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Abstract. A line L of a finite generalized quadrangle S of order ðs; tÞ, s; t > 1, is an axis of
symmetry if there is a group of full size s of collineations of S fixing any line which meets L. If
S has two non-concurrent axes of symmetry, then S is called a span-symmetric generalized
quadrangle. We prove the twenty-year-old conjecture that every span-symmetric generalized
quadrangle of order ðs; sÞ is classical, i.e. isomorphic to the generalized quadrangle Qð4; sÞ
which arises from a nonsingular parabolic quadric in PGð4; sÞ.

1 Statement of the main result

In this paper, we prove the following main result.

Theorem 1.1. LetS be a span-symmetric generalized quadrangle of order s, where s0 1.
Then S is classical, i.e. isomorphic to Qð4; sÞ.

This has the following corollary for groups with a 4-gonal basis (as defined in
Section 3).

Theorem 1.2. A finite group is isomorphic to SL2ðsÞ for some s if and only if it has a

4-gonal basis.

2 Notation

A (finite) generalized quadrangle (GQ) of order ðs; tÞ is an incidence structure S ¼
ðP;B; IÞ, with point set P, line set B and symmetric incidence relation I, where each
point is incident with tþ 1 lines (td 1), each line is incident with sþ 1 points (sd 1),
and if a point p is not incident with a line L, then there is a unique point-line pair
ðq;MÞ such that pIMIqIL. If s ¼ t we say that S has order s. As a general reference
we mention the book by S. E. Payne and J. A. Thas [8], see also [10] and [12] for more
recent developments, and [11] and [15] for surveys on generalized polygons.
Points p and q of S ¼ ðP;B; IÞ are collinear, if they are incident with a common

line. For p A P, put p? ¼ fq A P j p; q are collinearg (note that p A p?). More gener-



ally, if AJP, we define A? ¼ 7fp? j p A Ag. Often we use the dual notion L? ¼
fM A B jL;M are confluentg for lines L, and X ? ¼ 7fL? jL A Xg for X JB. If Y
is a subset of P or of B, then Y?? denotes ðY ?Þ?.
The classical GQ Qðd; qÞ, d A f3; 4; 5g, is the GQ which arises by taking the points

and lines of a nonsingular quadric with Witt index 2 (that is, with projective index 1)
in the d-dimensional projective space PGðd; qÞ over the Galois field GFðqÞ. Respec-
tively, the orders are ðq; 1Þ, ðq; qÞ and ðq; q2Þ.

3 Span-symmetric generalized quadrangles

Suppose L is a line of a GQ S of order ðs; tÞ, s; t0 1. A symmetry about L is an
automorphism of the GQ which fixes every line of L?. The line L is called an axis of

symmetry if there is a group H of symmetries of size s about L. In such a case, if
M A L?nfLg, then H acts regularly on the points of M not incident with L. We re-
mark that every line of the classical example Qð4; sÞ is an axis of symmetry (see 8.7.3
of [8]). If L and M are distinct non-concurrent axes of symmetry, then it is easy to
see, by transitivity, that every line of fL;Mg?? is an axis of symmetry, and S is
called a span-symmetric generalized quadrangle (SPGQ) with base-span fL;Mg??.
In this situation, we will use the following notation throughout this paper: the base-
span will always be denoted by L. The group which is generated by all the symme-
tries about the lines of L is G, and we call this group the base-group. This group
clearly acts 2-transitively on the lines of L, and fixes every line of L? (see for in-
stance 10.7 of [8]).

Theorem 3.1 (S. E. Payne [7]; see also 10.7.2 of [8]). If S is an SPGQ of order s, s0 1,
with base-group G, then G acts regularly on the set of ðsþ 1Þsðs
 1Þ points of S which

are not on any line of L.

Note. There is an analogue of Theorem 3.1 for SPGQ’s of order ðs; s2Þ, s > 1, see K.
Thas [13] and [14].

Let S be an SPGQ of order s0 1 with base-span L, and put L ¼ fU0; . . . ;Usg. The
group of symmetries about Ui is denoted by Gi, i ¼ 0; 1; . . . ; s, throughout this paper.
Then one notes the following properties (see [7] and 10.7.3 of [8]):

1. the groups G0; . . . ;Gs form a complete conjugacy class in G, and are all of order s,
sd 2;

2. Gi VNGðGjÞ ¼ f1g for i0 j;
3. GiGj VGk ¼ f1g for i; j; k distinct, and
4. jGj ¼ s3 
 s.

We say that G is a group with a 4-gonal basis T ¼ fG0; . . . ;Gsg if these four condi-
tions are satisfied.
It is possible to recover the GQ S of order s from the base-group G starting from

4-gonal bases, see [7] and 10.7.8 of [8], hence
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Theorem 3.2 (S. E. Payne [7]; see also 10.7.8 of [8]). A span-symmetric GQ of order

s0 1 with given base-span L is canonically equivalent to a group G of order s3 
 s

with a 4-gonal basis T.

Now suppose G is a group of order s3 
 s, where s is a power of a prime p, and
suppose G has a 4-gonal basis T ¼ fG0; . . . ;Gsg. Since the groups Gi all have order
s, all these groups are Sylow p-subgroups in G. Since T is a complete conjugacy
class, this means that every Sylow p-subgroup of G is contained in T, and hence G

has exactly sþ 1 Sylow p-subgroups. Hence we have proved the following easy but
important theorem.

Theorem 3.3. Suppose G is a group of order s3 
 s with s a power of a prime. Then G

can have at most one 4-gonal basis. In particular, if G has a 4-gonal basis, then it is

unique.

As a corollary we obtain

Theorem 3.4. Suppose S is a span-symmetric GQ of order s, s0 1. Then S is isomor-

phic to the classical GQ Qð4; sÞ if and only if the base-group is isomorphic to SL2ðsÞ.

Proof. Suppose that the base-group G is isomorphic to SL2ðsÞ; then s is a power of a
prime and hence by Theorem 3.3, SL2ðsÞ has at most one 4-gonal basis. Now consider
a Qð4; sÞ and suppose L and M are non-concurrent lines of Qð4; sÞ. Then L and M are
axes of symmetry, and hence Qð4; sÞ is span-symmetric for the base-span fL;Mg??.
In this case, the base-group is isomorphic to SL2ðsÞ (see e.g. [7]), which proves that
SL2ðsÞ has a 4-gonal basis, necessarily unique by Theorem 3.3. Hence, by Theorem
3.2, there is only one GQ which can arise from SL2ðsÞ using 4-gonal bases and this is
Qð4; sÞ, hence SGQð4; sÞ. r

It was conjectured in 1980 by S. E. Payne that a span-symmetric generalized quad-
rangle of order s > 1 is always classical, i.e. isomorphic to the GQ Qð4; sÞ arising from
a quadric. There was a ‘‘proof ’’ of this theorem as early as in 1981 by Payne in [7], but
later on, it was noticed by the author himself that there was a mistake in the proof. The
paper was very valuable however, since the author introduced there the 4-gonal bases
and proved for instance Theorem 3.2 and Theorem 5.1 (see below).

4 The base-group G

From now on, we denote by N the kernel of the action of G on the lines of L. The
notation of Section 3 will be used freely. The following result is crucial:

Theorem 4.1. Suppose S is a span-symmetric generalized quadrangle of order ðs; tÞ,
s; t0 1, with base-span L and base-group G. Then G=N acts as a sharply 2-transitive
group on L, or is isomorphic, as a permutation group, to one of the following:
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(a) PSL2ðsÞ, (b) the Ree group Rð3
ffiffi

s
p

Þ, (c) the Suzuki group Szð
ffiffi

s
p

Þ, (d) the unitary

group PSU3ð3
ffiffiffiffi

s2
p

Þ, each with its natural action of degree sþ 1.

Proof. The group G (and hence also G=N) is doubly transitive on L, and for every
L A L the full group of symmetries about L, which acts regularly on LnfLg, is a
normal subgroup of the stabilizer of L in G. This means that ðL;G=NÞ is a split BN-
pair of rank 1. All finite groups with a split BN-pair of rank 1 have been classified
by Shult [9] and Hering, Kantor and Seitz [3], without using the classification of the
finite simple groups. Their results give the above list of possibilities for G=N, noting
that G=N is generated by the normal subgroups mentioned above. r

Lemma 4.2. G is a perfect group if G=N does not act sharply 2-transitively on L.

Proof. Suppose G=N does not act sharply 2-transitively on L. By Theorem 4.1, G=N
is isomorphic to one of the following: (a) PSL2ðsÞ; (b) Rð3

ffiffi

s
p

Þ; (c) Szð
ffiffi

s
p

Þ;
(d) PSU3ð3

ffiffiffiffi

s2
p

Þ. All these groups are perfect groups.* Assume that G is distinct
from its derived group G 0. Then since G=N is a perfect group, we have that
ðG=NÞ0 ¼ G 0N=N ¼ G=N, and hence G 0N ¼ G. First suppose we are in Case (a). If s
is even, then jGj ¼ jPSL2ðsÞj, and thus jNj ¼ f1g. So in that case G ¼ G 0, a contra-
diction. If s is odd, then G 0 is a subgroup of G of index 2. It follows that G and G 0

have exactly the same Sylow p-subgroups, with s a power of the odd prime p. Since
here G is generated by its Sylow p-subgroups (by the definition of the base-group G ),
we infer that G ¼ G 0, a contradiction. Hence G is perfect.
Now suppose we are in Case (b) or (c). Then jNj ¼ s
1

sn
1 with n A f1=2; 1=3g, and
hence jNj and s are mutually coprime since s
 1 and s are mutually coprime. Hence

s is a divisor of jG 0j, since jGj ¼ jG 0 j
jNj
jG 0 VNj . Thus G and G 0 have precisely the same

Sylow p-subgroups, with s a power of the prime p. Since here G is generated by its
Sylow p-subgroups, we conclude that G ¼ G 0, a contradiction. Finally, assume that

we are in the last case. Then jNj ¼ ð3;3
ffiffi

s
p

þ1Þðs
1Þ
3
ffiffiffi

s2
p


1 , and thus it is clear that jNj and
s are mutually coprime. The same argument as before yields that jG 0j1 0 mod s, and
hence that G ¼ G 0, a contradiction. Consequently G is perfect. r

Remark 4.3. For s ¼ 2 the GQ is isomorphic to Qð4; 2Þ (6.1 of [8]). In this case G ¼
G=NGS3 acts sharply 2-transitively on L.

Lemma 4.4. N is in the center of G.

Proof. Clearly N is a normal subgroup of G. Let H be the full group of symmetries
about an arbitrary line of L. Then N and H normalize each other, and hence they
commute. r

*With the exception of R(3); for this case see the following paper by W. M. Kantor (Editor’s
note).
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Lemma 4.5. If S is an SPGQ of order s0 1 with base-group G and base-span L, then
G=N acts either as PSL2ðsÞ or as a sharply 2-transitive group on the lines of L.

Proof. Assume by way of contradiction that G=N does not act as PSL2ðsÞ or a sharply
2-transitive group on the lines of L. First of all, G is a perfect group, and since N is in
the center of G, the group G is a perfect central extension of the group G=N which
acts on L. The perfect group G=N has a universal central extension G=N, and G=N
contains a central subgroup F such that G=N=F GG, see e.g. [6]. We now look at the
possible cases.
If G=NG Szð

ffiffi

s
p

Þ, and if s > 82, then N must be trivial since in that case the Suzuki
group has a trivial universal central extension (i.e. G=NGG=N) by [2] p. 302, an im-
possibility since the orders of G and Szð

ffiffi

s
p

Þ are not the same if s > 82. Suppose that
s ¼ 82. Then by [2] p. 302 any perfect central extension H of Szð8Þ satisfies jHj ¼
2kjSzð8Þj for some k A f0; 1; 2g. None of these cases occurs since jGj ¼ ð64Þ3 
 64 ¼
262080 and since jSzð8Þj ¼ 29120.
If G=NGRð3

ffiffi

s
p

Þ, then we have exactly the same situation as in the preceding case,
compare [2] p. 302, hence this case is excluded as well.
Finally, assume that G=NGPSU3ð3

ffiffiffiffi

s2
p

Þ. The universal central extension of

PSU3ð3
ffiffiffiffi

s2
p

Þ is known to be SU3ð3
ffiffiffiffi

s2
p

Þ, see [2] p. 302, and also, we know that

jSU3ð3
ffiffi

s
p

Þj ¼ ð3; 3
ffiffi

s
p

þ 1ÞjPSU3ð3
ffiffi

s
p

Þj ¼ ðsþ 1Þsð3
ffiffiffiffi

s2
p


 1Þ ([4], pages 420 and 421).
This provides us with a contradiction since s > 1, hence s
 1 > 3

ffiffiffiffi

s2
p


 1. r

Lemma 4.6. If G=N acts as PSL2ðsÞ, then GG SL2ðsÞ and S is classical.

Proof. The universal central extension of PSL2ðsÞ is SL2ðsÞ, except in the cases s ¼ 4
and s ¼ 9, compare [2] p. 302, and in general jSL2ðsÞj ¼ ð2; s
 1ÞjPSL2ðsÞj ¼ jGj, see
pages 420 and 421 of [4]. Hence if s0 4; 9, then G is isomorphic to SL2ðsÞ, and by
Theorem 3.4 S is classical.
There is a unique GQ of order 4, namely Qð4; 4Þ, see e.g. 6.3.1 of [8], so s ¼ 4

gives no problem; in this case, G is isomorphic to SL2ð4Þ. Finally, suppose that s ¼ 9.
Then there is only one possible perfect central extension of G=NGPSL2ð9Þ with size
93 
 9 ¼ 234, namely SL2ð9Þ, see [2] p. 302. Hence GG SL2ð9Þ, and by Theorem 3.4
S is classical and isomorphic to Qð4; 9Þ. r

5 The sharply 2-transitive case

We recall the following.

Theorem 5.1 (S. E. Payne [7]; see also 10.7.9 of [8]). Let S be an SPGQ of order s0 1,
with base-span L. Then every line of L? is an axis of symmetry.

This theorem thus yields the fact that for any two distinct lines U and V ofL?, the

GQ is also an SPGQ with base-span fU ;Vg??. The corresponding base-group will
be denoted by G?. It should be emphasized that this property only holds for SPGQ’s
of order s (see [13]).
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Suppose that G=N acts as a sharply 2-transitive group on the lines of L in the
SPGQ S of order s > 1. Since the lines of L? are also axes of symmetry, we can
assume that the base-group G? corresponding to these lines also acts as a sharply 2-
transitive group onL?, because otherwise G? is isomorphic to SL2ðsÞ, and thenS is
classical by Theorem 3.4. Hence G and G? contain normal central subgroups N and
N?, both of order s
 1, which act trivially on the points of W, where W is the set of
points on the lines of the base-span. Note that G and G? act regularly on the points
of S not in W by Theorem 3.1.
Let p be a point and L a line of a projective plane P. Then P is said to be ðp;LÞ-

transitive if the group of all collineations of P with center p and axis L acts transi-
tively on the points, distinct from p and not on L, of any line through p. The following
theorem is a step in the Lenz–Barlotti classification of finite projective planes, see e.g.
[1] or [16]; it states that the Lenz–Barlotti class III.2 is empty.

Theorem 5.2 (J. C. D. S. Yaqub [17]). Let P be a finite projective plane, containing a

non-incident point-line pair ðx;LÞ for which P is ðx;LÞ-transitive, and assume that P is

ðy; xyÞ-transitive for every point y on L. Then P is Desarguesian.

Note that every axis of symmetry L is regular in the sense of S. E. Payne and J. A.
Thas [8, 1.3]; hence there is a projective plane PL canonically associated with L as in
1.3.1 of [8].

Theorem 5.3. Suppose that S is an SPGQ of order s, where s0 1, with base-group G

and base-span L. Also, let N be the kernel of the action of G on the lines of L, and sup-

pose that G=N acts as a sharply 2-transitive group on the lines of L. Then S is iso-

morphic to Qð4; 2Þ or Qð4; 3Þ.

Proof. Fix a line L of L, and consider the projective plane P�
L of order s, which is the

dual of PL. Then L? is a point of P�
L which is not incident with L as a line of the

plane. For convenience, denote this point by p. Now consider the action of N as a
collineation group on P�

L. Clearly, this action is faithful (recall that N fixes W point-
wise). Then, as jNj ¼ s
 1 and as N fixes L pointwise and p linewise, the plane P�

L is
ðp;LÞ-transitive.
Now fix an arbitrary line U through p in P�

L; then U is a line ofL?. If we interpret
the group G?

U of all symmetries about U as a collineation group of P�
L (this is possible

since G?
U fixes L), then G?

U fixes every line through the point LVU of P�
L. Suppose r

is an arbitrary point of P�
L on U and di¤erent from LVU . Then, in the GQ, r is of

the form fU ;U 0g??, with U 0 some line of L? which does not meet U. It is clear that
for any symmetry y about U we have ðfU ;U 0g??Þy ¼ fU ;U 0g??, and thus any ele-
ment of G?

U as a collineation of P�
L fixes every point on the line U. From the fact

that jG?
U j ¼ s, and that distinct elements of G?

U induce distinct collineations of P�
L,

it follows that P�
L is ðU VL;UÞ-transitive. Hence by Theorem 5.2 the plane P�

L is
Desarguesian.
Now consider the action of the groups G?

V on P�
L, with V A L?. Then G?

V fixes the
line L and the point V VL and acts regularly on the other points of L. The group
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G? ¼ hG?
V jV A L?i, as a collineation group of the plane, induces a sharply 2-

transitive permutation group on the points of L by our hypothesis. But since the
plane P�

L is Desarguesian, we also know that the groups G?
V , as collineation groups

of the plane, generate a PSL2ðsÞ on L, and so, as jPSL2ðsÞj ¼ jG?j ¼ s3 
 s (G? acts
faithfully on P�

L), we have that s A f2; 3g.
Now suppose that s ¼ 2. Then S is isomorphic to the unique GQ of order 2,

namely the classical Qð4; 2Þ (see 6.1 of [8]). Finally, suppose that s ¼ 3. Then
SGQð4; 3Þ (see 3.3.1 and 6.2 of [8], and recall that S has regular lines). r

Note. There is also an elementary group-theoretical proof of the last theorem, as was
pointed out to us by W. M. Kantor [5].
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