a Riemann surface is said to be regular if (1) Z is relatively
compact, (2) Z and R − Z have a common boundary which is a 1-dimensional
submanifold, and (3) all components of R − Z are non-compact. It is known that
any open Riemann surface admits a regular exhaustion. Namely, there is a family
{Zk}∞k=1 of regular domains in R with Zk ⊂ Zk+1 and R =

⋃∞
k=1 Zk (cf. [1]). We may

suppose that all Zk is incompressible in R. Indeed, when R is simply connected, R is
either C or D. Thus, we can easily construct a regular exhaustion with the desired
property. Suppose R is not simply connected. Then Zk is not simply connected for
sufficiently large k, since R =

⋃∞
k=1 Zk. If a component c of ∂Zk is homotopically

trivial in R, by π1(Zk) 6= {1}, c bounds a closed disk outside Zk. This contradicts
to the definition of regular domains. Therefore, by Lemma 3.4, Zk is incompressible
for every sufficiently large k.

Lemma 3.5. Let Z be a relatively compact subsurface in R such that ∂Z
consists of homotopically non-trivial simple closed curves in R. Then R−Z consists
of finitely many components, and any component Z ′ of R− Z is an incompressible
surface in R such that ∂Z ′ ∩ R consists of finitely many homotopically non-trivial
simple closed curves in R.
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Proof. Since Z is relatively compact, ∂Z consists of at most finitely many simple
closed curves. For each component c of ∂Z, at most one component of R − Z can
share c with Z. Since the boundary of a component of R−Z (in R) is contained in
∂Z, the number of components of R− Z is less than the number of components of
∂Z.

Let Z ′ be a component of R−Z. Since any component of ∂Z ′ is homotopically
non-trivial in R, by Lemma 3.4, Z ′ is incompressible in R. ¤

Finally, we note

Lemma 3.6. Let C be a compact set on a Riemann surface R with π1(R) 6= {1}.
Then there is a relatively compact subsurface Z of R such that C ⊂ Z and ∂Z
consists of finitely many homotopically non-trivial real analytic simple closed curves
on R.

Proof. Consider a sufficiently large regular domain which contains C. ¤
3.3. Modifications of qc mappings and qc isotopies on a compact set

We give the first modification.

Proposition 3.1. Let R and S be hyperbolic Riemann surfaces and f and g
quasiconformal mappings from R to S which are quasiconformally isotopic rel ∂idR.
Let C be a compact set in R. Then there exist a quasiconformal mapping h : R → S
and a quasiconformal isotopy H : R× [0, 1] → S rel C ∪ ∂idR such that

(1) H0 = h and H1 = g, and
(2) h = f on R− Z where Z is a regular domain of R which contains C.

Proof. We may assume S = R and g = id if we consider g−1 ◦ f instead of f .
Let G : R × [0, 1] → R be a quasiconformal isotopy rel ∂idR with G0 = f and

G1 = id. Since C0 :=
⋃

0≤t≤1 Gt(C) is compact in R, there is a regular domain Z0

in R containing C0 in its interior (cf. Lemma 3.6). Let us denote by {Zi}m
i=1 the

components of R− Z0.
Let Γ be the Fuchsian group acting on D with D/Γ = R and Γi a subgroup of

Γ corresponding to π1(Zi) for i = 1, · · · ,m. Let Ri = D/Γi and pri : Ri → R the
projection. Since Zi is incompressible in R (cf. Lemma 3.5), there is an embedding
Ji : Zi → Ri satisfying pri ◦ Ji(p) = p for all p ∈ Zi. Furthermore, by definition, any
component of Ri − Ji(Zi) is a funnel corresponding to some component in ∂Zi ∩R.
Therefore, there is a quasiconformal mapping Wi : Zi → Ri such that Wi = Ji

outside a relatively compact neighborhood Ni of ∂Zi ∩R in Zi (see Figure 1).
By Lemma 3.2, we have a lift G̃i : Ri × [0, 1] → Ri of G such that (G̃i)t(p) = p

for all p ∈ ∂idRi and (Ĝi)1 = id on Ri. Thus,

Gi(p, t) := W−1
i ◦ G̃i(Wi(p), t) : Zi × [0, 1] → Zi

is a quasiconformal isotopy rel ∂Zi ∩ R and satisfies (Gi)1(p) = p for all p ∈ Zi

(i = 1, · · · ,m). Furthermore, by Lemma 3.2 again, (G̃i)t(p) = (G̃i)0(p) for (p, t) ∈
∂idRi × [0, 1]. Therefore, Gi keeps fixing any point of ∂idR whose neighborhood is
contained in Zi.
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Figure 1. Projections.

We define a quasiconformal isotopy H : R× [0, 1] → R by

H(p, t) =

{
Gi(p, t) p ∈ Zi (i = 1, . . . ,m)

p p ∈ Z0.

Then h := H0 and H have desired properties (cf. Lemma 3.3). Indeed, since Z0 is
relatively compact, any ideal boundary point has a neighborhood contained in some
Zi. Therefore, H is an isotopy rel C ∪ ∂idR because C ⊂ C0 ⊂ Z0. Since H1 = id,
h is quasiconformally isotopic to the identity mapping rel C ∪ ∂idR.

Finally, we check that h coincides with f outside a regular domain containing
Z0. Fix i = 1, · · · ,m. By Lemma 3.1 and Lemma 3.6, there is a regular domain Z

such that any point p ∈ Zi−Z satisfies f(p) ∈ Zi−Ni. By definition, (G̃i)0 is a lift
of f to the covering space pri : Ri → R. Since Ji is the right-inverse of pri on Zi,
Ji ◦ f(p) = (G̃i)0 ◦ Ji(p) for p ∈ Zi with f(p) ∈ Zi. Thus, we conclude that

h(p) = H0(p) = W−1
i ◦ (G̃i)0 ◦Wi(p) = f(p)

for all p ∈ R− Z, since Wi = Ji on Zi −Ni. ¤
3.4. Modifications around punctures. In this section, we give a modifica-

tion of quasiconformal mapping around punctures. The modification we give here
might be well-known, however, we will give a proof for the sake of completeness in
Appendix (see §6).

Proposition 3.2. Let R and S be Riemann surfaces and f a K-quasiconformal
mapping from R onto S. Let P = {xi}N

i=1 (possibly N = ∞) be a set of punctures
of R and C a compact set of R. Then there exist a quasiconformal isotopy H : R×
[0, 1] → S rel C ∪ ∂idR and a constant K1 = K1(K) ≥ 1 such that

(1) H0 = f on R,
(2) Ht is K1-quasiconformal for all t ∈ [0, 1], and
(3) H1 is a conformal around all pi ∈ P .

3.5. Modifications of asymptotically conformal mappings. Combining
Propositions 3.1 and 3.2, we conclude the following:
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Figure 2. Conformal 2-surgery operation along c.

Proposition 3.3. Let R be a Riemann surface and f and g quasiconformal
mappings on R. Let C be a compact set in R. Then, if [f ] = [g] in AT (R), there
exist an asymptotically conformal mapping h of f(R) to g(R) and a quasiconformal
isotopy H : f(R)×[0, 1] → g(R) rel f(C)∪∂idf(R) such that H0 = h and H1 = g◦f−1

on f(R).

Proof. When R is compact, we define a quasiconformal isotopy H : f(R) ×
[0, 1] → g(R) by Ht = g ◦ f−1 (=: h) for (p, t) ∈ f(R)× [0, 1].

Suppose that R is open. Assume first that R is not hyperbolic. Then R is either
C or C − {0}. In any case, by Proposition 3.2, there is a quasiconformal isotopy
H : f(R)× [0, 1] → g(R) rel f(C) ∪ ∂idf(R) such that H1 = g ◦ f−1 for p ∈ R and
h := H0 is conformal around punctures. Such H and h have desired properties.

Next, we suppose that R is hyperbolic. Since [f ] = [g], there is an asymptotically
conformal mapping h0 from f(R) and g(R) such that h0 and g ◦ f−1 are homotopic
rel ∂idf(R). Then, by Proposition 3.1, we find a quasiconformal mapping h and a
quasiconformal isotopy H : f(R)× [0, 1] → g(R) rel f(C) such that

(1) H0 = h and H1 = g ◦ f−1, and
(2) h = h0 on f(R)− Z where Z is a regular domain in f(R) with f(C) ⊂ Z.

Since h0 is asymptotically conformal, so is h. Thus, we have the assertion. ¤

4. Reductions of Asymptotic Teichmüller space by curves

In this section, we give the definition of our reductions for asymptotic Teich-
müller spaces. Intuitively, our reduction is described as follows: Let R be a Riemann
surface and c a homotopically non-trivial simple closed curve on R. Construct sur-
faces S1 and S2 from R by a conformal 2-surgery along c, that is, the surgery
operation defined as cutting along c and then (conformally) capping the resulting
boundary components with disks. (See Figure 2). Then, AT (R) is biholomorphi-
cally equivalent to AT (S1)× AT (S2).

4.1. Conformal 2-surgery operations. Let R be a Riemann surface and c a
homotopically non-trivial simple closed curve on R. Let A be a relatively compact
annulus on R whose core curve coincides with c, where the core curve c of A is a
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closed curve defined as the preimage of the circle {|z| = 1/
√

r} via a conformal
mapping ξ : A → A(r) := {1/r < |z| < 1}.

Suppose that R − c consists of two components R1 and R2. Let Ai = A ∩ Ri

(i = 1, 2) and ξi : Ai → A(ri) a conformal mapping with ξi(c) = {|z| = 1/ri} (where
we recognize c as the common boundary component of Ai and Ri). Then after gluing
the unit disk along Ai to Ri by ξi, we obtain new surfaces rd(Ri; A) (i = 1, 2), that
is, rd(Ri; A) = Ri∪ξi

D. When R−c =: R0 is connected, we let A−c = A1∪A2 and
define a new surface rd(R0; A) by conformally gluing two copies of D along each A1

and A2. Namely, rd(R0; A) = A1 ∪ξ1 R0 ∪ξ2 A2 where ξi : Ai → A(ri) is a conformal
mapping as above. In any case, we may recognize Ri as a subsurface of rd(Ri; A).

4.2. Quasiconformal mappings induced by 2-surgeries. Let f be a qua-
siconformal mapping on R and µ the complex dilatation of f . We then define a
quasiconformal mapping rd(f)i,A on rd(Ri; A) (i = 1, 2 when R− c is disconnected,
i = 0 otherwise) as follows:

Here we treat only the case when R − c is disconnected. In the other case, we
can construct a quasiconformal mapping in a similar way.

Fix i = 1, 2 and let fA
i be a quasiconformal automorphism of D whose complex

dilatation is
(fA

i )z

(fA
i )z

=

{
(ξ−1

i )∗µ on A(ri)

0 otherwise.
Then, by definition,

(4.1) ξf
i := fA

i ◦ ξi ◦ f−1

is conformal on f(Ai) ⊂ f(Ri). Therefore, the restriction f |Ri
extends as a qua-

siconformal mapping rd(f)i,A from rd(Ri; A) onto rd(Ri; A)f := f(Ri) ∪ξf
i
D which

satisfies the following commutative diagram:

rd(Ri; A) ⊃ Ai
ξi−−−→ A(ri)(⊂ D)

rd(f)i,A

y
yfA

i

rd(Ri; A)f ⊃ f(Ai)
ξf
i−−−→ D.

We note that the complex dilatation of rd(f)i,A is
{

(Ii)
∗µ on Ri

0 on rd(Ri; A)−Ri,

where Ii : Ri ↪→ R is the inclusion.

4.3. Reductions. A precise statement of our main theorem is given as follows:

Theorem 4.1. Let R, c, and A as above and denote Si = rd(Ri; A) for i =
0, 1, 2. Then it holds either

(a) if R− c consists of two components, the mapping

Rc : AT (R) 3 [f ] 7→ ([rd(f)1,A], [rd(f)2,A]) ∈ AT (S1)× AT (S2)
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is well-defined and biholomorphic, or
(b) if R− c is connected, the mapping

Rc : AT (R) 3 [f ] 7→ [rd(f)0,A] ∈ AT (S0)

is well-defined and biholomorphic.

Proof. We treat only the case where R − c is disconnected The other case can
be treated in a similar way.

First we suppose that both S1 and S2 are hyperbolic. We then define a C-linear
operator L Rc,i : L∞(R) → L∞(Si) by

L Rc,i(ν) =

{
(Ii)

∗ν on Ri

0 on Si −Ri.

Since Ai is relatively compact in R, the surgery operation constructing Si from R
do not effect the asymptotic behavior of any Beltrami differential on R. Hence
L Rc,i(L

∞
0 (R)) ⊂ L∞0 (Si).

We want to show that L Rc,i induces a holomorphic mapping Rc,i : AT (R) →
AT (Si). To this end, we claim the following.

Claim 1. Let µ, ν ∈ M(R) and f and g quasiconformal mappings whose
complex dilatations are µ and ν respectively. If [f ] = [g] in AT (R), then [rd(f)i,A] =
[rd(g)i,A] in AT (Si).

Proof. By Proposition 3.3, there exist an asymptotically conformal mapping
h from f(R) to g(R) and a quasiconformal isotopy H : f(R) × [0, 1] → g(R) rel
f(A)∪∂idf(R) with H0 = h and H1 = g ◦f−1. Especially, h(f(c)) = g(c) and hence
h maps f(Ri) (⊂ rd(Ri; A)f ) onto g(Ri) (⊂ rd(Ri; A)g). Let ξi : Ai → A(ri) be a
conformal mapping. We define a conformal mapping ξf

i (resp. ξg
i ) of f(Ai) (resp.

g(Ai)) into D and a quasiconformal mapping fAi (resp. gAi) of D satisfying the
following commutative diagram (cf. Equation (4.1)):

f(Ai)
rd(f)i,A←−−−− Ai

rd(g)i,A−−−−→ g(Ai)

ξf
i

y ξi

y
yξg

i

D
fAi←−−− D

gAi−−−→ D.

Since h = g ◦ f−1 on A and f(Ai) are relatively compact in rd(Ri; A)f , from the
diagram above, we have an asymptotically conformal mapping hi : rd(Ri; A)f →
rd(Ri; A)g defined by

hi =

{
h on f(Ri)

gAi ◦ (fAi)−1 on D,

where we recall that rd(Ri; A)f = f(Ri) ∪ξf
i
D and rd(Ri; A)g = g(Ri) ∪ξg

i
D.

Next we check that [rd(f)i,A] = [rd(g)i,A]. To this end, we show that hi◦rd(f)i,A

is homotopic to rd(g)i,A rel ∂idSi. Indeed, since Ht(p) = g ◦ f−1(p) for all (p, t) ∈
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f(Ai)× [0, 1], Ht satisfies the equation

ξg
i ◦Ht ◦ (ξf

i )−1(p) = gAi ◦ (fAi)−1(p)

for (p, t) ∈ ξf
i (Ai) × [0, 1]. Therefore, for each t ∈ [0, 1], the restriction of Ht |f(Ri)

admits an extension Ĥt from rd(Ri; A)f to rd(Ri; A)g defined by

Ĥt(p) =

{
Ht(p) p ∈ f(Ri)

gAi ◦ (fAi)−1(p) p ∈ D.

We notice that Ĥ0 = hi and Ĥ1 = rd(g)i,A ◦ (rd(f)i,A)−1, since H0 = h and H1 =
g ◦ f−1 on f(R). Thus, the mapping

G(p, t) := Ĥt ◦ rd(f)i,A(p) : rd(Ri; A)× [0, 1] → rd(Ri; A)g

is a quasiconformal isotopy rel ∂idSi with G0 = hi ◦ rd(f)i,A and G1 = rd(g)i,A,
which means [rd(f)i,A] = [rd(g)i,A] in AT (Si). ¤

Let f be a quasiconformal mapping on R and µ the complex dilatation of f . By
definition, the complex dilatation of rd(f)i,A coincides with L Rc,i(µ). Since L Rc,i

is a C-linear mapping with L Rc,i(L
∞
0 (R)) ⊂ L∞0 (Ri), by Claim 1 and Lemma 2.1,

we get a holomorphic mapping

Rc,i : AT (R) 3 [f ] 7→ [rd(f)i,A] ∈ AT (Si),

satisfying the following commutative diagram:

M(R) 3 µ
L Rc,i−−−→ L Rc,i(µ) ∈ M(Si)y

y
AT (R) 3 [f ]

Rc,i−−−→ [rd(f)i,A] ∈ AT (Si).

By definition, Rc([f ]) = (Rc,1([f ]),Rc,2([f ])). Hence Rc is holomorphic.
We next check that Rc is biholomorphic. To show this, we will construct the

inverse mapping of Rc.
For the sake of simplicity, we set Di = (Si − Ri) ∪ Ai, and abuse notations by

recognizing Ai as a subset of both Si and R respectively. Let ξ1 : A1 → A(r1) and
ξ2 : A2 → {1/(r1r2) < |z| < 1/r1} be conformal mappings with ξ1(c) = ξ2(c) =
{|z| = 1/r1}. After choosing ξ1 in an appropriate way, we may assume R is biholo-
morphically equivalent to R1 ∪ξ1 A ∪ξ2 R2, where A = {1/(r1r2) < |z| < 1}.

Let fi be a quasiconformal mapping on Si and µi the complex dilatation of fi.
We first construct a Riemann surface Rf and a quasiconformal mapping f : R → Rf

as follow: Define a Beltrami differential µ12 on A(1/r1r2) by

µ12(z) =

{
(ξ−1

1 )∗µ1(z) z ∈ A(r1)
(ξ−1

2 )∗µ2(z) z ∈ {1/(r1r2) < |z| < 1/r1}.
Let fA be a quasiconformal mapping on A with complex dilatation µ12. Then for
i = 1, 2, there is a conformal embedding ξf

i : fi(Ai) → fA(A) such that ξf
1 (f(A1))∩



A reduction for asymptotic Teichmüller spaces 67

ξf
2 (f(A2)) = ∅ and ξf

i ◦ fi = fA ◦ ξi (i = 1, 2). Set

Rf = f2(R1) ∪ξf
1
∪fA(A) ∪ξf

2
f2(R2).

From the definitions of ξf
i , the mapping

f(p) =

{
fi(p) p ∈ Ri

fA(p) p ∈ A

is a quasiconformal mapping from R to Rf .
We then show the following claim.

Claim 2. Let gi be a quasiconformal mapping on Si (i = 1, 2). Let Rg and g
be the Riemann surface and the quasiconformal mapping constructed from g1 and
g2 as above. If [fi] = [gi] in AT (Si) for i = 1, 2, then [f ] = [g] in AT (R).

Proof. By Proposition 3.3, there exist an asymptotically conformal mapping
hi : fi(Si) → gi(Si) and a quasiconformal isotopy H i : fi(Si) × [0, 1] → gi(Si) rel
fi(Di)∪∂idfi(Si) such that (H i)0 = hi and (H i)1 = gi◦f−1

i . Notice that hi(fi(Ri)) =
gi(Ri) for i = 1, 2. Furthermore, hi satisfies the following commutative diagram:

Ai
fi−−−→ fi(Ai)∥∥∥

yhi

Ai
gi−−−→ gi(Ai)

Hence, we have an asymptotically conformal mapping h : Rf → Rg defined by

h(p) =

{
hi(p) p ∈ fi(Ri)

gA ◦ (fA)−1(p) p ∈ f(A).

Since Hi keeps fixing Di pointwise for each i = 1, 2, these isotopies are extended as
a quasiconformal isotopy connecting h and g ◦ f−1 rel ∂idRf (cf. Lemma 3.3). This
means that [f ] = [g]. ¤

Let f1, f2, and f as above. From Claim 2, the mapping

Ψ: AT (S1)× AT (S2) 3 ([f1], [f2]) 7→ [f ] ∈ AT (R)

is well-defined. Next, we check that Ψ is holomorphic. To this end, we define a
C-linear mapping L : L∞(S1)× L∞(S2) → L∞(R) by

L (µ1, µ2) =

{
(I1)∗(µ1) on I1(R1)
(I2)∗(µ2) on I2(R2),

where Ii : Ri ↪→ R is the inclusion. By definition, Ψ and L satisfy

M(S1)×M(S2)
L−−−→ M(R)

bΦS1
◦PS1

×bΦS2
◦PS2

y
ybΦR◦PR

AT (S1)× AT (S2)
Ψ−−−→ AT (R).
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Since L (L∞0 (S1)×L∞0 (S2)) ⊂ L∞0 (R) and L (M(S1)×M(S2)) ⊂ M(R), by Lemma
2.1, Ψ is holomorphic.

We claim that Ψ is the inverse of Rc. Indeed, this follows from L ◦ (L Rc,1 ×
L Rc,2) = id on M(R) and (L Rc,1 ×L Rc,2) ◦L = id on M(S1) ×M(S2). Con-
sequently, Rc is biholomorphic.

Finally, we note for the case where either S1 or S2 is not hyperbolic. In this
case, we can see that Claims 1 and 2 do work since Proposition 3.3 is available to
all Riemann surfaces. Thus, we conclude the assertion. ¤

5. Structures of asymptotic Teichmüller spaces

We give proofs of corollaries stated in §1.

Proof of Corollary 1. Suppose that Si is originated from a component S ′i of
R − Z. Fix points x0 ∈ Z and xi ∈ S ′i for i = 1, . . . m. For each i = 1, · · · ,m,
we connect x0 and xi by a path ηi. Since x0 and xi are contained in the different
components of R −⋃n

j=1 Cj, we may assume that each ηi intersect only one curve
Cji

which is a common boundary component of Z and S ′i.
Let I = {1, . . . , n}, I1 = {j1, . . . , jm} and I2 = I − I1. Then, R − ⋃

j∈I2
Cj is

connected because so is
⋃n

j=1 ηj. Hence, by induction on the cardinality of I2 and
applying (b) of Theorem 4.1, we have that AT (R) is biholomorphically equivalent
to AT (R0), where R0 is the resulting surface after operating the conformal 2-surgery
along Cj for j ∈ I2.

By definition, each Cji
(i = 1, . . . ,m) is recognized as a curve on R0, and

Si is the resulting surface after operating the conformal 2-surgery along Cji
to a

component of R0−Cji
which contains S ′i. Hence, by induction on the cardinality of

I1 and applying (a) of Theorem 4.1, we conclude that AT (R0) (and hence AT (R)) is
biholomorphically equivalent to the product

∏m
i=1 AT (Si), which is what we desired.

Proofs of Corollaries 2 and 3. Suppose a Riemann surface R is of finite genus.
Then, we may assume that R = S −E, where S is a compact Riemann surface and
E a closed set of S. Take a simply connected domain D in S which contains E and
let Z := S −D ⊂ R. Then, by applying Corollary 1 to the regular domain Z of R,
We have that AT (R) is biholomorphically equivalent to AT (R0), where R0 is the
resulting surface of the conformal 2-surgery operation along ∂D to D−E. Since D
is simply connected, R0 is of genus 0, which implies Corollary 2 holds.

In the case of Corollary 3, we may assume that R = S − P ∪ E where S is a
compact surface, P consists of points of S and E is the union of closed disks in S.
Let D be a simply connected domain in S which contains P and D ∩E = ∅. Then,
by applying the conformal 2-surgery operation along ∂D, we may assume that R
has no puncture.

If E = ∅ we have nothing to do. If E 6= ∅, R is a hyperbolic surface and let
Z be the Nielsen convex core of R. Then, Z is a regular domain and R − Z is the
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union of the funnels of R. Thus applying Corollary 1 to Z, we conclude the desired
result.

Proof of Corollary 3. It suffices to prove the case of m = 2. The middle thirds
Cantor set C is obtained inductively as follows: We first remove from an open
interval (−1/3, 1/3) from I0 = [−1, 1] and at the nth step remove the middle thirds
of the remaining intervals.

Let c = {Rez = 0}∪ {∞} and A = {z | |z + 1|/r < |z + 1| < r|z− 1|} for r > 1.
Then c is a separating curve in Ω = Ĉ−C. Let Ω± = {z ∈ Ω | (−1)±Rez > 0} and
C± = C ∩ {(−1)±Rez > 0}. Then we can check that rd(Ω±; A) = Ĉ − C±. Since
z 7→ 3z + (−1)±2 is a conformal mapping from rd(Ω±; A) to Ω, AT (rd(Ω±; A)) is
biholomorphic to AT (Ω). Thus, by (a) of Theorem 4.1, we conclude

AT (Ω) ∼= AT (rd(Ω+; A))× AT (rd(Ω−; A)) ∼= AT (Ω)× AT (Ω).

6. Appendix: Proof of Proposition 3.2

In this appendix, we give a proof of Proposition 3.2. To do this, we begin with
the following.

Lemma 6.1. Let f : D → D be a K-quasiconformal mapping with f(0) = 0.
Then there exist a quasiconformal isotopy H : D × [0, 1] → D rel {0} ∪ ∂D and
constants K1 ≥ 1 and δ1 ∈ (0, 1) such that

(1) H0 = f on D,
(2) Ht is K1-quasiconformal for all t ∈ [0, 1], and
(3) H1(z) = z on {|z| < δ1}.

Moreover, the constants K1 and δ1 are dependent only on K.

Proof. By conjugating by the reflection in ∂D, we consider f as a quasiconformal
mapping on Ĉ with f(0) = 0 and f(∞) = ∞.

Fix ε1 ∈ (0, 1) and let w1 = f(ε1). Then |w1| ≤ 16ε
1/K
1 by Mori’s theorem

(cf. Theorem 4.16 of [7]). Consider a quasiconformal mapping g defined by g(z) =
f(ε1z)/w1. Since g is normalized (that is, g fixes {0, 1,∞} pointwise), there is a
holomorphic family of injections H1 : Ĉ×D → Ĉ such that

(a) (H1)0 = id
(b) (H1)λ is normalized (1 + |λ|)/(1− |λ|)-quasiconformal for all λ ∈ D, and
(c) (H1)k2

1
= g where k1 = k1(K) with K ≤ (1 + k2

1)/(1− k2
1).

Set H2(z, λ) = H1(z, k1λ). Then H2 is a holomorphic family of injections such
that for λ ∈ D, (H2)λ is a normalized K ′

1 := (1 + k1)/(1 − k1)-quasiconformal
mapping with H2(z, k1) = g(z). By the compactness normalized K ′

1-quasiconformal
mappings, there is a constant M0 = M0(k1) > 0 such that

∣∣(H2)λ(z)
∣∣ ≤ M0

for all z ∈ D and λ ∈ D (see also [9]).
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Let w(λ) = ε1 exp{λLog(w1/ε1)/k
2
1}, where Log(w1/ε1) denotes the principal

value. By definition, w satisfies w(0) = ε1, w(k2
1) = w1, and w(λ) 6= 0 for all λ ∈ D.

Furthermore, when |λ| < k1,

|w(λ)| ≤ exp

(
2π + 4 log 2

k2
1

)
· exp

(
(1− k1)

2

1 + k2
1

log ε1

)
= o(1),

as ε1 → 0. Let H3(z, λ) = w(k1λ) ·H2(z/ε1, λ). Notice that (H3)0(z) = w(0)z/ε1 =
z and (H3)k1(z) = w1 · g(z/ε1) = f(z). Furthermore, it holds

∣∣(H3)λ(z)
∣∣ ≤ |w(k1λ)|M0 = o(1) (ε1 → 0),

for all (z, λ) ∈ {|z| ≤ ε1} ×D.
Choose ε1 = ε1(k1) > 0 to satisfy |w(k1λ)|M0 ≤ 1/2 for all λ ∈ D. Then we

have a holomorphic motion H4 of f({|z| ≤ ε1}) ∪ ∂D defined by

H4(z, λ) =

{
H3 (f−1(z), (k1 − λ)/(1− k1λ)) if z ∈ f({|z| ≤ ε1})

z if z ∈ ∂D.

By the improved λ-lemma (cf. [13]), H4 is extended as a holomorphic motion of Ĉ
(we use the same symbol H4 to denote the extension, for simplicity). Let δ1 > 0 so
that {|z| ≤ δ1} ⊂ f({|z| ≤ ε1}). Since f is K-quasiconformal on D with f(0) = 0,
we may choose such δ1 so that δ1 ≤ (ε1/16)K by Mori’s theorem again.

Thus, from the argument above, we can check that H(z, t) := f ◦ H4(z, k1t),
K1 := KK ′

1 ≥ 1 and δ1 > 0 have the desired properties. ¤
Suppose R is hyperbolic. The ε-thin neighborhood U of a puncture x of R is,

by definition, an open set consisting of points p ∈ R with the property that some
loop circling around x with initial point p has length less than ε. By virtue of
Margulis lemma (cf. e.g. [10]), there is a universal constant εmar > 0, called the
Margulis constant, such that the εmar-thin neighborhood of any puncture of R does
not intersect those of any other punctures. Notice that every ideal boundary point
of R has a neighborhood which is disjoint from the εmar-thin neighborhood of any
puncture of R (for instance, we can check this with the Nielsen convex core of R).

Proof of Proposition 3.2. If P = ∅, we have nothing to do.
Suppose first that R is hyperbolic. We choose ε < εmar so that for any i, the

ε-thin neighborhood Ui of xi is disjoint from C. Fix i and let ξ1 : Ui ∪ {xi} → D
and ξ2 : f(Ui) ∪ {f(xi)} → D be conformal mappings with ξ1(xi) = ξ2(f(xi)) = 0.
Then fi := ξ2 ◦ f ◦ ξ−1

1 is a K-quasiconformal mapping of D with fi(0) = 0. Hence,
by Lemma 6.1, there exist δ1 > 0 and a quasiconformal isotopy H i : D× [0, 1] → D
such that (H i)0 = fi on D and (H i) = id on {|z| ≤ δ1}.

We define a quasiconformal isotopy H : R× [0, 1] → S by

H(p, t) =

{
f(p) p ∈ R−⋃N

i=1 Ui

ξ−1
2 ◦H i(ξ1(p), t) p ∈ Ui.

(cf. Lemma 3.3). We can check that H has desired properties.
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Next, we assume that R is not hyperbolic. Then, R is either C or C− {0}. By
fixing a suitable number of points outside C, we recognize R as the Riemann sphere
with three points specified. Thus, from the case of hyperbolic surfaces, we conclude
the assertion. ¤
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