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Abstract. It is established that a Q-homeomorphism in Rn, n ≥ 2, is absolute continuous
on lines, furthermore, in W 1,1

loc and differentiable a.e. whenever Q ∈ L1
loc.

1. Introduction

Let G and G′ be domains in Rn, n ≥ 2, and let Q : G → [1,∞] be a measurable
function. A homeomorphism f : G → G′ is called a Q-homeomorphism if

(1.1) M(fΓ) ≤
∫

G

Q(x) · %n(x) dx

for every family Γ of paths in G and every admissible function % for Γ. Here the
notation m refers to the Lebesgue measure in Rn. This conception is a natural
generalization of the geometric definition of a quasiconformal mapping, see 13.1
and 34.6 in [Va].

Recall that, given a family of paths Γ in Rn, a Borel function % : Rn → [0,∞]
is called admissible for Γ, abbr. % ∈ adm Γ, if

(1.2)
∫

γ

% ds ≥ 1

for all γ ∈ Γ. The (conformal) modulus of Γ is the quantity

(1.3) M(Γ) = inf
%∈admΓ

∫

G

%n(x) dx.

This class of Q-homeomorphisms was first introduced and studied in [MRSY1]–
[MRSY3]. The main goal of the theory of Q-homeomorphisms is to clear up various
interconnections between properties of the majorant Q(x) and the corresponding
properties of the mappings themselves. In particular, the problem of the local
and boundary behavior of Q-homeomorphisms has been studied in Rn first in the
case Q ∈ BMO (bounded mean oscillation) in the papers [MRSY1]–[MRSY3] and
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[RSY1]–[RSY2], and then in the case of Q ∈ FMO (finite mean oscillation) and
other cases in the papers [IR1]–[IR2], [RS] and [RSY3]–[RSY6].

In what follows, if A,B and C are sets in Rn, then ∆(A,B, C) denotes a col-
lection of all continuous curves γ : [a, b] → Rn joining A and B in C, i.e. γ(a) ∈ A,
γ(b) ∈ B and γ(t) ∈ C, t ∈ (a, b).

Here a condenser is a pair E = (A, C) where A ⊂ Rn is open and C is non-
empty compact set contained in A. E is a ringlike condenser if B = A \C is a ring,
i.e., if B is a domain whose complement Rn \B has exactly two components where
Rn = Rn ∪ {∞} is the one point compactification of Rn.

2. On the ACL property of Q-homeomorphisms

Theorem 2.1. Let G and G′ be domains in Rn, n ≥ 2, and f : G → G′ be
Q-homeomorphism with Q ∈ L1

loc. Then f ∈ ACL.

Proof. Let I = {x ∈ Rn : ai < xi < bi, i = 1, . . . , n} be an n-dimensional
interval in Rn such that I ⊂ G. Then I = I0×J where I0 is an (n− 1)-dimensional
interval in Rn−1 and J is an open segment of the axis xn, J = (a, b). Next we identify
Rn−1 ×R with Rn. We prove that for almost everywhere segments Jz = {z} × J ,
z ∈ I0, the mapping f |Jz is absolutely continuous.

Consider the set function Φ(B) = m(f(B × J)) defined over the algebra of all
the Borel sets B in I0. Note that by the Lebesgue theorem on differentiability for
non-negative sub-additive locally finite set functions, see e.g. III.2.4 in [RR], there
exists a finite limit for a.e. z ∈ I0

(2.2) ϕ(z) = lim
r→0

Φ (Bn−1(z, r))

Ωn−1rn−1

where Bn−1(z, r) is a ball in I0 ⊂ Rn−1 centered at z ∈ I0 of the radius r > 0.
Let ∆i, i = 1, 2, . . ., be some enumeration S of all intervals in J such that

∆i ⊂ J and the ends of ∆i are the rational numbers. Set

ϕi(z) :=

∫

∆i

Q(z, xn) dxn.

Then by the Fubini theorem, see e.g. III. 8.1 in [Sa], the functions ϕi(z) are a.e. finite
and integrable in z ∈ I0. In addition, by the Lebesgue theorem on differentiability
of the indefinite integral there is a.e. a finite limit

(2.3) lim
r→0

Φi(B
n−1(z, r))

Ωn−1rn−1
= ϕi(z)

where Φi for a fixed i = 1, 2, . . . is the set function

Φi(B) =

∫

B

ϕi(ζ) dζ

given over the algebra of all the Borel sets B in I0.
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Let us show that the mapping f is absolutely continuous on each segment Jz,
z ∈ I0, where the finite limits (2.2) and (2.3) exist. Fix one of such a point z.
We have to prove that the sum of diameters of the images of an arbitrary finite
collection of mutually disjoint segments in Jz = {z}×J tends to zero with the total
length of the segments. In view of the continuity of the mapping f , it is sufficient
to verify this fact only for mutually disjoint segments with rational ends in Jz. So,
let ∆∗

i = {z} × ∆i ⊂ Jz where ∆i ∈ S, i = 1, . . . , k under the corresponding re-
enumeration of S, are mutually disjoint intervals. Without loss of generality, we
may assume that ∆i, i = 1, . . . , k are also mutually disjoint.

Let δ > 0 be an arbitrary rational number which is less than of half the minimum
of the distances between ∆∗

i , i = 1, . . . , k, and also less than their distances to
the end-points of the interval Jz. Let ∆∗

i = {z} × [αi, βi] and Ai = Ai(r) =
Bn−1(z, r)×(αi−δ, βi+δ), i = 1, . . . , k, where Bn−1(z, r) is an open ball in I0 ⊂ Rn−1

centered at the point z of the radius r > 0. For small r > 0, (Ai, ∆
∗
i ), i = 1, . . . , k,

are ringlike condensers in I and hence (fAi, f∆∗
i ), i = 1, . . . , k, are also ringlike

condensers in G′.
According to [Ge], see also [He] and [Sh],

cap (fAi, f∆∗
i ) = M (4 (∂fAi, f∆∗

i ; fAi))

and, in view of homeomorphism of f ,

4 (∂fAi, f∆∗
i ; fAi) = f (4 (∂Ai, ∆

∗
i ; Ai)) .

Thus, since f is a Q-homeomorphism we obtain that

cap(fAi, f∆∗
i ) ≤

∫

G

Q(x) · ρn(x) dx

for every function ρ ∈ adm4(∂Ai, ∆
∗
i ; Ai). In particular, the function

ρ(x) =

{
1
r
, x ∈ Ai,

0, x ∈ Rn \ Ai,

is admissible under r < δ and, thus,

(2.4) cap(fAi, f∆∗
i ) ≤

1

rn

∫

Ai

Q(x) dx.

On the other hand, by Lemma 5.9 in [MRV]

(2.5) cap(fAi, f∆∗
i ) ≥

(
Cn

dn
i

mi

) 1
n−1

where di is a diameter of the set f∆∗
i and mi is a volume of the set fAi and Cn is

a constant depending only on n.
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Combining (2.4) and (2.5), we have the inequalities

(2.6)
(

dn
i

mi

) 1
n−1

≤ cn

rn

∫

Ai

Q(x) dm(x), i = 1, . . . , k,

where the constant cn depends only on n.
By the discrete Hölder inequality we obtain

(2.7)
k∑

i=1

di ≤
(

k∑
i=1

(
dn

i

mi

) 1
n−1

)n−1
n

(
k∑

i=1

mi

) 1
n

,

i.e.,

(2.8)

(
k∑

i=1

di

)n

≤
(

k∑
i=1

(
dn

i

mi

) 1
n−1

)n−1

Φ(B(z, r)),

and in view of (2.6)

(2.9)

(
k∑

i=1

di

)n

≤ γn
Φ(Bn−1(z, r))

Ωn−1rn−1




k∑
i=1

∫
Ai

Q(x) dx

Ωn−1rn−1




n−1

,

where γn depends only on n. Letting here first r → 0 and then δ → 0, we get by
Lebesgue’s theorem

(2.10)

(
k∑

i=1

di

)n

≤ γnϕ(z)

(
k∑

i=1

ϕi(z)

)n−1

.

Finally, in view of (2.10), the absolute continuity of the indefinite integral of Q
over the segment Jz implies the absolute continuity of the mapping f over the same
segment. Hence f ∈ ACL. ¤

3. On a.e. differentiability of Q-homeomorphisms

Here we extend the method developed in [Go] to Q-homeomorphisms with Q ∈
L1
loc, cf. also [BRZ], [Ch] and [VI].

Theorem 3.1. Let G and G′ be domains in Rn, n ≥ 2, and f : G → G′ be a
Q-homeomorphism with Q ∈ L1

loc. Then f is differentiable a.e. in G.

Proof. Let us consider the set function Φ(B) = m(f(B)) defined over the
algebra of all the Borel sets B in G. Recall that by the Lebesgue theorem on the
differentiability of non-negative sub-additive locally finite set functions, see III.2.4
in [RR] or 23.5 in [Va], there exists a finite limit for a.e. z ∈ G

(3.2) ϕ(x) = lim
ε→0

Φ(B(x, ε))

Ωnεn

where B(x, ε) is a ball in Rn centered at x ∈ G with the radius ε > 0.
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Consider also the spherical ring Rε(x) = {y : ε < |x − y| < 2ε}, x ∈ G, with
ε > 0 such that Rε(x) ⊂ G. Since

(
fB (y, 2ε) , fB (y, ε)

)
are ringlike condensers in

G′, according to [Ge], see also [He] and [Sh],

cap(fB(x, 2ε), fB(x, ε)) = M(4(∂fB(x, 2ε), ∂fB(x, ε); fRε(x)))

and, in view of homeomorphism of f,

4 (∂fB (x, 2ε) , ∂fB (x, ε) ; fRε(x)) = f (4 (∂B(x, 2ε), ∂B(x, ε); Rε(x))) .

Thus, since f is Q-homeomorphism, we obtain that

cap(fB(x, 2ε), fB(x, ε)) ≤
∫

G

Q(x) · ρn(x) dx

for every admissible function ρ for 4(∂B(x, 2ε), ∂B(x, ε); Rε(x)). The function

ρ(x) =

{
1
ε
, if x ∈ Rε(x),

0, if x ∈ G \Rε(x),

is admissible and, thus,

(3.3) cap(fB(x, 2ε), fB(x, ε)) ≤ 2nΩn

m(B(x, 2ε))

∫

B(x,2ε)

Q(y) dy.

On the other hand, by Lemma 5.9 in [MRV] we have that

(3.4) cap(fB(x, 2ε), fB(x, ε)) ≥
(

Cn
dn(fB(x, ε))

m(fB(x, 2ε))

) 1
n−1

where Cn is a constant depending only on n, d(A) and m(A) denote the diameter
and the Lebesgue measure of a set A in Rn.

Combining (3.3) and (3.4), we obtain that

d(fB(x, ε))

ε
≤ γn

(
m(fB(x, 2ε))

m(B(x, 2ε))

)1/n


 1

m(B(x, 2ε))

∫

B(x,2ε)

Q(y) dy




(n−1)/n

and hence
L(x, f) ≤ lim sup

ε→0

d(fB(x, ε))

ε
≤ γnϕ

1/n(x)Q(n−1)/n(x)

where

(3.5) L(x, f) = lim sup
y→x

|f(y)− f(x)|
|y − x| .

Thus, L(x, f) < ∞ a.e. in G. Finally, applying the Rademacher–Stepanov theorem,
see e.g. [Sa], p. 311, we conclude that f is differentiable a.e. in G. ¤

Corollary 3.6. Let G and G′ be domains in Rn, n ≥ 2, and let f : G → G′ be
a Q-homeomorphism with Q ∈ L1

loc. Then f belongs to W 1,1
loc .
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Proof. For L(x, f) given by (3.5) and a Borel set V ⊂ G, we have that
∫

V

L(x, f) dx ≤ γn

∫

V

ϕ1/n(x)Q(n−1)/n(x) dx

and applying the Hölder inequality we obtain

∫

V

ϕ1/n(x)Q(n−1)/n(x) dx ≤



∫

V

ϕ(x) dx




1/n 


∫

V

Q(x) dx




(n−1)/n

.

Finally, in view of Q ∈ L1
loc, by the Lebesgue theorem we see that

∫

V

L(x, f) dx ≤ γn (mV )1/n




∫

V

Q(x) dx




(n−1)/n

< ∞

and the conclusion follows by Theorem 2.1, see also [Maz]. ¤
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