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SPIN REPRESENTATIONS AND BINARY NUMBERS

Henrik Winther

Abstract. We consider a construction of the fundamental spin representa-
tions of the simple Lie algebras so(n) in terms of binary arithmetic of fixed
width integers. This gives the spin matrices as a Lie subalgebra of a Z-graded
associative algebra (rather than the usual N-filtered Clifford algebra). Our
description gives a quick way to write down the spin matrices, and gives a way
to encode some extra structure, such as the real structure which is invariant
under the compact real form, for some n. Additionally we can encode the spin
representations combinatorially as (coloured) graphs.

1. Introduction

Finite dimensional representations of complex semisimple Lie algebras are charac-
terized by their highest weight. Any irreducible representation can be constructed
from tensor products of fundamental representations. Thus it is important to have
good ways to construct fundamental representations. There are a few approaches
to doing so, and Verma module quotients give a universal way, with the caveat
of going through an infinite dimensional module that must be quotiented by an
infinite dimensional submodule. Thus one might wish to avoid this.

A common method is via the following observation:

Observation 1. For the classical families An, Bn, Cn, Dn, we can produce all fun-
damental representations by taking exterior powers of a tautological representation
V ,

(1) ΛV =
⊕
k

ΛkV =
⊕
α

Vα

and picking out the highest component from each power. With one exception: The
fundamental spin representations of so(n,C).

Thus we want to construct the spin representations. Of course, several construc-
tions are known. The standard way to do so is via Clifford algebras. This can be
turned into a method which however requires taking many iterated Kronecker pro-
ducts of matrices [1, p. 11–12]. In the present work we will provide another method
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to constructing the representation matrices of the fundamental spin representation,
for which all matrix coefficients are precomputed.

Theorem 1. Let N > 0. The fundamental spin representation (S2N+1, so(2N +
1,C)) is equivalent to (C{1, 0}N , 〈A±k ◦A∓(k−1)|0 ≤ k < N〉) where C{1, 0}N is a
free complex vector space generated by binary strings of fixed length N , (fixed width
binary numbers), and A±k is the linear map

(2) A±k : [m]2 7→


[m± 2k]2 if this operation would not require any carrying

in binary arithmetic
0 else

and adding or subtracting fractions 2−1 is simply disregarded. By 〈, 〉 we mean the
Lie algebra generated by taking iterated Lie brackets. Moreover, the (decomposable)
spin representation of (S2N , so(2N,C)) is equivalent to (C{1, 0}N , 〈AN−2 ◦(AN−1 +
A−(N−1)), A±k ◦A∓(k−1)|0 ≤ k < N − 1〉).

In this theorem we state generators, but see equations (28), (29), and (30), as
well as Theorem 3, for the complete list of operators without needing any extra
brackets. See also Section 4 for the explicit operators of the compact real form.

2. Arithmetic operators

We will consider the set SN = {0, 1}N to be the set of binary numbers in N
digits. Here we keep track also of trailing zeroes to the left, i.e. these are “fixed
width” numbers. For example,

S3 = {000, 001, 010, 011, 100, 101, 110, 111}
= {[0]32, [1]32, [2, ]32, [3]32, [4]32, [5]32, [6]32, [7]32, } .(3)

We are going to consider functions on SN that are defined in terms of arithmetic
formulas m 7→ m+ k for k ∈ Z.

Our constructions are going to depend on the notion of carrying, which is not
intrinsic to the arithmetic of integers but only their representation in a base. When
we add two fixed width integers in some base n with the most significant digit on
the left, if the digits in some position add up to more than n, we must add an
additional 1 to the next position to the left. This is called carrying. Our arithmetic
functions here are defined in terms of addition without carrying (the meaning of +
is not the usual one). We mean that whenever the sum m+k requires any carrying,
the value of the function +k on m will be m. Note that it is necessary to make
this kind of modification to +, since integers of fixed width are not closed under
addition.
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Example 1. We have the function +2: m 7→ m+ 2, on S2. Since [2]22 = 10, the
function is given by

00 7→ 10
01 7→ 11
10 7→ 10
11 7→ 11

(4)

Of course, each integer k defines a family of arithmetic functions in this way, one
for each SN . Let us extend this to also include formal sums of arithmetic functions,
such as +k + l. We also define these to leave the argument unchanged whenever
any carrying is necessary.

Example 2. We have the function +2− 1: m 7→ m+ 2− 1, on S2, given by
00 7→ 00
01 7→ 10
10 7→ 10
11 7→ 11

(5)

Next we need to promote our arithmetic functions to linear operators. To do
this, we define

(6) S2N+1 = CSN = C{0, 1}N

as the free complex vector space over SN . We will eventually identify this with the
a spin module, but in fact this vector space also has another name. It is called the
space of N -qubit states, in the context of quantum computing.

Definition 1. For each arithmetic function f : SN → SN , we define the linear
operator

(7) f̄ : S2N+1 → S2N+1

by

(8) m 7→

{
0 if f(m) = m

f(m) else

for m ∈ SN , and extending by linearity to S2N+1. Operators defined in this way
will be called arithmetic operators.

Each integer k defines a family of arithmetic operators +k, one for each S2N+1.
Let us introduce one more kind of operator.

Definition 2. Let the k-parity operator be given by

(9) m 7→ pk(m) = (−1)[m]2(k)m,

where [m]2(k) is the k’th binary digit of the fixed-width number m, and extended
to all S2N+1 by linearity.
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Proposition 1. We have pk ◦ pk = Id. The operator pk commutes with ±2l for
l 6= k. We have pk ◦ ±2k = −±2k ◦ pk, and in particular,

[pk, 2k] = −2 · 2k ,

[pk,−2k] = 2 · −2k ,
(10)

and we have
(11) [−2k,+2k] = pk ,

and together (10) and (11) shows that (−2k, pk,+2k) is an sl2-triple. We also have
(12) [pk, pl] = 0 for all k, l.

Proof. The arithmetic operator ±2k only changes the k’th bit of a given binary
number. This does not change the l–parity unless k = l, and thus if k and l
are different, they commute. In the case that k = l, it is easy to show that the
commutation relations are as above. �

We can say more about relations between arithmetic operators.

Proposition 2. We have
• [+2n,+2m] = 0 for all n, m,
• [−2n,−2m] = 0 for all n, m,
• [−2n,+2m] = 0 for m 6= n.

If 0 ≤ n < N , then we have S2N+1 = ker(2n)⊕ ker(−2n). Additionally, we have

−2n−1 ◦+2n−1 = 1
2 (IdS2N+1 +pn)

+2n−1 ◦ −2n−1 = 1
2 (IdS2N+1 −pn)

(13)

Moreover,

(14)
[
[ +2n−1,−2n−1 ]

]
= IdS2N+1 ,

where [[, ]] is the anti-commutator.

Proof. The first three statements follow because (±2n)2 = 0, and if m, n are
different then the operators make non-trivial changes only on disjoint parts
of the binary expansions of numbers. The equalities (13) can be obtained by
comparing values: Suppose first that [m]2 has a 1 in the kth position. Then
(IdS2N+1 +pk)(m) = 0 = −2n−1 ◦+2n−1(m). But if [m]2 has a 0 in the kth position,
then (IdS2N+1 +pk)(m) = 2 = 2 · −2n−1 ◦+2n−1(m). The next case is similar and
the anticommutator follows. �

The next statement is an easy consequence of Proposition 1 and Proposition 2:

Proposition 3. The Lie algebra generated by {−2k, pk+1,+2k|k = 0 . . . N − 1} is
isomorphic to
(15) sl2(C)1 ⊕ · · · ⊕ sl2(C)N ,
and its representation on S2N+1 is equivalent to
(16) C2

1 ⊗ · · · ⊗ C2
N ,
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where the action of sl2(C)m is standard on C2
m and trivial on C2

l for l 6= m.

Proposition 4. Let k, l > 0 be natural numbers. Then if the binary expansions
[k]2 and [l]2 have disjoint support,

(17) ±k ◦ ±l = ±l ◦ ±k = ±k ± l ,
and
(18)

+k◦−l = −l◦+k = m 7→

{
m+ k − l if [m]2 has disjoint support from [k + l]2
0 else

.

Proof. This clear from evaluating on arbitrary numbers. �

Proposition 5. The algebra generated by arithmetic and parity operators comes
equipped with a natural Z-grading, by declaring ±k to be an element of pure
gradation ±k, and parity operators pi to be of pure gradation zero.

Proof. This is well-defined because the algebra is generated by pure gradation
elements, and a product of pure terms of gradations ±k1, · · · ± kl will always map
m ∈ SN to something proportional to m± k1 · · · ± kl (possibly zero). �

2.1. The odd spin algebra. In this section we are going to make heavy use of
the following simple observation:

Proposition 6. If A, B, C, D are linear operators and B commutes with A, C,
D and D commutes with A, B, C, then
(19) [A ◦B,C ◦D] = B ◦D ◦ [A,C] .

Let us consider the Lie subalgebra g of the arithmetic operators which is generated
(in the sense of taking successive commutators) by the arithmetic operators B±k =
±2k−1 −∓2k−2, for 2 ≤ k ≤ N , and B±1 = ±1. When it is necessary to distinguish
this algebra for different integers N , we will denote it by gN .

Proposition 7. We have that Bk and B−k generate a subalgebra slk2 isomorphic
to sl2(C). The elements B−k, [B−k, Bk], Bk form a standard sl2-triple. We have

[B−k, Bk] = 1
2 (pk − pk−1) for k > 1 ,

[B−1, B1] = p1 .
(20)

Proof. We compute

[B−k, Bk] = −2k−1 ◦+2k−1 ◦+2k−2 ◦ −2k−2 −+2k−1 ◦ −2k−1 ◦ −2k−2 ◦+2k−2

= 1
4 (Id +pk)(Id−pk−1)− 1

4 (Id−pk)(Id +pk−1) = 1
2 (pk − pk−1)(21)

and also
[B∓k, 1

2 (pk − pk−1)] = 1
2 (±2k−2) ◦ [∓2k−1, pk]− 1

2 (∓2k−1) ◦ [∓2k−2, pk−1]
= ∓2 ·B∓k .(22)

�
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Theorem 2. The Lie algebra g is isomorphic to so(2N + 1,C), and the represen-
tation on S2N+1 is equivalent to the fundamental spin representation.

Proof. The Lie algebra g is semisimple, since it is generated by the slk2-subalgebras
from Proposition 7. It also comes equipped with a Z-grading, inherited from the
one given in Proposition 5. The elements of gradation 0 form a subalgebra g0. This
is abelian, and thus forms a Cartan subalgebra of g. We have that g0 is spanned by
1
2 (pN − pN−1), . . . , 1

2 (p2 − p1), p1. The positively graded subalgebra is generated
by taking commutators of BN , . . . , B2, B1; these form simple root vectors. Thus
the Dynkin diagram of g can be obtained by computing such commutators. We get

[B2, B1] = +2 ◦ [B−1, B1] = p1 ◦+2
[p1 ◦+2, B1] = +2 ◦ [p1, B

1] = −2+2 ◦+1 = −2 ·+3
[+3, B1] = 0

(23)

and

[Bk, Bk−1] = 2k−1 ◦ 2k−3 ◦ [−2k−2,+2k−2] = pk−1 ◦+2k−1 − 2k−3

[Bk−1, pk−1 ◦+2k−1 − 2k−3] = (−2k−3)2 ◦ (. . . ) = 0

[Bk, pk−1 ◦+2k−1 − 2k−3] = (−2k−1)2 ◦ (. . . ) = 0 .

(24)

Here we are only interested in how many brackets between simple root vectors are
nonzero, as this encodes the Dynkin diagram. We see that the Dynkin diagram is
connected, so g is simple, and there is one short simple root corresponding to B1,
if N > 1, since B2 and B1 admit two successive nonzero brackets, and all other
simple roots are long. This is the Dynkin diagram of so(2N + 1,C), and we have
shown the first claim.

For the second claim, we note that because of the Z-grading, the element
[11 . . . 1]2 ∈ S2N+1 is the unique highest weight vector. This vector has eigenvalue 1
for all parity operators, and therefore it has eigenvalue zero for 1

2 (pk − pk−1), but
eigenvalue 1 for p1. As p1 corresponds to the short simple root vector B1, and the
corresponding root takes value 2 on B−1, we see that S2N+1 has the same highest
weight as the fundamental spin module, thus they are equivalent. �

Corollary 1. The Lie algebra g has basis elements

pl+1 ◦ pl+2 ◦ · · · ◦ pk−1 ◦+2k ± 2l ,
pi ,

pl+1 ◦ pl+2 ◦ · · · ◦ pk−1 ◦ −2k ± 2l ,
(25)

where 0 ≤ k < N , 0 < l < k and 0 < i ≤ N .

Proof. The proof will be by induction on N . First, if N = 1, we have g1 =
〈+1, p1,−1〉, which establishes the base case. Suppose the result holds for gN−1. We
will show that it holds for gN . The algebra is generated by the operators +2k − 2k−1,
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−2k + 2k−1. The new generators compared to gN−1 are +2N−1 − 2N−2,
−2N−1 + 2N−2. Computing the commutators
(26)

[+2N−1 − 2N−2,+2N−2 − 2N−3] = +2N−1 ◦ −2N−3 ◦ [−2N−2,+2N−2]

= pN−1 ◦+2N−1 − 2N−3

[pN−1 ◦+2N−1 − 2N−3,+2N−3 − 2N−4]

= pN−1 ◦+2N−1 ◦ −2N−4 ◦ [−2N−3,+2N−3] = pN−1pN−2 ◦+2N−1 − 2N−4

...

leaves us with pN−1pN−3 . . . p1 ◦+2N−1 after N − 1 steps. From here we compute
the following commutators:

(27)

[+1, pN−1pN−2 . . . p1 ◦+2N−1] = pN−1 . . . p2 ◦+2N−1 ◦ [+1, p1]

= pN−1 . . . p2 ◦+2N−1 + 1

[p1 ◦+2, pN−1 . . . p1 ◦+2N−1] = pN−1 . . . p
2
1 ◦+2N−1[+2, p2]

= pN−1 . . . p3 ◦+2N−1 + 2
...

[p1p2 . . . pN−2 ◦+2N−2, pN−1pN−3 . . . p1 ◦+2N−1] = +2N−1 + 2N−2 .

This has given us a total of 2N−1 new positively graded elements (including the new
generator). The analogous computation gives 2N − 1 negatively graded elements.
Finally we get pN from the commutator of +2N−1 − 2N−2 and −2N−1 + 2N−2. We
know the difference in dimensions of gN and gN−1 is 4N − 1, due to Theorem 2,
and a count shows that we have generated enough new elements. These elements
can be seen to all be linearly independent. Thus the formula holds for gN , and this
concludes the proof. �

We can decompress the expressions from Corollary 1 into

+1
+2− 1 , p1 ◦+2 ,+2 + 1
+4− 2 , p2 ◦+4− 1 , p1p2 ◦+4 , p2 ◦+4 + 1 ,+4 + 2
...

+2N−1 − 2N−2 , pN−1 ◦+2N−1 − 2N−3 , . . . , p1 . . . pN−1 ◦+2N−1 ,

. . . , pN−1 ◦+2N−1 + 2N−3 ,+2N−1 + 2N−2

(28)
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and
−1
−2− 1 , p1 ◦ −2 ,−2 + 1
−4− 2 , p2 ◦ −4− 1 , p1p2 ◦ −4 , p2 ◦ −4 + 1 ,−4 + 2
...

−2N−1 − 2N−2 , pN−1 ◦ −2N−1 − 2N−3 , . . . , p1 . . . pN−1 ◦ −2N−1 ,

. . . , pN−1 ◦ −2N−1 + 2N−3 ,−2N−1 + 2N−2

(29)

together with the parity operators

(30) p1, . . . , pN .

2.2. The even spin algebra. With our explicit description of the odd spin
algebras from Corollary 1, we can describe the even spin algebra, isomorphic to
so(2N,C), as its subalgebra. Unfortunately it is not a graded subalgebra: The
even spin algebra dN ' so(2N,C) is generated by adjoining the extra element
pN−1pN−2 . . . p1◦(+2N−1 +−2N−1) to gN−1 ⊂ gN . We caution that this is the only
place so far where we have needed a linear combination of operators, as opposed to
the formal linear combinations under the overlines.

Theorem 3. The even spin algebra dN is the subalgebra of gN generated by
gN−1 together with the element pN−1pN−2 . . . p1 ◦ (+2N−1 +−2N−1) It has a basis
consisting of the elements coming from Corollary 1 applied to gN−1, in addition to
the elements

±2N−2 ◦ (+2N−1 +−2N−1)

pN−1 ◦ ±2N−3 ◦ (+2N−1 +−2N−1)

pN−1pN−2 ◦ ±2N−4 ◦ (+2N−1 +−2N−1)
...

pN−1 . . . p2 ◦ ±1 ◦ (+2N−1 +−2N−1)

(31)

Proof. Let us denote (+2N−1 + −2N−1) = C, and note that this linear opera-
tor commutes with gN−1. The indicated elements can be generated by taking
commutators between pN−2pN−3 . . . p1 ◦ C and the elements

±1, p1 ◦ ±2, p1p2 ◦ ±4, . . . , p1p2 . . . pN−2 ◦ ±2N−2(32)

from gN−1. This yields 2N − 1 new elements. The elements ±1, p1, pN−1 . . . p1C,
pN−1 . . . p2 ◦ ±1C, form a subalgebra isomorphic to sl(2,C) ⊕ sl(2,C). Thus the
whole Lie algebra can be seen to be generated by non-commuting copies of sl(2,C).
Therefore the Lie algebra generated is semi-simple, and since it contains gN−1 and
is contained in gN , it must be dN We also get that pN−1 . . . p1 ◦ C together with
p1, . . . , pN−2 forms a Cartan subalgebra. �
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3. Graph algorithm

Another way to interpret the generators B±k from Section 2.1 is as a “quantum
version” of bit-shift operators, in light of the interpretation of S2N+1 as the N -qubit
state space. Then we may think of Bk as shifting states with nonzero k − 1st bit
and zero kth bit to states with nonzero kth bit and zero k − 1st bit. For example,

(33) B2([01]2) = [10]2
while the operators B±1 creates a new nonzero bit at the left or right edge, if that
is possible.

(34) B1([00]2) = [01]2 .

This interpretation makes it possible to encode the generator structure of so(2N +
1,C) and its spin representation in a coloured graph, by writing the action of all
possible bitshift operators.

Example 3. The positively graded generators of the spin matrices of spin(7,C)
are encoded in the following diagram:

[000] [001] [010] [011]

[100] [101] [110] [111]

B1 B2 B1

B3 B3

B1 B2 B1

The nonzero matrix coefficients can be read off by considering binary numbers [m]
as basis vectors in S2N+1, and the negatively graded generators are their transposes.
The whole spin representation is obtained by taking commutators.

We offer one further example:

Example 4. We consider the case the spin representation of so(9,C). Here we
compactify the diagram by encoding the different generators by colours (pink, blue,
green, orange), and consider each node a distinct basis vector in a free complex
vector space.

• • • •

• • • •

• • • •

• • • •

The arrows encode nonzero matrix coefficients as above, and spin(9,C) is obtained
by taking these matrices, their transposes, and a sufficient number of commutators.

We note that it is easily possible to see lower dimensional spin algebras as
subdiagrams, and hence infer branching rules, for example.
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4. Compact real form Spin(N)

We are often interested in the compact real form so(2N + 1) rather than
so(2N + 1,C). Since we have the grading structure of gN , going to the compact
real form can be done as follows:
Proposition 8. The real Lie algebra generated by the operators

Qk+ = Bk −B−k

Qk− = i · (Bk +B−k)
pql = i · pl

(35)

on S2N+1, where i is the imaginary unit, is isomorphic to so(2N + 1), and the
representation is the fundamental complex spin representation.
Proof. Follows from general structure theory. �

One can get all the other basis elements of the compact form by taking all pairs
of basis elements P ◦ ±2k ∓ 2l from gN , which are related by a sign change and
where P is some product of parity operators, and taking the combinations

P ◦ (±2k ∓ 2l −∓2k ± 2l)

i · P ◦ (±2k ∓ 2l +∓2k ± 2l)
(36)

and similarly for P ◦ ±2k ± 2l.

4.1. Real structure. However, the spin representation also sometimes admits a
real structure, i.e. a basis where all representation matrices are real. When this
exists, it must coincide with the basis in which all the matrices of the Cartan
subalgebra are real. We can describe this basis in our terms.
Proposition 9. Consider the involution τ on the set of binary numbers of fixed
length N given by flipping all bits. Then the operators pql have real matrix coefficients
in the basis
(37)
([0]+i·τ([0]), i·[0]+τ([0]), [1]+i·τ([1]), i·[1]+τ([1]), . . . , i·[2N−1−1]+τ([2N−1−1])) .
Proof. The involution τ takes weight vectors with weight λ to weight vectors
with weight −λ. Thus each pql will act as a rotation on the real plane spanned by
[m] + i · τ([m]) and i · [m] + τ([m]). �

5. Future directions

It seems that the generators and their relations do not really depend strongly on
N . Thus one could extend {1, 0}N to {1, 0}N and introduce an infinite dimensional
“spinfinity” algebra with operators given by the same formulas as in the finite
dimensional case.
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