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Abstract. It is proved that any family of harmonic K-quasiconformal mappings {u =
P [f ], u(0) = 0} of the unit ball onto itself is a uniformly Lipschitz family providing that f ∈ C1,α.
Moreover, the Lipschitz constant tends to 1 as K → 1.

1. Introduction and auxiliary results

A twice differentiable function u defined in an open subset Ω of the Euclidean
space Rn will be called harmonic if it satisfies the differential equation

∆u(x) = D11u(x) + D22u(x) + · · ·+ Dnnu(x) = 0.

In this paper Bn denotes the unit ball in Rn, and Sn−1 denotes the unit sphere. We
will consider the vector norm ‖x‖ = (

∑n
i=1 x2

i )
1/2 and two matrix norms, ‖A‖2 =

(
∑n

i,j=1 a2
i,j)

1/2 and ‖A‖ = sup{‖Ax‖ : ‖x‖ = 1}.
A homeomorphism u : Ω → Ω′ between two open subsets Ω and Ω′ of the Eu-

clidean space Rn will be called a K-quasiconformal (K ≥ 1) or, shortly, a q.c.
mapping if

(i) u is an absolutely continuous function in every segment parallel to some of
the coordinate axes and there exist the partial derivatives which are locally
Ln integrable functions on Ω. We will write u ∈ ACLn, and

(ii) u satisfies the condition ‖u′(x)‖n/K ≤ Ju(x) ≤ Kl(u′(x))n at x almost
everywhere on Ω where l(u′(x)) := inf{‖u′(x)ζ‖ : ‖ζ‖ = 1} and Ju(x) is the
Jacobian determinant of u (see [9]).

Note that the condition u ∈ ACLn guarantees the existence of the first derivative
of u almost everywhere (see [9]). The condition (i) is equivalent with the fact that
u is continuous and belongs to the Sobolev space W 1

n,loc(Ω).
Let f : Sn−1 → Rn be a bounded integrable function on the unit sphere Sn−1.

Let P be a Poisson kernel, i.e., the function

P (x, η) =
1− ‖x‖2

‖x− η‖n
.
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Then

(1.1) u(x) = P [f ](x) =

∫

Sn−1

P (x, η)f(η) dσ(η)

is a harmonic mapping defined in the unit ball Bn. Here dσ is the Lebesgue n− 1-
dimensional measure of the Euclidean sphere satisfying the condition P [1](x) ≡ 1.
It is well known that if f is continuous, then the mapping u = P [f ] has a continuous
extension ũ to the boundary and ũ = f on Sn−1.

If k is a nonnegative integer and α ∈ (0, 1], then Ck,α(Ω̄) is defined to be the
set of k times continuously differentiable functions in an open set Ω such that

‖u‖k,α :=
∑

|β|≤k

‖Dβu‖+
∑

|β|=k

sup
x,y∈Ω

‖Dβu(x)−Dβu(y)‖ · ‖x− y‖−α

is finite. If f is a function defined in the unit sphere Sn−1, then we will say that
f ∈ Ck,α(Sn−1) if the function defined by u(x) = f(x/‖x‖) is in Ck,α(A(1/2, 2)),
where A(1/2, 2) := {x : 1/2 ≤ ‖x‖ ≤ 2}. Gilbarg and Hörmander among the other
results in [3] prove the following proposition (see [3,Theorem 6.1]).

Proposition 1.1. The Dirichlet problem

∆u = g in Bn, u = f on Sn−1

has a unique solution u ∈ Ck,α(B̄n), k ≥ 1, for every g ∈ Ck−2,α(B̄n) and for every
f ∈ Ck,α(Sn−1).

Using the previous proposition we obtain:

Proposition 1.2. If the function f ∈ C1,µ, where 0 < µ ≤ 1, then the function
u has a C1,µ extension to the boundary and the relations

lim
r→1

∂u ◦ S

∂θi

(r, θ1, . . . , θn−1) =
∂f ◦ T

∂θi

(θ1, . . . , θn−1)

hold for all i ∈ {1, . . . , n− 1}, where S and T are spherical coordinates

(S(r, θ1, . . . , θn−1) = rT (θ1, . . . , θn−1)),

and θn−1 = ϕ. See the proof of Lemma 1.6 below for details of the definition of T .

Proposition 1.3. [2] If f is a K-quasiconformal self-mapping of the unit ball
Bn with f(0) = 0, then there exists a constant M1(n, K), satisfying the condition
M1(n,K) → 1 as K → 1, such that

(1.2) ‖f(x)− f(y)‖ ≤ M1(n,K)‖x− y‖K1/(1−n)

.

See also [1] for some constant that is not asymptotically sharp.

Proposition 1.4. Let A be a nonsingular matrix. Let λ2
1 ≥ · · · ≥ λ2

n be the
eigenvalues of the matrix AT A. Let Ã = det A · A−1 and let k(A) := λ1

λn
. Then

(1.3) ‖A‖2 = (Trace AT A)1/2 =

(
n∑

k=1

λ2
k

)1/2

, | det A| =
n∏

k=1

λk
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and

(1.4) k(A−1) = k(Ã) = k(A).

If in addition A is a K-quasiconformal mapping, then

(1.5) ‖A‖ ≤ k(A)√
n− 1 + k(A)2

‖A‖2

and

(1.6) k(A) ≤ K +
√

K2 − 1.

For the proof of the last assertion, see [11].

Lemma 1.5. Let u be a harmonic mapping defined in the unit ball having a
C1 extension to the boundary Sn−1. Then

sup
‖x‖≤1

‖u′(x)‖2 = sup
‖η‖=1

‖u′(η)‖2.

Proof. Let u = (u1, . . . un). For all (i, j) the function ui,j = ∂ui

∂xj
is bounded

harmonic. Hence there exists a bounded integrable function gi,j defined on the unit
sphere such that ui,j = P [gi,j]. Then

u′(x) =

∫

Sn−1

g(η)P (x, η) dσ(η),

where g(η) is n×n dimensional matrix (gi,j(η))n
i,j=1 and it coincides with u′(η). By

definition we have

‖u′(x)‖2 =

∥∥∥∥∥ lim
m→∞

m∑

k=1

u′(ηk)P (x, ηk)σ(Sk)

∥∥∥∥∥
2

,

where Sn−1 =
∑m

k=1 Sk and δk = max
1≤k≤m

(Diam (Sk)) → 0 as m →∞. Hence,

‖u′(x)‖2 ≤ lim
m→∞

m∑

k=1

‖u′(ηk)‖2P (x, ηk)σ(Sk) = sup
‖η‖=1

‖u′(η)‖2P [1] = max
‖η‖=1

‖u′(η)‖2.

The proof is completed. ¤
Lemma 1.6. The integral

I =

∫

Sn−1

‖a− η‖γ dσ(η),

a ∈ Sn−1 converges if and only if γ > 1− n. If γ = 2− n, then I = 1.
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Proof. Because of symmetry, it is enough to take a = (1, 0, . . . , 0). Let T =
(x1, x2, ..., xn) : Kn−1 → Sn−1 be spherical coordinates:

x1 = cos θ1,

x2 = sin θ1 cos θ2,

...
xn−1 = sin θ1 sin θ2 · · · sin θn−2 cos ϕ,

xn = sin θ1 sin θ2 · · · sin θn−2 sin ϕ.

Here the cube Kn−1 = [0, π]× · · · × [0, π]× [0, 2π] is n− 1-dimensional. Then

(1.7) DT (θ1, . . . , θn−2, ϕ) = sinn−2 θ1 · · · sin θn−2.

It follows that

I =

∫

Sn−1

‖a− η‖γ dσ(η)

=
2π

ωn−1

∫ π

0

2γ+n−2 cosn−2(θ1/2) sinn−2(θ1/2) sinγ(θ1/2) dθ1

·
∫ π

0

sinn−3 θ2dθ2 · · ·
∫ π

0

sin θn−2 dθn−2

= 2γ+n−2

∫ π

0
cosn−2(θ1/2) sinn+γ−2(θ1/2) dθ1∫ π

0
sinn−2 θ1 dθ1

.

Hence the integral converges if and only if n+γ−2 > −1, i.e., γ > 1−n. Moreover,
∫ π

0

cosn−2(θ1/2) dθ1 =

√
π Γ(n−1

2
)

Γ(n
2
)

=

∫ π

0

sinn−2 θ1 dθ1.

Hence I = 1 for γ = 2− n. ¤
Lemma 1.7. For an arbitrary set of real numbers {x1, x2, . . . , xn} there holds

the inequality

(1.8) x2
1x

2
2 · · · x2

n−1 + x2
1 · · · x2

n−2x
2
n + · · ·+ x2

2 · · ·x2
n−1x

2
n ≤

(x2
1 + · · ·+ x2

n)n−1

nn−2
.

Proof. If n = 2, then we have nothing to prove. Assume n ≥ 3. We will consider
two cases.

Case 1. There exists i such that xi = 0. Say xn = 0. Then the inequality (1.8)
is equivalent to

x2
1x

2
2 · · · x2

n−1 ≤
(x2

1 + · · ·+ x2
n−1)

n−1

nn−2
,

which follows directly by using the arithmetic-geometric mean inequality and the
inequality (1 + 1

n−1
)n−1 ≤ n.

Case 2. For every i, xi 6= 0. We will prove the inequality by solving the following
extremal problem: L := x2

1x
2
2 · · · x2

n−1 + x2
1 · · · x2

n−2x
2
n + · · · + x2

2 · · · x2
n−1x

2
n → ext

for D := x2
1 + · · · + x2

n = r2, for some real number r. The Lagrangean of the
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corresponding problem is L − λD and the critical points of it satisfy the following
system: Lxi

= 2xiλ, i = 1, . . . , n, and D = r2. Denote by P the product x2
1 · · · x2

n

and by S the sum 1
x2
1

+ · · · + 1
x2

n
. Then L = PS. Using the fact that Pxi

= 2P
xi
,

i = 1, . . . , n, we obtain 2PS
x2

i
− 2P

x4
i

= 2λ for i = 1, . . . , n. It follows that

(1.9)
(

1

x2
i

− 1

x2
j

)(
S − 1

x2
i

− 1

x2
j

)
= 0 for every i 6= j.

From (1.9) it follows that x2
i = x2

j for every i and j. Since the set {x : D = r2} is
compact, it follows that the points x satisfying the equalities x2

i = x2
j for all i and

j are points of the maximum of the function L. From the last fact it follows (1.8)
at once. ¤

Lemma 1.8. Let A : Rn → Rn be a linear operator such that A = [aij]i,j=1,...,n.
a) There holds the inequality

(1.10) ‖Ax1 × · · · × Axn−1‖ ≤ 1√
(n− 1)n−1

‖A‖n−1
2 ‖x1 × · · · × xn−1‖.

b) If A is K-quasiconformal, then

(1.11) ‖Ax1 × · · · × Axn−1‖ ≤ L(K,n)‖A‖n−1
2 ‖x1 × · · · × xn−1‖,

where

(1.12) L(K, n) = min





K +
√

K2 − 1√
nn−2(n− 1 + (K +

√
K2 − 1)2)

,
1√

(n− 1)n−1



 .

The inequalities (1.10) and (1.11) are sharp.

Observe that lim
K→1

L(K, n) = n
1−n

2 .

Proof. a) If n = 2, then we can easily check that (1.10) holds. Assume n ≥ 3.
If x1, . . . , xn−1 are linearly dependent vectors, then the inequality follows from the
fact that

Ax1 × · · · × Axn−1 = ÃT x1 × · · · × xn−1 = 0.

Otherwise, applying the Gram–Schmidt algorithm, we construct a sequence
of vectors fi, i = 1, . . . , n, such that 〈fi, fi〉 = 1, 〈fi, fj〉 = 0 for i 6= j, and
L (x1, . . . , xi) = L (f1, . . . , fi) for i = 1, . . . , n − 1, where L (z1, . . . , zm) is the
linear space generated by {z1, . . . , zm}.

Let F = (fi,j) be an n × n matrix defined such that fj =
∑n

i=1 fijei, where
eT
1 = (1, 0 . . . , 0), . . . , eT

n = (0, 0, . . . , 1). Then,

(1.13) ‖AF‖2 = ‖A‖2.

Let us prove this fact. By definition,

‖AF‖2
2 =

n∑
i,j=1

〈AT ei, Fej〉2 =
n∑

i,j=1

〈AT ei, fj〉2.
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Let AT ei =
∑

i,j bijfj. Multiplying by fk, we obtain that 〈AT ei, fk〉 = bik. Hence,

AT ei =
n∑

j=1

〈AT ei, fj〉fj,

and, consequently,

‖AT ei‖2 =
n∑

j=1

〈AT ei, fj〉2.

Combining these, we obtain that

‖A‖2
2 =

n∑
i=1

‖AT ei‖2 =
n∑

i,j=1

〈AT ei, fj〉2 = ‖AF‖2
2.

Let xi =
∑n

j=1 xijfj, i = 1, . . . , n− 1. Then

Ax1 × · · · × Axn−1 =
∑

σ

εσx1,σ1 . . . xn−1σn−1Af1 × · · · × Afn−1.

It follows that

‖Ax1 × · · · × Axn−1‖2 =

∥∥∥∥∥
∑

σ

εσx1,σ1 . . . xn−1σn−1Af1 × . . . Afn−1

∥∥∥∥∥

2

= ‖Af1 × . . . Afn−1‖2‖x1 × · · · × xn−1‖2

≤ 1

(n− 1)n−1

(
n∑

i=1

‖Afi‖2

)n−1

‖x1 × · · · × xn−1‖2

=
1

(n− 1)n−1
‖AF‖2(n−1)

2 ‖x1 × · · · × xn−1‖2.

If A = (aij) such that aii = 1, i = 1, . . . , n − 1, and aij = 0 otherwise and xi = ei,
then the equality of the theorem holds.

b) If n = 2, then (1.11) follows from (1.5) and (1.6). Assume n ≥ 3. From
Ax1 × · · · × Axn−1 = ÃT x1 × · · · × xn−1 it follows that

‖Ax1 × · · · × Axn−1‖ ≤ ‖Ã‖‖x1 × · · · × xn−1‖.
Let λ̃2

1 ≥ · · · ≥ λ̃2
n be the eigenvalues of the matrix ÃT Ã. According to Proposi-

tion 1.4,

‖Ã‖2
2

‖Ã‖2
=

n∑

k=1

λ̃2
k

λ̃2
1

≥ 1 +
n− 1

k2(Ã)
≥ (K +

√
K2 − 1)2 + n− 1

(K +
√

K2 − 1)2
.

It follows that

(1.14) ‖Ã‖ ≤ K +
√

K2 − 1√
n− 1 + (K +

√
K2 − 1)2

‖Ã‖2.
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On the other hand,

‖Ã‖2 =

√√√√
n∑

k=1

‖Ãek‖2 =

√√√√
n∑

k=1

‖Ae1 × · · · × Aek−1 × Aek+1 × · · · × Aen‖2.

Using the fact that

‖Ae1 × · · · × Aek−1 × Aek+1 × · · · × Aen‖ ≤ ‖Ae1‖ · · · ‖Aek−1‖ · ‖Aek+1‖ · · · ‖Aen‖
and denoting by x′i, i = 1, . . . , n, the real numbers ‖Aei‖ after applying the inequal-
ity (1.8), we obtain

(1.15) ‖Ã‖2 ≤ n√
nn
‖A‖n−1

2 .

From (1.14) and (1.15) we obtain the desired inequality. If A is the unit matrix
(or, more generally, if A is any orthogonal transformation), then A is K = 1-
quasiconformal and the equality holds. Thus the inequality is sharp. ¤

2. The main result

Martio [8] was the first who considered harmonic quasiconformal mappings on
the complex plane. Recent papers [4]–[6] and [10] bring much light on the topic of
quasiconformal harmonic mappings on the plane.

In this paper we consider the same problem in the space. The problem in the
space is much more complicated because of lack of the technique of complex analysis.

In this paper we prove the following theorem:

Theorem 2.1. (The main result) Let K ≥ 1 be arbitrary and n ∈ N. Then
there exists a constant M ′ = M ′(n,K) such that if u = P [f ] is a K-quasiconformal
harmonic self-mapping of the unit ball Bn with u(0) = 0 such that f ∈ C1,α for
some α, 0 < α ≤ 1, then

(2.1) ‖u(x)− u(y)‖ ≤ M ′‖x− y‖, x, y ∈ Bn.

Moreover, M ′(n,K) → 1 as K → 1.

Proof. Let f be an arbitrary C1,α-injective function from the unit sphere Sn−1

onto itself. Let S be the mapping defined on K0 = [0, 1]×[0, π]×· · ·×[0, π]×[0, 2π] by
S(r, θ) = rT (θ), where θ = (θ1, . . . θn−2, ϕ). Then the mapping x, x(θ) = f(T (θ)),
defines the outer normal vector field nx in Sn−1 at the point x(θ) = f(T (θ)) =
(x1, x2, . . . , xn) by the formula

(2.2) nx(x(θ)) = xθ1 × · · · × xθn−2 × xϕ =

∣∣∣∣∣∣∣∣∣∣

e1 e2 . . . en

x1θ1
x2θ1

. . . xnθ1

. . . . . . . . . . . . . . . . . . .
x1θn−2

x2θn−2
. . . xnθn−2

x1ϕ x2ϕ . . . xnϕ

∣∣∣∣∣∣∣∣∣∣

.
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Let u = P [f ]. Let u(S(r, θ)) = (y1, y1, . . . , yn), where S are spherical coordinates.
According to Proposition 1.2, we obtain that the following limit relations hold:

(2.3) lim
r→1

yiϕ(r, θ) = xiϕ(θ), i ∈ {1, . . . , n},

(2.4) lim
r→1

yiθj
(r, θ) = xiθj

(θ), i ∈ {1, . . . , n}, j ∈ {1, . . . , n− 2},

and

(2.5) lim
r→1

yir(r, θ) = lim
r→1

xi(θ)− yi(r, θ)

1− r
, i ∈ {1, . . . , n}.

From (2.3), (2.4), (2.5) and (1.1) we obtain

lim
r→1

Ju◦S(r, θ) = lim
r→1

∣∣∣∣∣∣∣∣∣∣

x1−y1

1−r
x2−y2

1−r
. . . xn−yn

1−r

x1θ1
x2θ1

. . . xnθ1

. . . . . . . . . . . . . . . . . . .
x1θn−2

x2θn−2
. . . xnθn−2

x1ϕ x2ϕ . . . xnϕ

∣∣∣∣∣∣∣∣∣∣

= lim
r→1

∫

Sn−1

1 + r

‖η − x‖n

∣∣∣∣∣∣∣∣∣∣

x1 − f1(η) . . . xn − fn(η)
x1θ1

. . . xnθ1

. . . . . . . . . . . . . . . . . . . .
x1θn−2

. . . xnθn−2

x1ϕ . . . xnϕ

∣∣∣∣∣∣∣∣∣∣

dσ(η)

= lim
r→1

∫

Sn−1

1 + r

‖η − S(r, θ)‖n
〈f(T (θ))− f(η),nf◦T (T (θ))〉 dσ(η)

= lim
r→1

Dx(θ)

∫

Sn−1

1 + r

‖η − S(r, θ)‖n
〈f(T (θ))− f(η), f(T (θ))〉 dσ(η)

= lim
r→1

1 + r

2
Dx(θ)

∫

Sn−1

‖f(T (θ))− f(η)‖2

‖η − S(r, θ)‖n
dσ(η).

Hence we have

(2.6) lim
r→1

Ju◦S(r, θ) = Dx(θ)

∫

Sn−1

‖f(T (θ))− f(η)‖2

‖η − T (θ)‖n
dσ(η),

where x = f(T (θ)). Now from

‖u′(S(r, θ))‖n
2 ≤ Knn/2Ju(S(r, θ)),

using the formula Ju◦S(1, θ) = Ju(S(1, θ)) ·DT (θ), we obtain

(2.7) lim
r→1

‖u′(S(r, θ))‖n
2 ≤ lim

r→1
Knn/2Ju(S(r, θ)) =

Knn/2

DT (θ)
lim
r→1

Ju◦S(r, θ).
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From Proposition 1.2 we deduce that

lim
r→1

∂u ◦ S

∂θ1

(r, θ)× · · · × ∂u ◦ S

∂θn−2

(r, θ)× ∂u ◦ S

∂ϕ
(r, θ)

=
∂f ◦ T

∂θ1

(θ)× · · · × ∂f ◦ T

∂θn−2

(θ)× ∂f ◦ T

∂ϕ
(θ).

Since
∂u ◦ S

∂θi

(r, θ) = ru′(S(r, θ))
∂T

∂θi

,

using (1.11), we obtain that

(2.8) Dx(θ) ≤ L(K, n) lim
r→1

‖u′(S(r, θ))‖n−1
2 DT (θ).

From (2.6)–(2.8) we obtain

lim
r→1

‖u′(S(r, θ))‖n
2

≤ L(K, n) ·Knn/2 lim
r→1

‖u′(S(r, θ))‖n−1
2

∫

Sn−1

‖f(T (θ))− f(η)‖2

‖η − T (θ)‖n
dσ(η),

i.e.,

(2.9) lim
r→1

‖u′(S(r, θ))‖2 ≤ L(K,n) ·Knn/2

∫

Sn−1

‖f(T (θ))− f(η)‖2

‖η − T (θ)‖n
dσ(η).

Let M = max{‖u′(x)‖2 : ‖x‖ = 1} = limr→1 ‖u′(S(r, θ0))‖2 for some θ0 and let
µ = K1/(1−n). It is clear that 0 < µ < 1. Let γ = 1 − n + µ2, and let ν = 1 − µ.
According to Lemma 1.5,

sup
‖x‖≤1

‖u′(x)‖2 = M.

Since

(2.10) ‖u(x)− u(y)‖ ≤ sup
t∈Bn

‖u′(t)‖ · ‖x− y‖

and according to Proposition 1.4,

‖u′(t)‖ ≤ k(u′(t))√
n− 1 + k(u′(t))2

‖u′(t)‖2,

it follows that

(2.11) ‖u(x)− u(y)‖ ≤ M sup
t∈Bn

k(u′(t))√
n− 1 + k(u′(t))2

‖x− y‖.

From Proposition 1.4 we obtain

k(u′(t))√
n− 1 + k(u′(t))2

≤ l :=
K +

√
K2 − 1√

n− 1 + (K +
√

K2 − 1)2

.
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Now from (2.9), (1.2) and (2.11), we obtain

M ≤ (Ml)νL(K, n) ·Knn/2

∫

Sn−1

‖η − T (θ0)‖γ ‖f(T (θ0))− f(η)‖2−ν

‖T (θ0)− η‖µ2+µ
dσ(η)

≤ (Ml)νL(K, n) ·Knn/2M1(K, n)1+µ

∫

Sn−1

‖η − T (θ0)‖γ dσ(η)

= M0(K, n)(Ml)ν .

Hence we obtain

(2.12) M ≤ lν/(1−ν)(M0(K, n))1/(1−ν).

The inequality (2.1) does hold for

M ′ = l · lν/(1−ν)(M0(K, n))1/(1−ν) = (l ·M0(K, n))1/(1−ν).

Using (1.2), Lemma 1.8 and Lemma 1.6, it follows that limK→1 M ′(K, n) = 1. ¤
Corollary 2.2. Let K ≥ 1. Then there exists a constant M ′ = M ′(K) such

that if u = P [f ] is a K-quasiconformal harmonic self-mapping of the unit disk D
satisfying u(0) = 0, then

(2.13) ‖u(z)− u(w)‖ ≤ M ′‖z − w‖, z, w ∈ D.

Moreover, M ′(K) → 1 as K → 1. See [10] for some constant that is not asymptot-
ically sharp.

Proof. Let Dm = u−1({z : |z| < 1 − 1
m
}) and let ϕm : D 7→ Dm be a conformal

mapping such that ϕm(0) = 0 and ϕ′m(0) > 0. Then the mapping um = m
m−1

u ◦ ϕm

satisfies the conditions of Theorem 2.9. From (2.1) it follows that

‖um(z)− um(w)‖ ≤ M ′‖z − w‖, z, w ∈ D.

Since limm→∞ um(z) = u(z), the inequality (2.13) does hold for every quasiconformal
harmonic mapping. ¤

2.1. Questions. a) How to eliminate the assumption f ∈ C1,α in Theorem 2.1?
b) Is every q.c. harmonic mapping of the unit ball onto itself, satisfying u(0) = 0,
a bi-Lipschitz mapping? c) Does some q.c. harmonic mapping have critical points,
i.e., the points in which the Jacobian is zero? Compare this problem with the plane
version of the problem treated in [7].

Acknowledgement. I would like to express my deep gratitude to the referee for
useful comments and suggestions related to this paper.
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