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Abstract. We provide estimates for the Hölder exponent of solutions to the Beltrami equa-
tion ∂f = µ∂f + ν∂f , where the Beltrami coefficients µ, ν satisfy ‖|µ|+ |ν|‖∞ < 1 and =(ν) = 0.
Our estimates depend on the arguments of the Beltrami coefficients as well as on their moduli. Fur-
thermore, we exhibit a class of mappings of the “angular stretching” type, on which our estimates
are actually attained.

1. Introduction and statement of the main results

Let Ω be a bounded open subset of R2 and let f ∈ W 1,2
loc (Ω,C) satisfy the

Beltrami equation

(1) ∂f = µ∂f + ν∂f a.e. in Ω,

where ∂ = (∂1+i∂2)/2, ∂ = (∂1−i∂2)/2 and µ, ν, are bounded, measurable functions
satisfying ‖|µ|+ |ν|‖∞ < 1. Equation (1) arises in the study of conformal mappings
between domains equipped with measurable Riemannian structures, see [2]. By
classical work of Morrey [10], it is well-known that solutions to (1) are Hölder
continuous. More precisely, there exists α ∈ (0, 1) such that for every compact
T b Ω there exists CT > 0 such that

|f(z)− f(z′)|
|z − z′|α ≤ CT ∀z, z′ ∈ T, z 6= z′.

Let

Kµ,ν =
1 + |µ|+ |ν|
1− |µ| − |ν|

denote the distortion function. Then, the following estimate holds:

(2) α ≥ ‖Kµ,ν‖−1
∞ .
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This estimate is sharp, in the sense that it reduces to an equality on the radial
stretching

(3) f(z) = |z|α−1z,

which satisfies (1) with µ(z) = −(1−α)/(1+α)zz̄−1 and ν = 0. There exists a wide
literature concerning the regularity theory for (1), particularly in the degenerate
case where ‖|µ| + |ν|‖∞ = 1, or equivalently, when the distortion function Kµ,ν is
unbounded. See, e.g., [3, 6, 8, 9], and the references therein. See also [5], where an
estimate of the constant CT is given. Most of the results mentioned above provide
estimates in terms of the distortion function Kµ,ν , and there is no loss of generality
in assuming that ν = 0. Indeed, the following “device of Morrey” may be used, as
described in [4]: at points where ∂f 6= 0 we set µ̃ = µ + ν∂f/∂f ; at points where
∂f = 0 we set µ̃ = 0. Then f is a solution to ∂f = µ̃∂f and |µ̃| ≤ |µ| + |ν|.
On the other hand, in this note we are interested in estimates which preserve the
information contained in the arguments of the Beltrami coefficients µ, ν, in the spirit
of the work of Andreian Cazacu [1] and of Reich and Walczak [12]. We restrict our
attention to the case =(ν) = 0. This assumption corresponds to assuming that the
Riemannian metric in the target manifold is represented by a diagonal matrix-valued
function. We will also show that our estimates are sharp, in the sense that they
are attained in a class of mappings of the “angular stretching” type (see ansatz (8)
below), which generalize the radial stretchings (3). It should be mentioned that
such mappings also appear in Schatz [15], see also Gutlyanskĭı and Ryazanov [7].

Our first result is the following.

Theorem 1. Let f ∈ W 1,2
loc (Ω,C) satisfy the Beltrami equation (1) with =(ν) =

0. Then, f is α-Hölder continuous with α ≥ β(µ, ν), where β(µ, ν) is defined by

β(µ, ν)−1 = sup
Sρ(x)⊂Ω

inf
ϕ,ψ∈Bx,ρ

√
sup ϕ

inf ψ
{

1

|Sρ(x)|
∫

Sρ(x)

√
ψ

ϕ

|1− n2µ|2 − ν2

√
1− (|µ|+ ν)2

√
1− (|µ| − ν)2

dσ

·


 4

π
arctan


 infSρ(x)

(1−ν)2−|µ|2
(1+ν)2−|µ|2 /ϕψ

supSρ(x)
(1−ν)2−|µ|2
(1+ν)2−|µ|2 /ϕψ




1/4



−1 }
.

(4)

Here Sρ(x) denotes the circle centered at x ∈ Ω with radius ρ > 0, Bx,ρ denotes
the set of positive functions in L∞(Sρ(x)) which are bounded below away from zero,
and n denotes complex number corresponding to the outer unit normal to Sρ(x).

Estimate (4) improves the classical estimate (2); a verification is provided in
Section 3, Remark 1. In Theorem 2 below we will show that estimate (4) is sharp,
in the sense that it reduces to an equality when µ, ν are of the special form

µ(z) = −µ0(arg z)zz−1, ν(z) = −ν0(arg z)
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and f is of the “angular stretching” form

f(z) = |z|α(η1(arg z) + iη2(arg z)),

for suitable choices of the bounded, 2π-periodic functions µ0, ν0, η1, η2 : R → R.
The following weaker form of estimate (4) is obtained by taking ϕ = ψ = 1.

Corollary 1. Let f ∈ W 1,2
loc (Ω,C) satisfy the Beltrami equation (1) with =(ν) =

0. Then, f is α-Hölder continuous with

α ≥





sup
Sρ(x)⊂Ω

1
|Sρ(x)|

∫
Sρ(x)

|1−n2µ|2−ν2√
1−(|µ|+ν)2

√
1−(|µ|−ν)2

dσ

4
π

arctan

(
infSρ(x)

(1−ν)2−|µ|2
(1+ν)2−|µ|2

supSρ(x)
(1−ν)2−|µ|2
(1+ν)2−|µ|2

)1/4





−1

.(5)

This estimate is also sharp, in the sense that it actually reduces to an equality
for suitable choices of µ, ν and f , but it does not contain estimate (2) as a special
case. We now show that estimate (5) contains some known results for µ = 0 and
for ν = 0 as special cases.

Special case ν = 0. This case corresponds to assuming that the target domain
is equipped with the standard Euclidean metric. In this special case, our estimate
yields

(6) α ≥
{

sup
Sρ(x)⊂Ω

1

|Sρ(x)|
∫

Sρ(x)

|1− n2µ|2
1− |µ|2 dσ

}−1

,

which may also be obtained from the estimate in [13] for elliptic equations whose
coefficient matrix has unit determinant. We note that the integrand function

|1− n2µ|2
1− |µ|2 =

|Dnf |2
Jf

= Kµ,0 − 2
|µ|+ < (µ, n2)

1− |µ|2
also appears in [12], in the study of the conformal modulus of rings.

Special case µ = 0. This case corresponds to assuming that the metric on Ω
is Euclidean. In this case, estimate (5) yields

α ≥ sup
Sρ(x)⊂Ω

4

π
arctan

(
infSρ(x)

1−ν
1+ν

supSρ(x)
1−ν
1+ν

)1/2

≥ 4

π
arctan ‖K‖−1

∞ ,(7)

which is a consequence of the sharp Hölder estimate obtained in Piccinini and Spag-
nolo [11] for isotropic elliptic equations.

In Theorem 2 below we assert that the equality α = β(µ, ν) may hold even when
both µ 6= 0 and ν 6= 0. We denote by B the unit disk in R2.

Theorem 2. For every τ ∈ [0, 1] there exist ατ > 0, 2π-periodic functions
ητ,1, ητ,2 ∈ W 1,2

loc (R) and corresponding coefficients µτ , ντ , depending on the angular
variable only, with the following properties:
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(i) The mapping fτ ∈ W 1,2
loc (B) defined in B \ {0} by

fτ (z) = |z|ατ (ητ,1(arg z) + iητ,2(arg z))

satisfies (1) with µ = µτ and ν = ντ ;
(ii) β(µτ , ντ ) = ατ ;
(iii) µτ = 0 if and only if τ = 0; ντ = 0 if and only if τ = 1.

This note is organized as follows. In Section 2 we derive the basic properties of
the mappings of the “angular stretching” form, which naturally appear in our prob-
lem. In Section 3 we provide the proofs of Theorem 1 and Theorem 2. Such proofs
are based on the equivalence between Beltrami equations and elliptic equations, and
on some results for elliptic equations from [14].

2. Angular stretchings

In order to prove Theorem 2 we need some properties for the special case where
f is of the “angular stretching” form

(8) f(z) = |z|αφ(arg z) = |z|α(η1(arg z) + iη2(arg z)),

where α ∈ R, φ : R → C and η1, η2 : R → R are 2π-periodic functions, and more-
over f satisfies the Beltrami equation (1) with µ, ν of the special form

(9) µ(z) = −µ0(arg z) zz̄−1

and

(10) ν(z) = −ν0(arg z),

for some bounded, 2π-periodic functions µ0, ν0 : R → R such that ‖|µ0|+|ν0|‖∞ < 1.
We assume α > 0 and η1, η2 ∈ W 1,2

loc (R) so that f ∈ W 1,2
loc (C). We note that mappings

of the form (8) generalize the radial stretchings (3). We also note that f is injective
if and only if |φ(θ)|2 = η2

1(θ) + η2
2(θ) 6= 0 for all θ ∈ R, η1, η2 have minimal period

2π and =(φ̇φ) = η1η̇2 − η̇1η2 = (η2
1 + η2

2)(d/dθ) arg(η1 + iη2) has constant sign a.e.
We claim that

|Df |2 =
|z|2(α−1)

2

(
α2|φ|2 + |φ̇|2 + |α2φ2 + φ̇2|

)

=
|z|2(α−1)

2

{
α2(η2

1 + η2
2) + η̇1

2 + η̇2
2 +

√
D

}
,

(11)

where |Df | denotes the operator norm of Df , and

D = [α2(η2
1 + η2

2) + η̇1
2 + η̇2

2]2 − 4α2(η1η̇2 − η̇1η2)
2;

moreover

Jf = α|z|2(α−1)=(φ̇φ) = α|z|2(α−1)(η1η̇2 − η̇1η2).(12)

To check (11)–(12) we use the well known formulae

|Df | = |fz|+ |fz̄|, Jf = |fz|2 − |fz̄|2.
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We recall that in polar cooordinates x = r cos θ, y = r sin θ we have

∂ =
1

2
(∂x + i∂y) =

eiθ

2

(
∂r + i

∂θ

r

)
,

∂ =
1

2
(∂x − i∂y) =

e−iθ

2

(
∂r − i

∂θ

r

)
.

Hence,

fz(z) =
f(z)

2z

(
α− i

φ̇

φ

)
, fz̄(z) =

f(z)

2z

(
α + i

φ̇

φ

)

and therefore

|fz|2 =
|z|2(α−1)

4

[
α2|φ|2 + |φ̇|2 + 2α=(φ̇φ)

]
,

|fz̄|2 =
|z|2(α−1)

4

[
α2|φ|2 + |φ̇|2 − 2α=(φ̇φ)

]
.

Hence, (12) follows. To obtain (11) we finally observe that

fzfz̄ =
|z|2(α−1)

4

(
α2φ2 + φ̇2

)

and ∣∣∣α2φ2 + φ̇2
∣∣∣
2

= α2|φ|4 + |φ̇|4 + 2α2<(φ̇φ)2 = D .

Therefore, at every point in R2 \ {0} the distortion of f is given by

|Df |2
Jf

=
α|φ|2 + |φ̇|2 + |α2φ2 + φ̇2|

2α=(φ̇φ)

=
α2(η2

1 + η2
2) + η̇1

2 + η̇2
2 +

√
D

2α(η1η̇2 − η̇1η2)
.

In particular, f has bounded distortion if and only if

|φ|2 + |φ̇|2 ≤ C=(φ̇φ)

for some constant C > 0, or equivalently

η2
1 + η2

2 + η̇2
1 + η̇2

2 ≤ C(η1η̇2 − η̇1η2)

for some constant C > 0.
We use the following facts.

Proposition 1. Suppose f is of the angular stretching form (8) and satisfies
the Beltrami equation (1) with µ, ν given by (9)–(10). Then, (η1, η2) satisfies the
system: {

η̇1 = −αk−1
2 η2,

η̇2 = αk1η1,
(13)
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where k1, k2 > 0 are defined by

(14) k1 =
1 + µ0 + ν0

1− µ0 − ν0

, k2 =
1− µ0 + ν0

1 + µ0 − ν0

.

Conversely, if (η1, η2) satisfies (13) for some α > 0 and for some 2π-periodic functions
k1, k2 > 0 bounded from above and from below away from zero, then f defined by
(8) is a solution to (1) with µ, ν defined in (9)–(10) and µ0, ν0 given by

(15) µ0 =
k1 − k2

1 + k1 + k2 + k1k2

, ν0 =
k1k2 − 1

1 + k1 + k2 + k1k2

.

Proof. In polar cooordinates x = r cos θ, y = r sin θ we have

∂ =
1

2
(∂x + i∂y) =

eiθ

2

(
∂r + i

∂θ

r

)
,

∂ =
1

2
(∂x − i∂y) =

e−iθ

2

(
∂r − i

∂θ

r

)
.

Hence, (1) is equivalent to

(eiθ − µe−iθ)fr − νeiθfr = − i

r

[
(eiθ + µe−iθ)fθ − νeiθfθ

]
.

In view of the form (9) of µ and of the form (10) of ν, the equation above is equivalent
to

(1 + µ0)fr + ν0fr = − i

r
[(1− µ0)fθ + ν0fθ].

We compute
fr = αrα−1(η1 + iη2), fθ = rα(η̇1 + iη̇2).

Substitution yields

(16) α(1 + µ0 + ν0)η1 + iα(1 + µ0 − ν0)η2 = (1− µ0 − ν0)η̇2 − i(1− µ0 + ν0)η̇1.

Hence, (η1, η2) satisfies the system (13), with k1, k2 defined by (14). Conversely,
suppose (η1, η2) satisfies (13) for some 2π-periodic functions k1, k2 > 0 bounded
from above and from below away from zero and for some α > 0. Then the functions
µ0, ν0 such that (14) is satisfied are uniquely defined by (15) as the solutions to the
linear system

(1 + k1)µ0 + (1 + k1)ν0 =− 1 + k1,

−(1 + k2)µ0 + (1 + k2)ν0 =− 1 + k2.

It follows that (13) is equivalent to (16), with f defined by (8). ¤
We finally observe that if (η1, η2) is a solution of the system (13), then the

Jacobian determinant of f is given by

r−2(α−1)Jf = α2(k1η
2
1 + k−1

2 η2
2)
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and furthermore,

|Df |2
Jf

=
[
2(k1η

2
1 + k−1

2 η2
2)

]−1[
(1 + k2

1)η
2
1 + (1 + k−2

2 )η2
2

+
√

(1− k2
1)

2η4
1 + (1− k−2

2 )2η4
2 + 2[(1− k1k

−1
2 )2 + (k1 − k−1

2 )2]η2
1η

2
2

]
.

(17)

We also note that system (13) implies that η1 is a 2π-periodic solution to the
weighted Sturm–Liouville equation

d

dt
(k2η̇1) + α2k1η1 = 0

and similarly η2 satisfies

d

dt
(k−1

1 η̇2) + α2k−1
2 η2 = 0.

Special case ν = 0. The results described in Proposition 1 take a particularly
simple form when ν = 0, which is equivalent to k1 = k−1

2 = k. It should be
mentioned that solutions to the Beltrami equation (1) with ν = 0 and µ depending
on θ = arg z only have been considered in [15], see also [7]. In this case, the
normalized homeomorphic solution admits the representation

f(z) = |z|α exp

{
iα

∫ θ

0

1− µ(θ′)e−2iθ′

1 + µ(θ′)e−2iθ′ dθ′
}

,

where

α = 2π

(∫ 2π

0

1− µ(θ′)e−2iθ′

1 + µ(θ′)e−2iθ′ dθ′
)−1

.

Under our additional assumption µ(θ) = −µ0(θ)e
2iθ, we have

1− µ(θ′)e−2iθ′

1 + µ(θ′)e−2iθ′ =
1 + µ0(θ

′)
1− µ0(θ′)

= k(θ′)

and therefore we obtain the representation f(z) = |z|α exp{iα ∫ θ

0
k}. On the other

hand, a direct proof may be as follows. If k1 = k−1
2 = k, system (13) reduces to

(18)

{
η̇1 = −αkη2,

η̇2 = αkη1,

which may be explicitly solved. Indeed, from (18) we derive η̇1η1 + η̇2η2 = 0 and
therefore η2

1 + η2
2 is constant. By linearity we may assume η2

1 + η2
2 ≡ 1. Hence, there

exists a funtion h(θ) such that η1(θ) = cos h(θ) and η2(θ) = sin h(θ). By (18) we
conclude that up to an additive constant h(θ) = α

∫ θ

0
k, and therefore we obtain

that f(z) = |z|α exp{iα ∫ θ

0
k}. In view of the 2π-periodicity of η1, η2 we also obtain
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that α = 2πn(
∫ 2π

0
k)−1 for some n ∈ N. From equation (17) we derive, for every

z 6= 0:
|Df |2

Jf

=
1 + k2 + |1− k2|

2k
= max{k, k−1}.

Since k ≥ 1 if and only if µ0 ≥ 0, the expression above implies the known fact

|Df |2
Jf

=
1 + |µ|
1− |µ| = Kµ,0.

3. Proofs

We first of all check that estimate (4) in Theorem 1 actually improves the
classical estimate (2).

Remark 1. The following estimate holds:

β(µ, ν) ≥ ‖Kµ,ν‖−1
∞ ,

where β(µ, ν) is the quantity defined in Theorem 1.

Proof. Recall from Section 1 that Kµ,ν = (1 + |µ| + |ν|)/(1 − |µ| − |ν|). For
every Sρ(x) ⊂ Ω, we choose

ϕ =
|1− n2µ|2 − ν2

(1 + ν)2 − |µ|2
∣∣∣∣
Sρ(x)

, ψ =
(1− ν)2 − |µ|2
|1− n2µ|2 − ν2

∣∣∣∣
Sρ(x)

.

We have that

sup ϕ ≤ sup
(1 + |µ|)2 − ν2

(1 + ν)2 − |µ|2 = sup
1 + |µ| − ν

1− |µ|+ ν
≤ ‖Kµ,ν‖∞,

inf ψ ≥ inf
(1− ν)2 − |µ|2
(1 + |µ|)2 − ν2

= inf
1− |µ| − ν

1 + |µ|+ ν
≥ ‖Kµ,ν‖−1

∞

and therefore
sup ϕ

inf ψ
≤ ‖Kµ,ν‖2

∞.

Moreover,

ϕψ =
(1− ν)2 − |µ|2
(1 + ν)2 − |µ|2

∣∣∣∣
Sρ(x)

.

In view of the elementary identity

[(1− ν)2 − |µ|2][(1 + ν)2 − |µ|2] = [1− (|µ|+ ν)2][1− (|µ| − ν)2]

we finally obtain

ψ

ϕ
=

(1− (|µ|+ ν)2)(1− (|µ| − ν)2)

(|1− n2µ|2 − ν2)2

∣∣∣∣
Sρ(x)

.
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Consequently, inserting into (4), we find that for every Sρ(x) ⊂ Ω:

inf
ϕ,ψ∈Bx,ρ

√
sup ϕ

inf ψ

{
1

|Sρ(x)|
∫

Sρ(x)

√
ψ

ϕ

|1− n2µ|2 − ν2

√
1− (|µ|+ ν)2

√
1− (|µ| − ν)2

dσ

·


 4

π
arctan


 infSρ(x)

(1−ν)2−|µ|2
(1+ν)2−|µ|2 /ϕψ

supSρ(x)
(1−ν)2−|µ|2
(1+ν)2−|µ|2 /ϕψ




1/4



−1 }
≤ ‖Kµ,ν‖∞.

Consequently,
β(µ, ν)−1 ≤ ‖Kµ,ν‖∞,

and the asserted estimate is verified. ¤
We use some results in [14] for solutions to the elliptic divergence form equation

(19) div(A∇·) = 0 in Ω

where A is a bounded and symmetric matrix-valued function. More precisely, let

J(θ) =

[
cos θ − sin θ
sin θ cos θ

]
.

For every M > 1, let

c = c(M, τ) =
2

1 + M−τ
, d = d(M, τ) =

4

π
arctan M−(1−τ)/2.

Note that when τ = 0 we have d = 4π−1 arctan M−1/2 and c = 1, and when τ = 1
we have d = 1 and c = 2/(1 + M−1). We define the intervals

I1 = [0,
cπ

2
), I2 = [

cπ

2
, π), I3 = [π, π +

cπ

2
), I4 = [π +

cπ

2
, 2π).

Let Θτ,1, Θτ,2 : R → R be the 2π-periodic Lipschitz functions defined in [0, 2π) by

Θτ,1(θ) =





sin[d(c−1θ − π/4)], θ ∈ I1,

M−(1−τ)/2 cos[d(c−1M τ (θ − cπ/2)− π/4)], θ ∈ I2,

− sin[d(c−1(θ − π)− π/4)], θ ∈ I3,

−M−(1−τ)/2 cos[d(c−1M τ (θ − π − cπ/2)− π/4)], θ ∈ I4,

and

Θτ,2(θ) =





− cos[d(c−1θ − π/4)], θ ∈ I1,

M (1−τ)/2 sin[d(c−1M τ (θ − cπ/2)− π/4)], θ ∈ I2,

cos[d(c−1(θ − π)− π/4)], θ ∈ I3,

−M (1−τ)/2 sin[d(c−1M τ (θ − π − cπ/2)− π/4)], θ ∈ I4.

The following facts were established in [14] and will be used in the sequel.

Theorem 3. ([14]) The following estimates hold.
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(i) Let w ∈ W 1,2
loc (Ω) be a weak solution to (19). Then, w is α-Hölder continuous

with α ≥ γ(A), where

(20) γ(A) =


 sup

Sρ(x)⊂Ω

inf
ϕ,ψ∈Bx,ρ

√
sup ϕ

inf ψ

1
|Sρ(x)|

∫
Sρ(x)

√
ψ
ϕ
〈n,A n〉√

det A

4
π

arctan
(

infSρ(x) det A/ϕψ

supSρ(x) det A/ϕψ

)1/4




−1

and where n denotes the outer unit normal.
(ii) For every τ ∈ [0, 1] let Aτ be the symmetric matrix-valued function defined

for every z 6= 0 by

(21) Aτ (z) = (kτ,1(arg z)− kτ,2(arg z))
z ⊗ z

|z|2 + kτ,2(arg z)I,

where kτ,1, kτ,2 piecewise constant, 2π-periodic functions defined by

(22) kτ,1(θ) =

{
1, if θ ∈ I1 ∪ I3,

M, if θ ∈ I2 ∪ I4,

and

(23) kτ,2(θ) =

{
1, if θ ∈ I1 ∪ I3,

M1−2τ , if θ ∈ I2 ∪ I4.

There exists M0 > 1 such that

γ(Aτ ) =
d

c
,

for every M ∈ (1,M
1/τ
0 ), if τ > 0, and with no restriction on M if τ = 0.

Furthermore, the function uτ = |z|d/c Θ1(arg z) is a weak solution to (19)
with A = Aτ .

We note that the matrix Aτ may be equivalently written in the form

Aτ (z) =

[
kτ,1 cos2 θ + kτ,2 sin2 θ (kτ,1 − kτ,2) sin θ cos θ
(kτ,1 − kτ,2) sin θ cos θ kτ,1 sin2 θ + kτ,2 cos2 θ

]

= JKτJ
T

where Kτ = diag(kτ,1, kτ,2).
The following equivalence between Beltrami equations and elliptic equations of

the form (19) is well-known. See, e.g., [2, 16].

Lemma 1. Let g ∈ W 1,2
loc (Ω,C) satisfy the Beltrami equation

(24) ∂g = µ∂g + ν∂g in Ω,

where µ, ν ∈ L∞(Ω,C) satisfy |µ|+ |ν| ≤ κ < 1 a.e. in Ω. Let Bµ,ν be the bounded
matrix-valued function defined in terms of the Beltrami coefficients µ, ν by

Bµ,ν =
1

∆1

([ |1− µ|2 −2=(µ− ν)
−2=(µ + ν) |1 + µ|2

]
− |ν|2I

)
,
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where ∆1 = |1 + ν|2 − |µ|2 and let B̃µ,ν be defined by

B̃µ,ν =
1

∆2

([ |1− µ|2 −2=(µ + ν)
−2=(µ− ν) |1 + µ|2

]
− |ν|2I

)
,

where ∆2 = |1−ν|2−|µ|2. Then <(g) is a weak solution tor the elliptic equation (19)
with A = Bµ,ν and =(g) is a weak solution tor (19) with A = B̃µ,ν .

Proof. Setting z = x + iy = (x, y)T , g(z) = u(x, y) + iv(x, y), we have:

∂g =
1

2

[
ux − vy

uy + vx

]
, ∂g =

1

2

[
ux + vy

−uy + vx

]
.

Setting

Q =

[
0 −1
1 0

]
, R =

[
1 0
0 −1

]
,

for every z we have

Qz =

[−y
x

]
= iz, Rz =

[
x
−y

]
= z.

Hence, we can write

∂g =
1

2
(∇u + Q∇v) , ∂g =

1

2
R (∇u−Q∇v) .

Setting

M =

[<(µ) −=(µ)
=(µ) <(µ)

]
, N =

[<(ν) −=(ν)
=(ν) <(ν)

]
,

equation (24) may be written in the form:

∇u + Q∇v = MR (∇u−Q∇v) + N (∇u−Q∇v) .

It follows that
(I −MR−N)∇u = − (I + MR + N) Q∇v

and consequently u satisfies

(I + MR + N)−1 (I −MR−N)∇u = −Q∇v

and v satisfies

−Q (I −MR−N)−1 (I + MR + N) Q∇v = Q∇u.

By direct computation,

Bµ,ν = (I + MR + N)−1 (I −MR−N) ,

B̃µ,ν =−Q (I −MR−N)−1 (I + MR + N) Q = −QB−µ,−νQ.

Now the conclusion follows observing that div(Q∇·) = 0. ¤
For every matrix A let

Â =
A

det A
.
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Lemma 1 implies the following correspondence.

Lemma 2. Let f ∈ W 1,2
loc (Ω,C) be a solution to (1) with =(ν) = 0 and let Aµ,ν

be defined by

Aµ,ν =
1

∆

([|1− µ|2 −2=(µ)
−2=(µ) |1 + µ|2

]
− ν2I

)
,(25)

where ∆ = (1 + |µ|+ ν)(1− |µ|+ ν). Then, <(f) satisfies (19) with A = Aµ,ν and
=(f) satisfies (19) with A = Âµ,ν .

Proof. In view of Lemma 1, we need only check that when =(ν) = 0 we have

(26) B̃µ,ν =
Bµ,ν

det Bµ,ν

= B̂µ,ν .

Let

Γµ,ν =

[|1− µ|2 − ν2 −2=(µ)
−2=(µ) |1 + µ|2 − ν2

]
.

Then

Bµ,ν =
Γµ,ν

∆1

, B̃µ,ν =
Γµ,ν

∆2

with ∆1 = (1 + ν)2 − |µ|2 = (1 + ν + |µ|)(1 + ν − |µ|) and ∆2 = (1 − ν)2 − |µ|2 =
(1− ν + |µ|)(1− ν − |µ|). On the other hand,

det Γµ,ν = (1 + |µ|+ ν)(1 + |µ| − ν)(1− |µ|+ ν)(1− |µ| − ν)

and therefore ∆2 = det Γµ,ν/∆1. It follows that

B̃µ,ν =
Γµ,ν

∆2

=
∆1

det Γµ,ν

Γµ,ν =
∆2

1

det Γµ,ν

Γµ,ν

∆1

=
Bµ,ν

det Bµ,ν

,

and (26) is established. ¤
The following lemma states that the function γ(A) defined in (20) attains the

same value on A and Â.

Lemma 3. For any matrix valued function A we have

γ(A) = γ(Â)

where γ(A) is the quantity defined in (20).

Proof. We have det Â = (det A)−1, and therefore

(27)
Â√
det Â

=
A√

det A
.

Furthermore, for every S ⊂ Ω and for every ϕ, ψ ∈ L∞(S),

sup ϕ

inf ψ
=

sup ψ−1

inf ϕ−1
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and

inf
S

det Â

ϕψ
=

1

supS(ϕψ det A)
, sup

S

det Â

ϕψ
=

1

infS(ϕψ det A)
.

Hence,

(28)
infS det Â/(ϕψ)

supS det Â/(ϕψ)
=

infS det A/(ϕ−1ψ−1)

supS det A/(ϕ−1ψ−1)
.

It follows from (27) and (28) that for any function F : R → R

√
sup ϕ

inf ψ

1

|Sρ(x)|
∫

Sρ(x)

√
ψ

ϕ

〈n, Ân〉√
det Â

F

(
infSρ(x)

det bA
ϕψ

supSρ(x)
det bA
ϕψ

)

=

√
sup ψ−1

inf ϕ−1

1

|Sρ(x)|
∫

Sρ(x)

√
ϕ−1

ψ−1

〈n,An〉√
det A

F

(
infSρ(x)

det A
ϕ−1ψ−1

supSρ(x)
det A

ϕ−1ψ−1

)
.

Now the statement follows by taking F (t) = (4π−1 arctan t1/4)−1 and observing that
ϕ−1 ∈ Bx,ρ whenever ϕ ∈ Bx,ρ. ¤

At this point, we can provide the proof of Theorem 1.

Proof of Theorem 1. In view of Lemma 2, Lemma 3 and Theorem 3, <(g) and
=(g) are α-Hölder continuous with α ≥ γ(Aµ,ν), where Aµ,ν is the matrix defined in
(25). Setting ξ = x + ρeit, t ∈ R for every ξ ∈ Sρ(x) ⊂ Ω, we have n(ξ) = eit. We
recall that ∆ = (1 + |µ|+ ν)(1− |µ|+ ν) = (1 + ν)2 − |µ|2. Hence, we compute

∆ 〈n(ξ), Aµ,ν(ξ)n(ξ)〉 = ∆〈eit, Aµ,ν(ξ)e
it〉

= ∆ (a11 cos2 t + 2a12 sin t cos t + a22 sin2 t)

= 1 + |µ|2 − ν2 − 2(<(µ) cos 2t + =(µ) sin 2t) = |1− n2µ|2 − ν2.

Furthermore,

∆2 det Aµ,ν = (|1− µ|2 − ν2)(|1 + µ|2 − ν2)− 4=(µ)2

= (1 + |µ|2 − ν2)2 − 4|µ|2 = ((1− |µ|)2 − ν2)((1 + |µ|)2 − ν2)

= (1− |µ|+ ν)(1− |µ| − ν)(1 + |µ|+ ν)(1 + |µ| − ν)

= (1− (|µ| − ν)2)(1− (|µ|+ ν)2)

and therefore
〈n,Aµ,νn〉√

det Aµ,ν

=
∆〈n,Aµ,νn〉√
∆2 det Aµ,ν

=
|1− n2µ|2 − ν2

√
(1− (|µ| − ν)2)(1− (|µ|+ ν)2)

.

Finally, recalling the definition of ∆, we derive

det Aµ,ν =
(1 + |µ| − ν)(1− |µ| − ν)

(1 + |µ|+ ν)(1− |µ|+ ν)
=

(1− ν)2 − |µ|2
(1 + ν)2 − |µ|2 .

Inserting the expressions above into (20), we obtain (4). ¤
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We now turn to the proof of Theorem 2. We let µ0,τ , ν0,τ : R → R be the
bounded, piecewise constant, 2π-periodic functions defined in [0, 2π) by

µ0,τ (θ) =

{
0, if θ ∈ I1 ∪ I3,

(M −M1−2τ )/(1 + M + M1−2τ + M2(1−τ)), if θ ∈ I2 ∪ I4,

and

ν0,τ (θ) =

{
0, if θ ∈ I1 ∪ I3,

(M2(1−τ) − 1)/(1 + M + M1−2τ + M2(1−τ)), if θ ∈ I2 ∪ I4,

and we set

µτ (z) = −µ0,τ (arg z) zz−1, ντ (z) = −ν0,τ (arg z).

The following holds.

Proposition 2. Let B the unit disk in R2 and let fτ ∈ W 1,2(B,C) be defined
in B \ {0} by

fτ (z) = |z|d/c (Θτ,1(arg z) + iΘτ,2(arg z)) .

Then fτ satisfies (1) with µ = µτ and ν = ντ . Furthermore, there exists M0 > 1
such that

β(µτ , ντ ) =
d

c
,

for every M ∈ (1,M
1/τ
0 ) if τ > 0 and with no restriction on M if τ = 0.

In order to prove Proposition 2, we first need a lemma.

Lemma 4. Suppose µ, ν are of the form (9)–(10) and let k1, k2 be the corre-
sponding functions defined in (14). Then Aµ,ν as defined in (25) is given by

Aµ,ν (z) = J(arg z)

[
k1(arg z) 0

0 k2(arg z)

]
J∗(arg z)

=

[
k1 cos2 θ + k2 sin2 θ (k1 − k2) sin θ cos θ
(k1 − k2) sin θ cos θ k1 sin2 θ + k2 cos2 θ

]

= (k1 − k2)
z ⊗ z

|z|2 + k2I.

Proof. The assumptions (9)–(10) on µ, ν imply that

∆(z) = (1 + µ0(θ)− ν0(θ))(1− µ0(θ)− ν0(θ)).

and

µ(z) = −µ0(θ) (cos 2θ + i sin 2θ).
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Hence,

∆(Aµ,ν)11 = |1− µ|2 − ν2 = 1 + 2µ0 cos 2θ + µ2
0 − ν2

0

= [(1 + µ0)
2 − ν2

0 ] cos2 θ + [(1− µ0)
2 − ν2

0 ] sin
2 θ,

∆(Aµ,ν)22 = |1 + µ|2 − ν2

= [(1− µ0)
2 − ν2

0 ] cos2 θ + [(1 + µ0)
2 − ν2

0 ] sin
2 θ,

∆(Aµ,ν)12 = −2=(µ)

= 4µ0 sin θ cos θ.

Dividing by ∆ and observing that

(1 + µ0)
2 − ν2

0

∆
=

1 + µ0 + ν0

1− µ0 − ν0

= k1,

(1− µ0)
2 − ν2

0

∆
=

1− µ0 + ν0

1 + µ0 − ν0

= k2,

4µ0

∆
= k1 − k2,

we obtain the asserted expression for Aµ,ν . ¤
Proof of Proposition 2. By direct check, (Θτ,1, Θτ,2) satisfies (13) with k1 = kτ,1,

k2 = kτ,2 as defined in (22)–(23), respectively, and ατ = d/c. Hence, in view of
Proposition 1, fτ satisfies (1) with µ = µτ and ν = ντ . In view of Lemma 2 and
Lemma 4, <(fτ ) satisfies equation (19) with A = Aτ defined in (21) and =(fτ )

satisfies equation (19) with A = Âτ . By Theorem 2–(ii), <(fτ ) and =(fτ ) are
Hölder continuous with exponent exactly β(µτ , ντ ) = γ(Aτ ) = γ(Âτ ) whenever
M ∈ (0,M

1/τ
0 ) if τ > 0 and with no restriction on M if τ = 0. Thus, Proposition 2

is established. ¤
Proof of Theorem 2. The proof is a direct consequence of Proposition 2. ¤
Acknowledgments. We thank an anonymous referee for constructive criticism,

as well as for pointing out references [7, 15, 16].
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