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Abstract. We investigate the number of times that nontrivial solutions of equations u′′ +
p(z)u = 0 in the unit disk can vanish—or, equivalently, the number of times that solutions of
S(f) = 2p(z) can attain their values—given a restriction |p(z)| ≤ b(|z|). We establish a bound for
that number when b satisfies a Nehari-type condition, identify perturbations of the condition that
allow the number to be infinite, and compare those results with their analogs for real equations
ϕ′′ + q(t)ϕ = 0 in (−1, 1).

This paper investigates the number of times that nontrivial solutions of an
equation u′′ + p(z)u = 0 in the unit disk D ⊆ C can vanish. Which conditions
|p(z)| ≤ b(|z|) imply that the number of zeroes is finite? In terms of b, how many
zeroes can there be? And how do the answers to those questions compare with what
happens with equations ϕ′′ + q(t)ϕ = 0 for real-valued functions in (−1, 1)?

The results for the complex setting are equivalent to statements about the va-
lence of a locally injective, meromorphic mapping f in D whose Schwarzian deriva-
tive S(f) = (f ′′/f ′)′ − 1

2
(f ′′/f ′)2 satisfies a bound |Sf(z)| ≤ 2b(|z|). Because every

solution of S(f) = 2p is a quotient of linearly independent solutions of u′′ + pu = 0,
its valence

sup
c∈C∪{∞}

#
{
z ∈ D : f(z) = c

}
,

equals the oscillation number

sup
solutions u6≡0

#
{
z ∈ D : u(z) = 0

}
,

of that equation. In particular, both quantities are finite or both infinite.
The equation u′′ + pu = 0 in D has finite oscillation number if p is bounded.

Indeed, in view of Sturm’s theorem below and the standard method summarized
in (i) of Theorem 10 (see Section 1), a bound |p| ≤ C implies that any two zeroes
of a nontrivial solution are at least π/

√
C units apart. Boundedness, however, is

not a necessary condition. Using a method of Nehari [11], Schwarz [14] has shown
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that finite oscillation occurs if |p(z)| ≤ 1/(1− |z|2)2 for all z near ∂D. His theorem
complements an observation by Hille [8] that, when c > 1, some nontrivial solutions
of u′′ + c(1− z2)−2u = 0 have infinitely many zeroes in D.

The first of the main results in this paper is a quantitative version of Schwarz’s
theorem. For a holomorphic function p in D, let

Mp(r) = max
{|p(z)| : |z| = r

}
, r ∈ [0, 1).

Theorem 1. There are constants A and B such that, if p : D → C is holomor-
phic and |p(z)| ≤ 1/(1 − |z|2)2 whenever R ≤ |z| < 1, then nontrivial solutions of
u′′ + pu = 0 satisfy

#
{
z ∈ D : u(z) = 0

} ≤ A

1−R
+ B

∫ R

0

√
Mp(r)

1− r
dr.

Although based on simple principles, Theorem 1 often provides satisfactory es-
timates for the maximal oscillation number among the equations in a family defined
by a condition |p(z)| ≤ b(|z|). It provides the upper bound in the following situation,
for example, and that is of the correct order of magnitude:

Theorem 2. Let α ∈ (0, 1), and for C ≥ 0 let Nα(C) be the maximum of the
oscillation numbers among the equations u′′+pu = 0 in which |p(z)| ≤ C/(1−|z|2)2α

for all z ∈ D. Then there are positive numbers kα, Kα, and Aα such that

kαC1/(2−2α) ≤ Nα(C) ≤ KαC1/(2−2α), C ≥ Aα.

Theorem 1 also implies that the maximum N0(C) for the family defined by the
condition |p| ≤ C is O(

√
C log C). That maximum, however, might be O(

√
C). It

is at least 2
√

C/π, as one sees from equations u′′ + Cu = 0, and in Section 3 we
show that it actually exceeds k

√
C for some k > 2/π when C is large. Bounds

N1/2(C) = O(C log C) and N0(C) = O(C) were established in [2].
Analogs of Theorems 1 and 2 for equations ϕ′′+ q(t)ϕ = 0 in (−1, 1) in which ϕ

and q are real-valued take a somewhat different form. The analysis in that situation
rests upon the following:

Sturm Comparison Theorem. [7] Let q ≤ Q be continuous functions in
[a, b], and let ϕ and ψ be solutions of ϕ′′ + qϕ = 0 and ψ′′ + Qψ = 0, respectively,
with ϕ having no zero in (a, b). If ϕ(a) = ϕ(b) = 0, then ψ has a zero in (a, b)
unless q = Q and ψ is a multiple of ϕ. The same conclusion holds if ϕ(b) = 0, ϕ(a)
and ψ(a) are nonzero, and (ψ′/ψ)(a) ≤ (ϕ′/ϕ)(a), or if ϕ(a) = 0, ϕ(b) and ψ(b) are
nonzero, and (ψ′/ψ)(b) ≥ (ϕ′/ϕ)(b).

As with complex equations, we define the oscillation number of a real equa-
tion ϕ′′ + qϕ = 0 in an interval I, where q is continuous, to be the supremum
N ∈ {1, 2, . . . ,∞} of the number of zeroes of nontrivial solutions. Every nontrivial
solution then vanishes N or N − 1 times in I, for Sturm’s theorem implies that
the zeroes of any two such solutions are either identical or interlaced in a strictly
alternating pattern. Equations for which N = 1 are said to be disconjugate in
I, and those for which N = ∞ are said to be oscillatory there. The equation
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ϕ′′ + c(1 − t2)−2ϕ = 0, for example, is disconjugate in (−1, 1) when c ≤ 1 and
oscillatory when c > 1, as one sees from the general solution

ϕ(t) =





(1− t2)1/2
{
α cosh(δL(t)/2) + β sinh(δL(t)/2)

}
if c = 1− δ2 < 1,

(1− t2)1/2
{
α + βL(t)

}
if c = 1,

(1− t2)1/2
{
α cos(δL(t)/2) + β sin(δL(t)/2)

}
if c = 1 + δ2 > 1,

with L(t) = log((1 + t)/(1− t)).
Sturm’s theorem shows that it is not so much |q| as the signed quantity q that

matters in estimating the oscillation number of a real equation ϕ′′+qϕ = 0, for larger
coefficients yield larger or identical oscillation numbers. Another phenomenon is the
sensitivity of the oscillation number N to “spikes” in q. For a constant-coefficient
ϕ′′ + Cϕ = 0 in an interval of length `,

(1) −1 + (`/π)
√

max{C, 0} ≤ N ≤ 1 + (`/π)
√

max{C, 0} .

In view of the ability to approximate an arbitrary continuous function from above
and below by step functions, Sturm’s theorem then suggests the estimate

N ≈ 1

π

∫

I

√
q(t)+ dt, x+ = max{x, 0},

as a rule of thumb in the general case. One needs hypotheses, however, that prevent
the graph of q from having many sharp spikes, for when that happens N can be
considerably larger than the integral. The effect is severe enough to preclude analogs
of Theorem 1 with an integral involving (q+)1/2 or |q|1/2. In particular, Theorem 6
in Section 1 shows that no bound of the form N ≤ Aa + Ba

∫ a

−a
|q(t)|1/2 dt holds for

equations in which q is supported in an interval [−a, a] ⊆ (−1, 1). The analog we
give uses (M+

q )1/2 instead, where

Mq(r) = max
{
q(t) : |t| ≤ r

}
, r ∈ [0, 1).

This is the smallest nondecreasing function b such that q(t) ≤ b(|t|) for all t ∈ [0, 1).

Theorem 3. If q : (−1, 1) → R is continuous and q(t) ≤ 1/(1− t2)2 whenever
R ≤ |t| < 1, then nontrivial real solutions of ϕ′′ + qϕ = 0 satisfy

#
{
t ∈ (−1, 1) : ϕ(t) = 0

} ≤ 3 +
4

π

∫ R

0

√
Mq(r)+ dr.

The proof also provides the bound 1 + (4/π)
∫ 1

0
(Mq(r)

+)1/2 dr for all q.
Theorem 2 addresses the rate of growth, as C →∞, of the maximal oscillation

number N(C) of complex equations u′′+pu = 0 in D that satisfy certain conditions
|p(z)| ≤ Cb(|z|), and it shows that the rate of growth can depend on b. One can
study the same issue for real equations ϕ′′ + qϕ = 0 in (−1, 1), but there N(C)

is usually asymptotic to a constant times
√

C. To state the result, it is enough
to consider equations ϕ′′ + Cqϕ = 0 with q fixed, for Sturm’s theorem implies
that, among equations whose coefficients are bounded by Cb(|t|), the equation ϕ′′+
Cb(|t|)ϕ = 0 itself has maximal oscillation number.
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Theorem 4. If q : (−1, 1) → R is continuous and (M+
q )1/2 is integrable, then

the oscillation numbers of the equations ϕ′′+Cqϕ = 0 satisfy the asymptotic relation

N(C) ∼
√

C

π

∫ 1

−1

√
q(t)+ dt as C →∞.

The hypothesis is equivalent to the assumption that q(t) ≤ b(|t|) for some
nondecreasing function b in [0, 1) with (b+)1/2 integrable.

In both the real and complex settings, bounds c/(1−|x|2)2 on the coefficient for
|x| near one imply a finite oscillation number exactly when c ≤ 1. That might lead
one to wonder if every bound b(|x|) that implies finite oscillation for real equations
also does so for complex equations (as might (i) in Theorem 10). The answer is no.
Real equations in (−1, 1) have finite oscillation number if

∣∣q(t)
∣∣ ≤ 1 +

{
log(1− |t|)}−2

(1− t2)2
, |t| ≈ ±1;

see Theorem 1 in [3] or Exercise 1.2 in Chapter XI of [7]. In D, however, every bound
|p(z)| ≤ β(|z|)/(1 − |z|2)2 whose numerator decays to one at a slower-than-linear
rate as |z| → 1 allows infinite oscillation:

Theorem 5. If β : [0, 1) → (0,∞) is continuous and limr→1(β(r)−1)/(1−r) =
∞, then there is a holomorphic function p in D satisfying |p(z)| ≤ β(|z|)/(1−|z|2)2

for all z ∈ D such that some nontrivial solution of u′′ + pu = 0 has infinitely many
zeroes.

To complement this theorem, it would be desirable to show that conditions

∣∣p(z)
∣∣ ≤ 1 + C

(
1− |z|)

(1− |z|2)2
, z ∈ D,

with C > 0 imply finite oscillation. We do not know whether they do, however.
Section 1 of this paper addresses oscillation in the real setting; Theorems 3 and

4 and the assertions surrounding them emerge from stronger results proved there.
Section 2 treats a way in which equations u′′ + pu = 0 transform to equations of
the same form under a change of independent variable. Using the transform, we
identify perturbations of the Nehari bound that allow equations with oscillation
number at least two and construct equations u′′+pu = 0 in D with large oscillation
number. Section 3 contains the proofs of Theorems 1 and 2 and Section 4 the proof
of Theorem 5.

1. Oscillation numbers of real equations

This section treats differential equations ϕ′′ + q(t)ϕ = 0 in which q is a contin-
uous, real-valued function in an interval I ⊆ R (of any kind) and, implicitly, ϕ is
real-valued.
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As mentioned in the introduction, “spikes” in the graph of q can cause such an
equation to have large oscillation number relative to the integral of (q+)1/2. The
following theorem demonstrates that:

Theorem 6. For every closed interval [a, b], positive integer N , and ε > 0,
there is a continuous, nonnegative function q in R, supported in [a, b] and satisfying∫ b

a
q(t)1/2 dt < ε, such that some nontrivial solution of ϕ′′ + qϕ = 0 vanishes more

than N times in [a, b].

Proof. With (b− a)/N = 2δ, it is enough to produce a continuous, nonnegative
function r, supported in [−δ, δ] and satisfying

∫ δ

−δ
r(t)1/2 dt < ε/N , such that some

nontrivial solution of ϕ′′ + rϕ = 0 vanishes at both δ and −δ; the assertions in the
theorem will then hold for the function q(t) =

∑N
k=1 r(t−a−(2k−1)δ), for nontrivial

solutions of ϕ′′+qϕ = 0 that vanish at a will also vanish at a+2δ, · · · , a+2Nδ = b.
Let f(t) = η(1 − t2)+, where η > 0 is small enough that

∫ 1

−1
f(t)1/2dt < ε/N

and that the solution ψ = ψη of ψ′′ + fψ = 0 with ψ(0) = 1 and ψ′(0) = 0 remains
positive throughout [0, 1]; the latter is possible since, by continuous dependence of
solutions upon parameters, ψη(t) → 1 as η → 0, the convergence being uniform on
bounded sets. This solution vanishes at a point τ > 1, for it is linear in [1,∞) with
derivative ψ′(1) = − ∫ 1

0
f(t)ψ(t) dt < 0; being even, ψ also vanishes at −τ . The

function ϕ(t) = ψ(tτ/δ) then vanishes at both δ and −δ and solves an equation
ϕ′′ + rϕ = 0 in which the coefficient function r(t) = (τ/δ)2f(tτ/δ) is supported in
[−δ, δ] and satisfies

∫ δ

−δ
r(t)1/2 dt =

∫ z

−z
f(u)1/2 du < ε/N . ¤

One way to control this phenomenon is to require that q+ be bounded by a
piecewise-monotonic function whose square root is integrable. The key observation
is the following:

Lemma 7. Let a < b be successive zeroes of a nontrivial solution of ϕ′′+qϕ = 0,
where q is continuous and nonnegative in [a, b], and let c ∈ (a, b) be a critical point
of ϕ. If q is nondecreasing in [c, b], then

∫ b

c
q(t)1/2 dt ≥ π/2; if q is nonincreasing in

[a, c], then
∫ c

a
q(t)1/2 dt ≥ π/2.

Proof. One may assume that ϕ > 0 in (a, b), and also that q is nondecreasing
in [c, b], for the function ψ(t) = ϕ(−t) satisfies ψ′′ + q(−t)ψ = 0. Under those
assumptions, suppose that

∫ b

c
q(t)1/2 dt < π/2, and let

w(x) = cos

(∫ x

c

√
q(t) dt

)
ϕ′(x) + sin

(∫ x

c

√
q(t) dt

)√
q(x) · ϕ(x), x ∈ [c, b].

This function is continuous, and a computation shows that the derivate
(
D∗w

)
(x) := lim inf

h→0

w(x + h)− w(x)

h
∈ [−∞,∞]

satisfies
(
D∗w

)
(x) = sin

(∫ x

c

q(t)1/2 dt

)
· (D∗

√
q
)
(x) · ϕ(x) ≥ 0, x ∈ (c, b).
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By a bisection argument, one concludes that w is nondecreasing in each interval
[c′, b′] ⊆ (c, b) and hence, by continuity, in [c, b]. But that is false, for w(c) = 0 and
w(b) = cos(

∫ b

c
q(t)1/2 dt)ϕ′(b) < 0, and the lemma follows. ¤

In the situation of this lemma, the integral of √q over the remaining part of [a, b]
can be arbitrarily small, with the integral over [a, b] exceeding π/2 by an arbitrarily
small amount, even if q is monotonic. Indeed, given ε > 0, let q(t) = et/ε for t < 0
and q(t) = 1 thereafter. The solution of ϕ′′ + qϕ = 0 with ϕ(0) = 1 and ϕ′(0) = 0
is given by ϕ(t) = cos t when t ≥ 0, and it has a zero in (−∞, 0) since ϕ′′ < 0
whenever ϕ > 0. The hypotheses of Lemma 7 then hold with a equal to the largest
zero of ϕ in (−∞, 0) and b = π/2, but

∫ b

a
q(t)1/2 dt < ε + π/2. Concatenations of

such examples also show that the factor 2/π in the next result cannot be reduced:

Theorem 8. Let q : I → R be continuous. Suppose that I is the union of n
pairwise disjoint intervals Ij and that q+ is bounded by a continuous, monotonic
function bj in each. If b is the union of those functions, then nontrivial solutions of
ϕ′′ + qϕ = 0 satisfy

#
{
t ∈ I : ϕ(t) = 0

} ≤ n +
2

π

∫

I

√
b(t) dt.

Proof. By Lemma 7, the number of zeroes of a nontrivial solution of ψ′′+bjψ = 0
satisfies

∫
Ij

bj(t)
1/2 dt ≥ (π/2)(N − 1), or N ≤ 1 + (2/π)

∫
Ij

bj(t)
1/2 dt. Sturm’s

theorem implies that the same quantity bounds the number of zeroes of nontrivial
solutions of ϕ′′ + qϕ = 0 in Ij, and the theorem follows by summing over j. ¤

Theorem 8 yields the bound 2+ (4/π)
∫ 1

0
(Mq(r)

+)1/2 dr for the oscillation num-
ber of an equation ϕ′′ + qϕ = 0 in (−1, 1). As asserted after Theorem 3 in the
introduction, that bound can be reduced by one. It is sufficient to establish the
reduced bound for equations in which q is nonnegative, even, and nondecreasing
in [0, 1), which is to say that q(t) = Mq(|t|)+, for the general result then follows
by a Sturm comparison with ϕ′′ + Mq(|t|)+ϕ = 0. Under those assumptions, let
t1 < · · · < tN be successive zeroes of a nontrivial solution ϕ. If tN < 0 or t1 ≥ 0,
then Theorem 8 implies that N ≤ 1 + (2/π)

∫ tN
t1

q(t)1/2 dt, and that quantity is less
than or equal to the asserted bound. Suppose, then, that tk < 0 ≤ tk+1 for some k,
and let c be a critical point of ϕ in (tk, tk+1). By Lemma 7, the integral of √q over
[c, tk+1] is at least π/2 if c ≥ 0, and that over [tk, c] is so if c < 0. Thus the integral
over [tk, tk+1] is at least π/2 in either case, and by Theorem 8

N ≤ 1 +
2

π

∫ tk

t1

√
q(t) dt + 1 +

2

π

∫ tN

tk+1

√
q(t) dt

≤ 2 +
2

π

(∫ 1

−1

√
q(t) dt− π

2

)
= 1 +

4

π

∫ 1

0

√
q(t) dt.

Similarly, nontrivial solutions ϕ have at most 1+(4/π)
∫ R

0
(Mq(r)

+)1/2 dr zeroes
in [−R, R] when R < 1. If in addition q(t) ≤ 1/(1 − t2)2 whenever R ≤ |t| < 1,
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then a Sturm comparison with the equation ψ′′ + (1 − t2)−2ψ = 0 discussed in the
introduction shows that such solutions have at most one zero in each of (−1,−R) and
(R, 1) and hence at most 3 + (4/π)

∫ R

0
(Mq(r)

+)1/2 dr zeroes overall. This argument
proves Theorem 3.

Theorem 4 is a consequence of the following:

Theorem 9. Suppose that q : I → R is continuous and that, in each of the
at most two components of the complement I − J of a closed, bounded subinterval
J , the function q+ is bounded by a continuous, monotonic function b with

√
b

integrable. If N(C) is the oscillation number of the equation ϕ′′ + Cqϕ = 0 in I,
then

N(C) ∼
√

C

π

∫

I

√
q(t)+ dt as C →∞.

Proof. Given ε > 0, one can expand J so that the integrals of the functions
√

b
in I−J sum to less than ε. Nontrivial solutions of ϕ′′+Cqϕ = 0 then have at most
2 + 2ε

√
C/π zeroes in I − J by Theorem 8, and hence

lim sup
C→∞

N(C)√
C/π

≤ lim sup
C→∞

2 + 2ε
√

C/π + NJ(C)√
C/π

= 2ε + lim sup
C→∞

NJ(C)√
C/π

,

where NJ(C) is the oscillation number of ϕ′′ + Cqϕ = 0 in J .
Sturm’s theorem and the estimate (1) for constant-coefficient equations show

that, if S and S ′ are lower and upper Riemann sums for
∫

J
(q(t)+)1/2 dt, then

S ≤ lim inf
C→∞

NJ(C)√
C/π

≤ lim sup
C→∞

NJ(C)√
C/π

≤ S ′.

Since this holds for all such sums, both interior quantities equal
∫

J
(q(t)+)1/2 dt.

Therefore

lim inf
C→∞

N(C)√
C/π

≥ lim inf
C→∞

NJ(C)√
C/π

=

∫

J

√
q(t)+ dt > −ε +

∫

I

√
q(t)+ dt,

lim sup
C→∞

N(C)√
C/π

≤ 2ε +

∫

J

√
q(t)+ dt ≤ 2ε +

∫

I

√
q(t)+ dt,

and the theorem follows since ε was arbitrary. ¤
We end this section with some basic ways in which real-variable methods can

reveal restrictions on how frequently solutions of complex equations can vanish. The
sufficiency of condition (i) has been observed in [9] p. 578, [10] p. 293, and [12].

Theorem 10. Let t 7→ zt, t ∈ [0, T ], be a parametrization of a segment J ⊆ C
with constant velocity ζ. If p is a holomorphic function in an open set containing
J , then nontrivial solutions of u′′ + pu = 0 vanish at most once in J if the function
P (t) = ζ2p(zt) in [0, T ] satisfies any of the following:

(i) Nontrivial real solutions of ϕ′′ + Re(P ) · ϕ = 0 vanish at most once [0, T ],
(ii) Im(P ) has just finitely many zeroes and is otherwise of one sign, or
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(iii) Re(P ) ≤ π2/T 2 + m · Im(P ) for some m ∈ R, but P (t) 6≡ π2/T 2.

Proof. Suppose that a nontrivial solution of u′′+ pu = 0 has two or more zeroes
in J . The function U(t) = u(zt) in [0, T ] then satisfies U ′′ + PU = 0 and vanishes
at least twice but is not identically zero. We prove the theorem by considering
successive zeroes x < y of U and concluding that none of (i), (ii), or (iii) holds.

Writing U(t) = r(t)eiθ(t) and P (t) = a(t) + ib(t) in the interval (x, y) and
equating the real and imaginary parts of (U ′′ + PU)e−iθ(t) to zero gives

(2) r′′ − (θ′)2r + ar = 0, rθ′′ + 2r′θ′ + br = 0.

Here r and θ extend to C2 functions in [x, y] with r and θ′ vanishing at the endpoints,
as one sees from power-series expansions of u about zx and zy.

Since the solution r(t) of the first equation in (2) is nontrivial and vanishes
twice in [x, y], Sturm’s theorem implies that some nontrivial solution of ϕ′′+aϕ = 0
vanishes at least twice there and hence twice in [0, T ]; thus (i) fails. The second
equation in (2) states that (r2θ′)′ = −br2. Since r2θ′ vanishes at x and y, it follows
that b either changes sign or is identically zero; thus (ii) fails, also. Finally, suppose
that the first condition in (iii) holds for some m. We recall Wirtinger’s inequality
[6], which asserts that if f : R → R is of class C1 and τ -periodic with

∫ τ

0
f(t) dt = 0,

then
∫ τ

0
f ′(t)2dt ≥ (2π/τ)2

∫ τ

0
f(t)2dt. Applying that result with τ = 2(y − x) and

f(t) =

{
r(t− kτ + x) if kτ ≤ t ≤ (k + 1/2)τ,

−r(kτ − t + x) if (k − 1/2)τ ≤ t ≤ kτ,
k ∈ Z,

gives the first inequality in the computation below, where the last step uses the fact
that

∫ y

x
b(t)r(t)2 dt = − ∫ y

x
(r2θ′)′(t) dt = 0:

π2

(y − x)2

∫ y

x

r(t)2 dt ≤
∫ y

x

r′(t)2 dt = −
∫ y

x

r(t)r′′(t) dt

=

∫ y

x

(
a(t)− θ′(t)2

)
r(t)2 dt

≤
∫ y

x

(
π2

T 2
+ mb(t)− θ′(t)2

)
r(t)2 dt

=
π2

T 2

∫ y

x

r(t)2 dt−
∫ y

x

θ′(t)2r(t)2 dt.

Since r > 0 throughout (x, y) and [x, y] ⊆ [0, T ], it follows that [x, y] = [0, T ],
a(t) ≡ π2/T 2 + mb(t), and θ′(t) ≡ 0, and the latter implies that b(t) ≡ 0. Therefore
P (t) ≡ π2/T 2, and (iii) fails. ¤

2. Change of independent variable

This section exploits a way in which equations u′′ + pu = 0 transform to equa-
tions of the same form, and having the same oscillation number, under a change of
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independent variable. Let p be a holomorphic function in an open set D ⊆ C and
F a holomorphic bijection from an open set D′ onto D. By the chain rule

(3) S
(
f ◦ g

)
(z) =

(
Sg

)
(z) + g′(z)2 · Sf

(
g(z)

)

for the Schwarzian derivative, a function f in D satisfies S(f) = 2p if and only if
the function h = f ◦ F in D′ satisfies S(h) = 2 · {1

2
S(F ) + (F ′)2(p ◦ F )}. That

transform of the nonlinear equation is reflected in a transform of u′′ + pu = 0:

Lemma 11. If F : D′ → D is a holomorphic bijection between open sets in C,
then holomorphic functions p and u in D satisfy u′′+pu = 0 if and only if the function
v = (F ′)−1/2(u ◦ F ) in D′ satisfies v′′ + Pv = 0, where P = 1

2
S(F ) + (F ′)2(p ◦ F ).

Similar assertions hold for C3 changes of variable in real equations ϕ′′ + qϕ = 0.

We omit the proof but note that, unless F is linear, the transformed equation
v′′ + Pv = 0 is not the one that results from setting u(z) = v(F−1(z)).

Transforming an equation u′′ + pu = 0 in the unit disk by means of a conformal
automorphism T : D → D has the effect of redistributing the function

[[p]](z) = (1− |z|2)2 ·
∣∣p(z)

∣∣, z ∈ D,

in that
[[P ]](z) = (1− |z|2)2 ·

∣∣1
2
· 0 + T ′(z)2 p

(
T (z)

)∣∣
= (1− |T (z)|2)2 ·

∣∣p(T (z)
)∣∣ = [[p]]

(
T (z)

)
, z ∈ D.

(4)

This observation, perhaps in the form

(5) [[S(f ◦ T )]] = [[S(f)]] ◦ T, T ∈ Aut(D),

for mappings f , enters into several results in this paper, such as the following:

Theorem 12. (Nehari [11]) Let p be a holomorphic function in D. If Γ ⊆ D
is an arc of a circle orthogonal to ∂D and [[p]] ≤ 1 throughout Γ, then nontrivial
solutions of u′′ + pu = 0 vanish at most once in Γ.

Proof. We transform the equation u′′ + pu = 0 by means of a conformal auto-
morphism T of the unit disk that takes a segment I of the real diameter onto Γ. By
(4), the new coefficient P satisfies |P (t)| ≤ 1/(1 − t2)2 for t ∈ I. Since nontrivial
real solutions of ϕ′′+(1− t2)−2ϕ = 0 vanish at most once in (−1, 1), as noted in the
introduction, part (i) of Theorem 10 implies that nontrivial solutions of v′′+Pv = 0
vanish at most once in I. The assertion then follows from Lemma 11. ¤

Nehari infers that if [[p]] ≤ 1 throughout D then nontrivial solutions of u′′+pu =
0 vanish at most once in D (equivalently, solutions of S(f) = 2p are univalent),
for any two points in D lie on such a curve Γ. It is of some interest that the
conclusion fails for every bound |p(z)| ≤ 1/(1−|z|2)2+h(|z|) in which h is continuous,
nonnegative, and not identically zero. To see that, let g ≤ h be a function with
the same properties that extends continuously to [0, 1]; one could let g(t) = h(t)
throughout some interval [0, x] with x near one, for example, and g(t) = min[x,t] h
thereafter. A routine application of the Weierstrass theorem yields an even, real
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polynomial f such that f ≤ g throughout [0, 1) and
∫ 1

0
(1−r2)f(r) dr > 0. Consider

a function p(z) = 1/(1−z2)2+εf(z) with ε ∈ (0, 1]. Because
∫ 1

0
(1−r2)εf(r) dr > 0,

Theorem 4 of [3] implies that the solution of u′′ + pu = 0 with u(0) = 1 and
u′(0) = 0 vanishes at least twice in (−1, 1). But since f is even and 1/(1 − z2)2 =∑∞

k=0(k + 1)z2k, the Maclaurin coefficients for p are nonnegative if ε is small, and
for such a value

∣∣p(z)
∣∣ ≤ p

(|z|) =
1

(1− |z|2)2
+ εf(|z|) ≤ 1

(1− |z|2)2
+ h(|z|), z ∈ D.

In Section 4, we need bounds [[p]](z) ≤ β(|z|) in which β(r) is somewhat less
than one for r near one but large enough elsewhere to allow an oscillation number
greater than one. The next result provides them.

Lemma 13. For all sufficiently small µ > 0, the solution of

u′′(z) +
1− µ2 + 2µ(1− z2)

(1− z2)2
u(z) = 0, u(0) = 1, u′(0) = 0,

vanishes at least twice in (−1, 1).

Proof. The displayed conditions define a real initial-value problem in (−1, 1).
Under the change of variable z = tanh t, the transform in Lemma 11 yields the
problem

v′′(t) +
(−µ2 + 2µ sech2 t

)
v(t) = 0, v(0) = 1, v′(0) = 0,

in R, and by symmetry it is enough to show that the solution vµ vanishes somewhere
in (0,∞) when µ is sufficiently small. We note that v0(t) = 1.

By the variational equations for dependence of solutions upon parameters, the
function w(t) = ∂µ(vµ(t))|µ=0 satisfies w′′(t) + 2 sech2 t = 0 with w(0) = w′(0) = 0,
and w′(t) = ∂µ(v′µ(t)|µ=0. Solving that initial-value problem, one finds that

vµ(t) = 1− 2µ log(cosh t) + o(µ), v ′µ(t) = −2µ tanh t + o(µ),

as µ → 0 with t fixed. It follows that vµ(1) > 0 and v ′µ(1)/µ < −vµ(1) when µ > 0
is sufficiently small, for tanh(1) > 1/2. But then the solution

ϕ(t) = vµ(1) · cosh
(
µ(t− 1)

)
+

v ′µ(1)

µ
· sinh

(
µ(t− 1)

)

of ϕ′′−µ2ϕ = 0 with ϕ(1) = vµ(1) and ϕ′(1) = v ′µ(1) vanishes somewhere in (1,∞).
By Sturm’s theorem, vµ does, also. ¤

As a complement to Lemma 13, one can show that the solution of

u′′(z) +
1− µ2 + µ(1− z2)

(1− z2)2
u(z) = 0, u(0) = 1, u′(0) = 0,

does not vanish in (−1, 1) when µ > 0. Thus the factor two in the lemma cannot
be replaced with one (although any number greater than one would work).

A final result of this kind will be used in Section 3:
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Lemma 14. There is a positive number ω < π2 such that, for all k ∈ {1, 2, . . .},
the solution of u′′ + ω(k/2 + 1)2zku = 0, u(0) = 0, u′(0) = 1, has at least k + 3
zeroes in D.

Proof. In view of the identity u(e2πi/(k+2)z) = e2πi/(k+2)u(z) implied by unique-
ness of solutions, it is enough to show that u vanishes somewhere in (0, 1). Let ω
be any number between π2 − 1/4 + 1/9 and π2, and consider the real equations

ϕ′′(t) + ω(k/2 + 1)2tkϕ(t) = 0, ψ′′(s) +

(
ω +

1/4− 1/(k + 2)2

s2

)
ψ(s) = 0.

These are related, in the sense of Lemma 11, by the change of variable t = s2/(k+2);
thus the formula ψ(s) = {2/(k + 2) · s−k/(k+2)}−1/2ϕ(s2/(k+2)) establishes a bijection
between the solution sets. Let ε > 0 be such that ω + 1/4− 1/9 = π2(1 + ε)2. Since
sin(δ + π(1 + ε)t) vanishes twice in (0, 1) when δ > 0 is small, a Sturm comparison
with θ′′ + π2(1 + ε)2θ = 0 shows that every solution of the latter of the displayed
equations has a zero in (0, 1). Therefore every solution of the former does, also. ¤

3. Counting zeroes in the unit disk

We now prove Theorems 1 and 2.

Lemma 15. If p is a holomorphic function in a disk |z − z0| < r and |p| ≤ C,
then nontrivial solutions of u′′+ pu = 0 with u(z0) = 0 have at most 1+ r

√
C/ log 2

zeroes in the disk |z − z0| ≤ r/2.

Proof. One may assume that C > 0, the assertion being clear otherwise, and
that the disk is the unit disk, for the change of variable z = z0 + rζ transforms the
general case to an equation v′′ + Pv = 0 in D in which |P | ≤ r2C.

Under those assumptions, let u be a nontrivial solution of u′′ + pu = 0 that
vanishes at the origin. If w(r) =

√
C |u(reiθ)| + |u′(reiθ) − u′(0)|, where θ is fixed,

then, for all r ∈ [0, 1),

w(r) =
√

C

∣∣∣∣
∫ r

0

u′(teiθ)eiθ dt

∣∣∣∣ +

∣∣∣∣−
∫ r

0

p(teiθ)u(teiθ)eiθ dt

∣∣∣∣

≤
∫ r

0

(√
C

∣∣u′(teiθ)
∣∣ + C

∣∣u(teiθ)
∣∣
)
dt ≤

∫ r

0

√
C

(
|u′(0)|+ w(t)

)
dt.

By Gronwall’s inequality [9], it follows that w(r) ≤ |u′(0)|(e
√

C r − 1). Therefore

∣∣u(reiθ)
∣∣ ≤ |u′(0)| · e

√
C r − 1√

C
≤ |u′(0)| · re

√
C r < |u′(0)|e

√
C , r ∈ [0, 1).

Let z1, . . . , zNr be the zeroes of u in an annulus 0 < |z| ≤ r, where r ∈ (1
2
, 1). By

Jensen’s formula and the bound on |u|,

log r + log
∣∣u′(0)

∣∣ +
Nr∑
j=1

log

(
r

|zj|
)

=
1

2π

∫ 2π

0

log
∣∣u(reiθ)

∣∣dθ ≤ log
∣∣u′(0)

∣∣ +
√

C.
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It follows that N1/2 log(2r) ≤ √
C−log r, and letting r → 1 yields N1/2 ≤

√
C/ log 2.

¤
Proof of Theorem 1. The hypotheses of Theorem 1 provide a nontrivial solution

of an equation u′′ + pu = 0 in D and a number R ∈ [0, 1) such that |p(z)| ≤
1/(1− |z|2)2 whenever R ≤ |z| < 1. Again, let Mp(r) = max{|p(z)| : |z| = r}.

Consider a region W = {z : 1 − 2a ≤ |z| < 1 − a}, where a ∈ (0, 1); this
is an annulus if a < 1

2
and a disk if a ≥ 1

2
. Among the zeroes of u in W , let

b1, . . . , bm be a maximal collection with the property that |bi − bj| ≥ a/4 when
i 6= j. The open disks D(bj, a/8) being pairwise disjoint and contained in the a/8-
neighborhood of W , one sees from a computation of areas that m ≤ 160/a. Here
|p| ≤ Mp(1−a/2) throughout D(bj, a/2), and by construction the union of the disks
D(bj, a/4) contains all the zeroes of u in W . By Lemma 15, it follows that

#{z ∈ W : u(z) = 0} ≤ 160

a

(
1 +

(a/2)
√

Mp(1− a/2)

log 2

)
.

Let α = (1 − R)/2. Partitioning the disk |z| < (1 + R)/2 into such regions
corresponding to values a = α, 2α, . . . , 2Kα and summing yields

#

{
z : u(z) = 0, |z| < 1 + R

2

}
<

320

α
+

80

log 2

K∑

k=0

√
Mp

(
1− 2k−1α

)
.

The sum here, written in the form 2
∑K

k=0 2k−2α · {Mp(1 − 2k−1α)}1/2/(2k−1α), is
twice a left Riemann sum for the integral of Mp(r)

1/2/(1 − r) from the point 1 −
2K−1α > 0 to 1−α/4. Because the integrand is nondecreasing, the Riemann sum is
less than or equal to the integral; furthermore, the integrand is bounded by 1/(1−r)2

when r ≥ R = 1− 2α. It follows that

#

{
z : u(z) = 0, |z| < 1 + R

2

}
≤ 320

α
+

160

log 2

∫ 1−α/4

0

√
Mp(r)

1− r
dr

≤ 640

1−R
+

160

log 2

(∫ R

0

√
Mp(r)

1− r
dr +

7

1−R

)
.

As shown on p. 27 of [2], the remaining annulus (1 + R)/2 ≤ |z| < 1 can be
covered by at most 5/(1−R) hyperbolic half-planes—intersections of the unit disk
with open disks whose boundaries are orthogonal to the unit circle—that are in
turn contained in R ≤ |z| < 1. Each such set includes at most one zero of u,
for any two points in it are contained in a curve Γ that satisfies the hypotheses of
Theorem 12. Adding 5/(1−R) to the bound above then establishes Theorem 1 with
A = 645 + 1120/ log 2 and B = 160/ log 2. ¤
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Proof of Theorem 2. Theorem 2 concerns the maximum Nα(C) of the oscillation
numbers among the equations u′′ + pu = 0 in D in which

(6)
∣∣p(z)

∣∣ ≤ C

(1− |z|2)2α
, z ∈ D,

where α ∈ (0, 1) is fixed. The theorem asserts that there are positive numbers kα,
Kα, and Cα such that kαC1/(2−2α) ≤ Nα(C) ≤ KαC1/(2−2α) when C ≥ Aα.

Let A and B be as in Theorem 1. If C ≥ 1, and if R ∈ [0, 1) is the solution of
C(1−R2)−2α = (1−R2)−2, then (1−R)−1 < 2(1−R2)−1 = 2C1/(2−2α), and

∫ R

0

√
Mp(r)

1− r
dr ≤

∫ R

0

√
C

(1− r)1+α
dr <

√
C

α
· (2C1/(2−2α)

)α
< (2/α)C1/(2−2α)

when p satisfies (6). By Theorem 1, it follows that Nα(C) ≤ (2A + 2B/α)C1/(2−2α).
To establish a lower bound of the same order, let pk(z) = ω(k/2 + 1)2zk, where

k is a positive integer and ω is as in Lemma 14. By that lemma, the oscillation
number of the equation u′′ + pku = 0 is at least k + 3, and one easily sees that
|pk(z)| ≤ Ck/(1− |z|2)2α, where Ck = 4ω(k + 2)2−2α. Therefore

Nα(Ck) > k + 2 = η · C1/(2−2α)
k , η = (4ω)−1/(2−2α).

Because C
1/(2−2α)
k > 1

2
C

1/(2−2α)
k+1 , it follows that

Nα(C) ≥ Nα(Ck) > (η/2)C
1/(2−2α)
k+1 > (η/2)C1/(2−2α), C ∈ [Ck, Ck+1).

This bound applies whenever C ≥ C1, and the proof is complete. ¤
Theorem 1 also gives the bound N0(C) = O(

√
C log C) for equations u′′+pu = 0

in which |p| ≤ C. We have no evidence, however, that N0(C) is larger than O(
√

C ).
One might conjecture, based on constant-coefficient equations, that it is asymptotic
to 2

√
C/π as C →∞, but it is actually larger than that, for if pk is as above then

lim inf
C→∞

N0(C)√
C

≥ lim inf
k→∞

k + 3

(supD |pk|)1/2
= lim inf

k→∞
k + 3√

ω (k/2 + 1)
=

2√
ω

>
2

π
.

A related open question is whether the oscillation numbers Np(C) of u′′ + Cpu = 0

are O(
√

C) for every bounded holomorphic function p in D.

4. Conditions that allow infinite oscillation in the disk

Theorem 5 asserts that, if β : [0, 1) → (0,∞) is continuous and

(7) lim
r→1

β(r)− 1

1− r
= ∞,

then there is a holomorphic function p in D such that [[p]](z) ≤ β(|z|) for all z ∈ D
and some nontrivial solution of u′′ + pu = 0 has infinitely many zeroes. Because
quotients of linearly independent solutions of that equation are the solutions of
S(f) = 2p, Theorem 5 is equivalent to the following result, which we prove here:
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Theorem 16. If β : [0, 1) → (0,∞) is continuous and (7) holds, then there is
a locally injective, meromorphic function G in D that satisfies 1

2
[[S(G)]](z) ≤ β(|z|)

for all z ∈ D and attains some value infinitely many times.

The construction is based on mappings Fµ and Fµα for µ, α ∈ [0, 1), the former
defined as solutions of nonlinear initial-value problems and the latter as conjugates
of those by Möbius transformations Tα. Using them, we prove:

Lemma 17. Let γ : [0, 1) → (0,∞) be continuous with (γ(r)− 1)/(1− r) →∞
as r → 1. If C > 0 and ζ ∈ ∂D, then for all sufficiently small ε > 0 there is a locally
injective, holomorphic function f in a neighborhood of clos(D) such that

(i) f(D) ⊆ D,
(ii) 1

2
[[S(f)]](z) ≤ γ(|z|)− Cε2 for all z ∈ D,

(iii) |f(z)− z| < ε for all z ∈ D, and
(iv) f(z) = f(ζ ′) for some z ∈ D with |z − ζ| < 2ε and some ζ ′ ∈ ∂D.

The mappings G that establish Theorem 16 will be limits of the restrictions,
to D, of composites f1 ◦ · · · ◦ fn of such functions f ; in particular, they will be
holomorphic. We prove the theorem as follows:

Step 1. Deduce Theorem 16 from Lemma 17.
Step 2. Define the mappings Fµ and Fµα and establish their properties.
Step 3. Use those properties to prove Lemma 17.

Step 1 is logically last, and we do not use it in steps 2 and 3. Step 2 culminates
in Lemma 21, a summary of key properties of the mappings Fµα. Those reflect
properties of Fµ and Tα that are for the most part quite evident, but the fact
that Fµ → F0 uniformly in D as µ → 0, while expected, emerges only after some
preliminary lemmas. For that reason, step 2 occupies much of the argument.

Step 1. Assume that Lemma 17 is valid. Given β as in Theorem 16, we construct
the mapping G that the theorem promises as a limit of mappings Gn = f1◦· · ·◦fn|D,
where fk satisfies the conditions in the lemma for data γk, Ck, ζk and εk. Because
f1 ◦ · · · ◦ fn is holomorphic and locally injective in a neighborhood of clos(D), each
mapping Gn will be uniformly continuous. In view of (iii) in the lemma, one can
therefore make sup |Gn+1 − Gn| as small as desired by making εn+1 small and so
assure that the sequence {Gn} converges uniformly to a function G, with sup |G−G1|
small enough to guarantee that G is not constant. Further requirements will be
imposed on the numbers εn, but this one is implicit in the arguments below.

Let 0 < β1 < β2 < · · · < β be continuous functions in [0, 1) that satisfy (7),
such as βn(t) = β(t)− (inf β)(1− t)/(n + 1). The construction will be such that

(a) 1
2
[[S(Gn)]](z) ≤ βn(|z|) for all z ∈ D,

(b) the continuous extension f1 ◦ · · · ◦ fn of Gn to clos(D) maps distinct points
zn1, . . . , znn ∈ D and ζn ∈ ∂D to a common image, and

(c) there are pairwise-disjoint closed disks Dnk ⊆ D centered at the points znk

such that Dnk ⊆ Dn−1,k and diam(Dnk) ≤ 1
2
diam(Dn−1,k) when k ≤ n− 1.
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The limit G then fulfills the conditions of Theorem 16. Indeed, by (c) the sequences
zkk, zk+1,k, . . . converge in D to distinct limits, and by (b) and the uniform con-
vergence Gn → G those limits map to the same image under G. Since G is not
constant and the functions Gn are locally injective, Hurwitz’s theorem implies that
G is locally injective. Finally, 1

2
[[S(G)]](z) = lim 1

2
[[S(Gn)]](z)| ≤ β(|z|) for all z ∈ D.

To achieve (a)–(c) when n = 1, one can let G1 = f |D, where f satisfies the
conditions of Lemma 17 for the function γ = β1 and some C, ζ, and ε. Condition
(iv) there provides points z ∈ D and ζ ′ ∈ ∂D such that f(z) = f(ζ ′), and one can
let z11 = z and ζ1 = ζ ′ and let D11 be the disk |w − z11| ≤ (1− |z11|)/2.

Proceeding by induction, suppose that (a)–(c) hold for some n ≥ 1. Because Gn

extends to a locally injective function in a neighborhood of clos(D), its Schwarzian
derivative is bounded: say, |S(Gn)| ≤ M . Let α = (βn + βn+1)/2. Increasing M
if necessary, we assume that 3M/2 > α(0). Since α(r) > (3M/2)(1 − r2) for all
r near one and the reverse inequality holds when r = 0, there is a largest number
R ∈ (0, 1) at which equality holds. The function

γ(r) =

{
βn+1(r)− α(r) if r ∈ [0, R],

βn+1(r)− (3M/2)(1− r2) if r ∈ [R, 1),

then satisfies the hypothesis in Lemma 17: It is continuous and positive, and the
ratio (γ(r) − 1)/(1 − r) approaches infinity as r → 1 since βn+1 has that property.
We let Gn+1 = Gn ◦ f |D, where f satisfies the conclusions of the lemma for this
function γ, the value C = 2M , the point ζ = ζn that the inductive hypothesis (b)
provides, and some ε ∈ (0, 1

2
]. The arguments below show that if ε is sufficiently

small then conditions (a)–(c) hold at the next level n′ = n + 1.
Since βn < α, there exists η > 0 such that if r ∈ [0, R], s ∈ [0, 1), and |s−r| < η

then βn(s) < α(r). We first show that if ε ≤ η then 1
2
[[S(Gn+1)]](z) ≤ βn+1(|z|), so

that Gn+1 satisfies (a). By the chain rule (3) for the Schwarzian derivative,

(8) SGn+1(z) = Sf(z) + f ′(z)2 · SGn

(
f(z)

)
, z ∈ D.

Suppose that |z| ∈ [0, R]. By properties (i) and (iii) in Lemma 17, |f(z)| is less than
one and within ε units of |z|, and since ε ≤ η it follows that βn(|f(z)|) < α(|z|).
Using the Schwarz lemma and the inductive hypothesis (a), one then has

∣∣∣f ′(z)2 · SGn

(
f(z)

)∣∣∣ ≤
(

1− |f(z)|2
1− |z|2

)2

· 2βn

(|f(z)|)

(1− |f(z)|2)2
≤ 2α

(|z|)

(1− |z|2)2
,

and by (8) and property (ii) in Lemma 17 it follows that

1
2
[[S(Gn+1)]](z) ≤

(
βn+1

(|z|)− α
(|z|)− 2Mε2

)
+ α

(|z|) < βn+1

(|z|).
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Suppose, then, that |z| ∈ [R, 1). Again by the Schwarz lemma,
∣∣∣f ′(z)2 · SGn

(
f(z)

)∣∣∣ ≤
(

1− |f(z)|2
1− |z|2

)2

·M ≤ M
(
1− |z|2 + 2ε

)2

(1− |z|2)2

≤ M
{
3(1− |z|2) + 4ε2

}

(1− |z|2)2
;

the first inequality holds since |S(Gn)| ≤ M , the second since |z| − ε < |f(z)| < 1
as noted above, and the third since ε ≤ 1

2
. For such z, equation (8) and property

(ii) in Lemma 17 then imply that 1
2
[[S(Gn+1)]](z) is no greater than

(
βn+1(|z|)− (3M/2)

(
1− |z|2)− 2Mε2

)
+

M

2

(
3
(
1− |z|2) + 4ε2

)
= βn+1

(|z|).
Thus condition (a) persists to the next inductive step if ε ≤ η.

The inductive hypothesis (b) provides points zn1, . . . , znn ∈ D and ζn ∈ ∂D that
map to a common image w under f1 ◦ · · · ◦ fn, and (c) provides pairwise-disjoint
closed disks Dnk ⊆ D with center znk. Since Gn is not constant, a standard use of
Rouché’s theorem produces a closed disk D centered at w and a number δ > 0 such
that, if H : D → C is holomorphic and |H−Gn| < δ, then every image H(int(Dnk))
contains D. By the uniform continuity of Gn and property (iii) in Lemma 17, the
function H = Gn+1 satisfies that condition when ε is sufficiently small. A further
restriction ε ≤ ε∗ assures that the region R = {z ∈ D : |z−ζn| < 3ε} is contained in
G−1

n (D) and disjoint from Dn1, . . . , Dnn. Suppose that ε satisfies all these conditions.
By (iv) in the lemma, f maps points z = zn+1,n+1 ∈ D with |z − ζn| < 2ε and
ζ ′ = ζn+1 ∈ ∂D to a common image, and by (i) and (iii) in the lemma that image
is in R. Therefore Gn+1 maps zn+1,n+1 and ζn to a common image w′ ∈ D, and it
also maps a point zn+1,k in each set int(Dnk) to w′. Small closed disks centered at
these new points then perpetuate conditions (b) and (c) to the next inductive step,
and the proof of Theorem 16 is complete.

Step 2. Let D be the strip |Re(z)| < 1, and for µ ∈ [0, 1) let Fµ be the solution
of

S(F ) = 2pµ, pµ(z) =
1− µ2 + 2µ(1− z2)

(1− z2)2
,

in D with (F, F ′, F ′′)(i) = (i, 1, 0); thus Fµ = i + Yµ/Xµ, where Xµ and Yµ are the
solutions of u′′ + pµu = 0 in D with (Xµ, X

′
µ)(i) = (1, 0) and (Yµ, Y

′
µ)(i) = (0, 1).

The initial mapping F0 is given by

(9) F0(z) =
(4− π)i + 2L(z)

4 + π + 2iL(z)
, L(z) = log

(
1 + z

1− z

)
.

Here L maps D conformally onto the strip |Im(w)| < π/2, with L(z) tending to ∞
as z → ±1, and the Möbius transformation w 7→ ((4 − π)i + 2w)/(4 + π + 2iw)
takes that strip into D, mapping the upper boundary to the unit circle and ∞ to
−i. Thus F0 maps neighborhoods of ±1 in D to two cuspidal regions that meet at
the point −i. As µ increases, the images of such neighborhoods under Fµ begin to
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push into each other; indeed, the proof of (a) in Lemma 21 below shows that Fµ

fails to be injective in (−1, 1) when µ is small and positive.
We move that non-injectivity into a neighborhood of −i by means of secondary

deformations Fµα for α ∈ [0, 1), defined by

Fµα = T−α ◦ Fµ ◦ Tα, Tα(z) =
z + iα

1− iαz
.

Lemma 21 below gives the key properties of these mappings; assertions of nearness
or smallness in the following overview appear there as bounds in terms of 1−α that
hold for all α ∈ [0, 1) when µ is sufficiently small. The first property is that Fµα

maps two points in D that are near −i to a common image. The second and third
assert that 1

2
[[S(Fµα)]](z) is small when |z| is in a substantial interval [0, σα] ⊆ [0, 1)

and that 1
2
[[S(Fµα)]](z) ≤ 1 − µ2 + 8µ(1 − |z|)/(1 − α) for all z. Those derive from

the geometry of Tα and the identity

(10) 1
2
[[S(Fµα)]](z) = 1

2
[[S(Fµ ◦ Tα)]](z) = 1

2
[[S(Fµ)]]

(
Tα(z)

)
= [[pµ]]

(
Tα(z)

)

for z ∈ D, as in (5). The second property, for example, reflects the fact that Tα(z)
is near i when |z| ≤ σα, for the regularity of pµ at i results in [[pµ]] being small at
nearby points in D. A final property is that supz∈D |Fµα(z)− z| is small when α is
near one. That is largely a consequence of bounds |Fµ(w) − w| ≤ C|w − i|3 for w
near i and µ ∈ [0, 1

2
]: If z ∈ D and α is near one, then Tα(z) is near i, the mapping

Fµ moves that point very little, and applying T−α returns a point near z. This idea,
however, does not yield uniform bounds for |Fµα(z) − z| when µ and α are fixed.
For that, one needs control of Fµ near ±1, and Lemma 20 provides the control by
showing that Fµ → F0 uniformly in D as µ → 0.

To carry all this out, we compare Fµ with the solution Gµ of

S(G) = 2qµ, qµ(z) =
1− µ2

(1− z2)2
,

in D with (G,G′, G′′)(i) = (i, 1, 0). Here G0 = F0, and if Uµ and Vµ are the solutions
of u′′+qµu = 0 with (Uµ, U

′
µ)(i) = (1, 0) and (Vµ, V

′
µ)(i) = (0, 1) then Gµ = i+Vµ/Uµ.

Those solutions are given by

Uµ(z) = (1− z2)1/2
{
a(µ) · cosh

(
µL(z)/2

)
+ b(µ) · µ−1 sinh

(
µL(z)/2

)}

Vµ(z) = (1− z2)1/2
{
c(µ) · cosh

(
µL(z)/2

)
+ d(µ) · µ−1 sinh

(
µL(z)/2

)}(11)

for some a(µ), b(µ), c(µ), d(µ) ∈ C, where µ−1 sinh(µw) is interpreted as w if µ = 0
and, again, L(z) = log((1+z)/(1−z)). The functions a, b, c, and d are of class C∞,
for the conditions (Uµ, U

′
µ)(i) = (1, 0) and (Vµ, V

′
µ)(i) = (0, 1) define nonsingular

linear systems in which the coefficients are C∞ functions of µ.

Lemma 18. Gµ(D) ⊆ C when µ > 0 is small, and sup
D
|Gµ −G0| is O(µ) as

µ → 0.
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Proof. The mapping Gµ is the composite Mµ ◦Hµ ◦ T , where

Mµ(ζ) = i +
c(µ)ζ + d(µ)

a(µ)ζ + b(µ)
, Hµ(w) =

µ(wµ + 1)

wµ − 1
, T (z) =

1 + z

1− z
,

with H0(w) = 2/ log w. Since T maps D onto the right half-plane H, the assertion
in the lemma is equivalent to the statement that supH |Mµ ◦Hµ−M0 ◦H0| is O(µ).
Note that, by (9), the set (M0 ◦H0)(H) = G0(D) = F0(D) is contained in D.

We first show that supH |M0 ◦ Hµ − M0 ◦ H0| is O(µ). The partial derivative
∂µ(Hµ(w)) equals f(wµ), where f(u) = (u + 1)/(u − 1) − 2u(log u)/(u − 1)2. The
singularity of f at 1 being removable, a bound |f | ≤ c holds in H, and since wµ ∈ H
when w ∈ H and µ ∈ [0, 1) one sees by integrating that |Hµ(w)−H0(w)| ≤ cµ for all
such µ and w with w 6= 1. Here Hµ(1) ≡ ∞. Because (M0 ◦H0)(H) ⊆ D, it follows
that the point z0 = M−1

0 (∞) is in the finite plane and that H0(H) omits some disk
|z − z0| < r. But then Hµ(H) omits the disk |z − z0| < r/2 when µ ≤ r/(2c).
Since M ′

0 is bounded outside such a disk, a similar integration of ∂µ((M0 ◦Hµ)(w))
establishes a bound supH |M0 ◦Hµ−M0 ◦H0| ≤ Cµ for all µ in some interval [0, s].

Let D be the disk |z| ≤ 1 + Cs, so that (M0 ◦ Hµ)(H) ⊆ D when µ ∈ [0, s].
Since the mapping (µ, z) 7→ (Mµ ◦M−1

0 )(z) is C∞ in a neighborhood of {0} × D,
it is Lipschitz with respect to µ in some set [0, s′] ×D. Hence there exists K such
that

sup
H

∣∣(Mµ ◦M−1
0 ) ◦ (M0 ◦Hµ)−M0 ◦Hµ

∣∣ ≤ Kµ, 0 ≤ µ ≤ min{s, s′},

and for such µ one has supH |Mµ ◦Hµ −M0 ◦H0| ≤ (C + K)µ. ¤
Our real objective is to show that supD |Fµ − F0| is O(µ) as µ → 0. That is a

consequence of Lemma 18 and the following:

Lemma 19. If mµ = |Uµ|+ |Vµ|, then there exists C such that

sup
z∈D

∣∣Xµ(z)− Uµ(z)
∣∣

mµ(z)
≤ Cµ, sup

z∈D

∣∣Yµ(z)− Vµ(z)
∣∣

mµ(z)
≤ Cµ, µ ∈ (0, 1

2
].

Proof. We first claim that a bound mµ(z) ≤ k|1 − z2|1/8 holds for all z ∈ D
and µ ∈ (0, 1

2
]. One easily sees that the function L(z) = log((1 + z)/(1− z)) in (11)

satisfies |L(z)| < π/2+ log 4− log |1− z2| when z ∈ D. Because | cosh w| ≤ e|w| and
| sinh w| ≤ |w|e|w| for all w ∈ C, it then follows that both (1− z2)1/2 cosh(µL(z)/2)
and (1− z2)1/2µ−1 sinh(µL(z)/2) are less than or equal to

|1− z2|1/2

(
4eπ/2

|1− z2|
)µ/2

· 1

2

(
π

2
+ log 4− log

∣∣1− z2
∣∣
)

.

This expression is bounded by a constant times |1 − z2|1/2−1/4−1/8 for z ∈ D and
µ ∈ (0, 1

2
], and the claim follows since a, b, c, and d are bounded in (0, 1

2
].

The function h = Xµ − Uµ satisfies

h′′ +
1− µ2

(1− z2)2
h = − 2µ

1− z2

(
Uµ + h

)
, h(i) = h′(i) = 0.
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We apply the variation-of-parameters formula, as in [4]. Given z ∈ D, let π(s)
be the arc-length parametrization, by [−1, |z|], of the segment from i to the origin
followed by that from the origin to z. By variation of parameters,

h(z) =

∫

π

Γµ(z, ζ) ·
( −2µ

1− ζ2

)(
Uµ(ζ) + h(ζ)

)
dζ,

where Γµ(z, ζ) = Uµ(ζ)Vµ(z) − Vµ(ζ)Uµ(z). Using the bound mµ(ζ) ≤ k|1 − ζ2|1/8

and the evident bounds |Γµ(z, ζ)| ≤ mµ(z)mµ(ζ) and |Uµ|/mµ ≤ 1, one obtains

|h(z)|
mµ(z)

≤ 1

mµ(z)

∫

π

mµ(z)mµ(ζ) · 2µ
|1− ζ2| ·mµ(ζ)

(
1 +

|h(ζ)|
mµ(ζ)

)
|dζ|

≤ 2µ

∫

π

k2

|1− ζ2|3/4
·
(

1 +
|h(ζ)|
mµ(ζ)

)
|dζ|.

Since |1− ζ2| ≥ 1 in the segment from i to the origin and |1− ζ2| ≥ 1− |ζ| in that
from the origin to z, the function w(s) = |h(π(s))|/mµ(π(s)) satisfies

w(t) ≤ 2µk2

∫ t

−1

f(s)
(
1 + w(s)

)
ds, f(s) =

{
1 if s ∈ [−1, 0],

(1− s)−3/4 if s ∈ [0, |z|].
By Gronwall’s inequality [9], w is no greater than the solution of the corresponding
integral equation. Solving that equation, one concludes that

|h(z)|
mµ(z)

≤ −1 + exp
{
10µk2 − 8µk2(1− |z|)1/4

}
< e10µk2 − 1 ≤ 10k2e5k2

µ

for all z ∈ D, µ ∈ [0, 1
2
]. A similar proof yields the same bound for |Yµ−Vµ|/mµ. ¤

Lemma 20. Fµ(D) ⊆ C when µ > 0 is small, and sup
D
|Fµ − F0| is O(µ) as

µ → 0.

Proof. In view of Lemma 18, it is enough to prove that supD |Fµ − Gµ| is
O(µ). Assume for the moment that there are positive numbers µ∗ and δ∗ such
that infD(|Uµ|/mµ) ≥ δ∗ when µ ∈ (0, µ∗]. The functions Xµ then enjoy a similar
property, say, infD(|Xµ|/mµ) ≥ δ′ > 0 when µ ∈ (0, µ′], for supD(|Xµ − Uµ|/mµ) is
O(µ) by Lemma 19. From the same lemma and the evident bound |Vµ|/mµ ≤ 1,
one also sees that supD(|Yµ|/mµ) ≤ 2 when µ is small. If µ is small enough that all
these conditions hold, then

∣∣Fµ −Gµ

∣∣ =

∣∣∣∣
Yµ

Xµ

− Vµ

Uµ

∣∣∣∣ =

∣∣∣∣
Yµ − Vµ

Uµ

− (Xµ − Uµ)Yµ

XµUµ

∣∣∣∣

≤ |Yµ − Vµ|
mµ

· 1

δ∗
+
|Xµ − Uµ|

mµ

· 2

δ∗δ′

throughout D, and by Lemma 19 it follows that supD |Fµ −Gµ| is O(µ).
It remains to show that such numbers µ∗ and δ∗ exist. A first claim is that, for

all M > 0, there exist µM
1 ∈ (0, 1) and punctured neighborhoods ΩM

± of ±1 in C
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such that the functions τµ(z) = µ−1tanh(µL(z)/2) with L(z) = log((1 + z)/(1− z))
satisfy

(12)
∣∣τµ(z)

∣∣ > M, z ∈ D ∩ (ΩM
+ ∪ ΩM

− ), µ ∈ (
0, µM

1

]
.

Let T (z) = (1 + z)/(1 − z). The set ΩM
+ = {z ∈ C : |T (z)| > e4M} is a punctured

neighborhood of 1, and if z ∈ D ∩ ΩM
+ then

∣∣τµ(z)
∣∣ =

1

µ

∣∣∣∣
T (z)µ − 1

T (z)µ + 1

∣∣∣∣ ≥
1

µ
· 1− |T (z)|−µ

1 + |T (z)|−µ
>

1− e−4Mµ

2µ
.

The latter quotient approaches 2M as µ → 0, so it exceeds M for all µ in some
interval (0, µM

1 ]. The claim then holds with ΩM
− = −ΩM

+ , for τµ(−z) = −τµ(z).
One computes that b(0) = i/

√
2. Let µ2 be such that b remains nonzero through-

out (0, µ2], and in that interval let A = |a/b|, C = |c/b|, and D = |d/b|. By (12),

|Uµ(z)|
mµ(z)

=
|a(µ) + b(µ)τµ(z)|

|a(µ) + b(µ)τµ(z)|+ |c(µ) + d(µ)τµ(z)|
≥ −A(µ) + M

A(µ) + M + C(µ) + MD(µ)

whenever z ∈ D ∩ (ΩM
+ ∪ ΩM

− ) and µ ≤ min
{
µM

1 , µ2

}
. Since A, C, and D are

bounded in (0, µ2], the choice M = 1 + sup(0,µ2] A yields positive numbers δ1

and µ3 = min{µM
1 , µ2} and punctured neighborhoods Ω± = ΩM

± of ±1 such that
|Uµ(z)|/mµ(z) ≥ δ1 whenever z ∈ D ∩ (Ω+ ∪ Ω−) and µ ∈ (0, µ3]. Finally, consider
the set S = clos(D) − (Ω+ ∪ Ω−). The function U0 does not attain the value zero
there, for (9) shows that the mapping F0 = i + V0/U0 takes S into C. Since S is
compact, continuity then assures a bound |Uµ(z)|/mµ(z) ≥ δ2 > 0 for all z ∈ S
and all µ in some interval (0, µ4]. In all, these arguments show that the numbers
µ∗ = min{µ3, µ4} and δ∗ = min{δ1, δ2} have the required properties. ¤

For α ∈ [0, 1), let σα = 1− (1− α)1/2; thus 0 ≤ σα ≤ α < 1.

Lemma 21. There exist µ0 > 0 and K such that, for all µ ∈ (0, µ0] and
α ∈ [0, 1),

(a) Fµα fails to be injective in {z ∈ D : |z + i| < K(1− α)},
(b) 1

2
[[S(Fµα)]](z) ≤ K(1− α) if |z| ≤ σα,

(c) 1
2
[[S(Fµα)]](z) ≤ 1− µ2 + 8µ

(
1− |z|)/(1− α) for all z ∈ D, and

(d)
∣∣Fµα(z)− z

∣∣ < K(1− α) for all z ∈ D; in particular, Fµα(z) ∈ C.

Proof. We treat these conditions separately; the lemma holds for the minimum
of the numbers µ0 that arise and the maximum of the numbers K. Easily verified
properties of the mappings Tα will be used without proof.

By Lemma 13, some nontrivial solution of of u′′ + pµu = 0 vanishes at least
twice in (−1, 1) when µ > 0 is sufficiently small. Choosing an independent solution
v and writing Fµ as (Au + Bv)/(Cu + Dv), one sees that, for such µ, the mapping
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Fµ attains the value B/D at least twice in (−1, 1). Condition (a) then holds with
K =

√
2, for T−1

α (−1, 1) lies within
√

2 (1− α) units of −i.
For (b) and (c), we recall from (10) that 1

2
[[S(Fµα)]](z) = [[pµ]](Tα(z)) when

z ∈ D. The asserted bounds derive from that identity and the fact that

(13)
∣∣Tα(z)

∣∣ ≥
∣∣∣Tα

(−i|z|)
∣∣∣ =

∣∣α− |z|
∣∣

1− α|z| , z ∈ D, α ∈ [0, 1).

Let M be the maximum of |pµ(w)| for µ ∈ [0, 1
2
] and w ∈ clos(D) with |w − i| ≤ 1.

If α ∈ [0, 1) and |z| ≤ α, then |Tα(z)− i| ≤ 1, and hence

1
2
[[S(Fµα)]](z) =

∣∣pµ

(
Tα(z)

)∣∣ · (1− |Tα(z)|2)2 ≤ M

{
1−

(
α− |z|
1− α|z|

)2}2

=
M(1− α2)2(1− |z|2)2

(1− α|z|)4
<

16M(1− α)2

(1− |z|)2

for all µ ∈ [0, 1
2
]. The latter bound is less than or equal to 16M(1−α) when |z| ≤ σα,

and (b) follows with µ0 = 1
2
and K = 16M . For (c), note that

[[pµ]](w) ≤ [[pµ]]
(|w|) = 1− µ2 + 2µ

(
1− |w|2), w ∈ D, µ ∈ [0, 1),

for the Maclaurin series for pµ has nonnegative coefficients. By (13), it follows that

1
2
[[S(Fµα)]](z) ≤ 1− µ2 + 4µ

(
1− |Tα(z)|) ≤ 1− µ2 + 4µ

(
1− |z| − α

1− α|z|
)

≤ 1− µ2 +
8µ(1− |z|)

1− α
, z ∈ D, µ ∈ [0, 1), α ∈ [0, 1).

Therefore (c) holds regardless of µ0.
It remains to establish (d). Let U(z) = (i + z)/(i − z). This transformation

maps D onto the right half-plane H, and one computes that

(14)
∣∣U(z)− U(z′)

∣∣ =
2|z − z′|

|i− z| · |i− z′| , z, z′ ∈ C− {i}.

Let W be the half-plane Re(w) > −1
2
. We claim that, for some µ0 ∈ (0, 1) and M ,

(15) z ∈ D, µ ∈ [0, µ0] ⇒ U
(
Fµ(z)

) ∈ W,
∣∣U(

Fµ(z)
)− U(z)

∣∣ ≤ M.

By the general theory ([7] p. 100), the function (µ, z) 7→ Fµ(z) is C∞ where finite.
Because each mapping Fµ has second-order contact with the identity at i, it then
follows from Taylor’s theorem that, for some a ∈ (0, 1], one has

∣∣Fµ(z)− z
∣∣ <

|z − i|2
8

, µ ∈ [0, 1
2
], |z − i| < a.

Let A = {z ∈ D : |z−i| < a} and B = {z ∈ D : |z−i| ≥ a}. If z ∈ A and µ ∈ [0, 1
2
],

then the conclusions in (15) hold with M = 1
2
, for U(z) ∈ H and, by (14),

∣∣U(
Fµ(z)

)− U(z)
∣∣ ≤ 2 · |z − i|2/8

|z − i|(|z − i| − |z − i|2/8) <
1/4

1− 1/8
<

1

2
.
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The argument for points in B uses the convergence supD |Fµ−F0| → 0 from Lemma
20. Equation (9) shows that F0(B) is contained in some set {w ∈ D : |w − i| > δ}.
In view of the uniform continuity of U in the set |w − i| > δ/2 evident from (14),
one can therefore use Lemma 20 to choose µ0 ∈ (0, 1

2
] so that |Fµ(z)− F0(z)| < δ/2

and |U(Fµ(z))− U(F0(z))| < 1
2
whenever z ∈ B and µ ∈ [0, µ0]. For such z and µ,

the point U(Fµ(z)) is in W , for U(F0(z)) ∈ U(D) = H, and
∣∣U(

Fµ(z)
)− U(z)

∣∣ ≤
∣∣U(

Fµ(z)
)− U

(
F0(z)

)∣∣ +
∣∣U(

F0(z)
)∣∣ + |U(z)|

<
1

2
+

2

δ
+

2

a
.

In all, (15) holds with this value µ0 and M = 1/2 + 2/δ + 2/a.
Let µ0 and M be as in (15). A computation shows that U ◦ T−α ◦ U−1 is

multiplication by (1 − α)/(1 + α) and that U−1(W ) is the disk |z + i| < 2. Since
|U(z) − U(z′)| ≥ |z − z′|/8 for all z, z′ in that disk by (14), one also sees that
|U−1(w)− U−1(w′)| ≤ 8|w − w′| for all w,w′ ∈ W . It follows that

∣∣Fµα(z)− z
∣∣ =

∣∣∣∣U−1

(
1− α

1 + α
· (U ◦ Fµ ◦ Tα

)
(z)

)
− U−1

(
1− α

1 + α
· (U ◦ Tα

)
(z)

)∣∣∣∣

≤ 8(1− α)
∣∣∣
(
U ◦ Fµ ◦ Tα

)
(z)− (

U ◦ Tα

)
(z)

∣∣∣ ≤ 8(1− α)M

when z ∈ D and µ ∈ [0, µ0], for multiplication by (1 − α)/(1 + α) takes W into
itself. Thus (d) in Lemma 21 holds with K = 8M . ¤

Step 3. The deduction of Lemma 17 from Lemma 21 is technical but not subtle.
As in Lemma 17, let C > 0 and ζ ∈ ∂D, and let γ be a continuous, positive function
in [0, 1) such that (γ(r) − 1)/(1 − r) → ∞ as r → 1. The lemma asserts that, for
all sufficiently small ε > 0, there is a locally injective, holomorphic function f in a
neighborhood of clos(D) such that

(i) f(D) ⊆ D,
(ii) 1

2
[[Sf ]](z) ≤ γ(|z|)− Cε2 for all z ∈ D,

(iii) |f(z)− z| < ε for all z ∈ D,
(iv) f(z) = f(ζ ′) for some z ∈ D with |z − ζ| < 2ε and some ζ ′ ∈ ∂D.

It suffices to prove this when ζ = −i, for if f meets the requirement in that case
then the function z 7→ iζ · f(z/(iζ)) meets them for an arbitrary point ζ ∈ ∂D.

Let µ0 and K be as in Lemma 21, and let r0 ∈ (0, 1) be such that

(16) γ(r) ≥ 1 + 16K
√

C (1− r), r ∈ [r0, 1).

Assuming that ε > 0 is less than or equal to the minimum of
µ0√
C

, 2K(1− r0)
2,

2

1 + C
·min

{
γ(r) : r ∈ [0, r0]

}
,

1

2
,

we set µ = ε
√

C and α = 1 − ε/(2K) and modify Fµα to produce a function f
having the required properties.
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The constraint ε ≤ µ0/
√

C implies that µ ≤ µ0, so that Lemma 21 applies. Part
(a) of the lemma asserts Fµα fails to be injective in {z ∈ D : |z + i| < ε/2}, part (d)
that |Fµα(z)− z| < ε/2 for all z ∈ D, and parts (b) and (c) that

1
2
[[S(Fµα)]](z) ≤

{
ε/2 if |z| ≤ 1−

√
ε/(2K),

1− Cε2 + 16K
√

C
(
1− |z|) for all z ∈ D.

From the latter bound and (16), it is clear that if |z| ∈ [r0, 1) then

(17) 1
2
[[S(Fµα)]](z) ≤ γ

(|z|)− Cε2.

The same conclusion holds by a different argument if |z| ≤ r0. For such z, the bound
1
2
[[S(Fµα)]](z) ≤ ε/2 applies by virtue of the second constraint ε ≤ 2K(1 − r0)

2

on ε, and (1 + C)ε/2 ≤ γ(|z|) by virtue of the third. Because ε ≤ 1
2
, one has

ε/2 ≤ (1 + C)ε/2− Cε2, and (17) follows.
Let f(z) = (1 − ε/2) · Fµα(ρz), where ρ ∈ (0, 1) is yet to be determined. This

mapping is holomorphic and locally injective in the disk |z| < 1/ρ, and it satisfies
(i) since

∣∣f(z)
∣∣ ≤ (1− ε/2)

(∣∣Fµα(ρz)− ρz
∣∣ + |ρz|

)
< (1− ε/2)

(
ε/2 + ρ

)
< 1− ε2/4

for all z ∈ D. It also satisfies (ii), for |(Sf)(z)| = |ρ2(SFµα)(ρz)| by the Schwarzian
chain rule (3), and in view of the maximum principle and (17) it follows that

∣∣(Sf
)
(z)

∣∣ ≤
∣∣(SFµα

)
(ρz)

∣∣ ≤ max
|w|=|z|

∣∣(SFµα

)
(w)

∣∣ ≤ 2 · γ(|z|)− Cε2

(1− |z|2)2
, z ∈ D.

Using the triangle inequality and the bound |Fµα(ρz)−ρz| < ε/2, one also sees that
|f(z)− z| < ε for all z ∈ D, so that (iii) holds, if ρ > 1− ε2/4.

It remains to show that (iv) holds when ρ is sufficiently near one. As noted
above, there are points z1 6= z2 in the set A = {z ∈ D : |z + i| < ε/2} that map
to the same image under Fµα. Since ρz1, ρz2 ∈ A when ρ is sufficiently near one,
the mapping f also fails to be injective in A for such ρ. Assertion (iv) follows from
that property and (iii). Indeed, let U and V be the sets consisting of all z ∈ D
with |z + i| < 2ε and |z + i| < 4ε, respectively. Since |f − id| < ε throughout U
and |f − id| ≤ ε throughout ∂V , the triangle inequality shows that f(U) is disjoint
from {f(w) : w ∈ ∂V, |w + i| = 4ε}. If (iv) fails, then f(U) is disjoint from the rest
of f(∂V ), also, and since f(U) is connected it follows from the argument principle
that f |V attains every value in f(U) the same number of times. Because A ⊆ U ,
that number is at least two. On the other hand, if z0 = −(1−2ε)i then by Rouché’s
theorem f |V attains every value in the disk |z − z0| < ε exactly once, and since
that disk includes f(z0) it also includes f(z) when z ∈ U is near z0. These two
observations are contradictory, and the proof of Lemma 17 is complete.
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