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FINITE INTERPOLATION ON SEQUENCES IN THE DISC

Laia Tugores

Abstract. This note deals with interpolation of values of analytic functions
belonging to a given space, on finite sets of consecutive points of sequences
in the disc, performed by rational functions and polynomials. Our goal is to
identify sequences and spaces whose functions provide a bound of the error at
the first uninterpolated point that is as small as desired. For certain sequences,
we prove that this happens for bounded functions, Lipschitz functions and
those that have derivatives in the disc algebra.

1. Introduction and statement of results

Let Z = (zi)∞i=0 denote any sequence in the open unit disc D of the complex plane.
We write D(Z) = supi,j |zi − zj | and choose the finite subset Zn = {z0, . . . , zn}
without losing generality for our purposes. Let H denote the space of all analytic
functions in D and let f (k) denote the k-th derivative of a function f inH (f (0) := f).
For z, w ∈ D, we write ψ(z, w) = (w − z)/(1 − wz), so that |ψ(z, w)| is the
pseudo-hyperbolic distance on D. It turns out that |ψ(z, w)| < 1 and the diameter
of D for this distance is 1 ([4]). Let G(Z) = supi,j |ψ(zi, zj)|. We put c for positive
constants.

Let H∞ denote the space of functions f ∈ H such that
‖f‖∞ = sup

z∈D
|f(z)| < c

and let A be the disc algebra of functions in H that are continuous on D. For an
integer p > 0, let Ap be the algebra of functions f such that f (k) ∈ A, k = 0, . . . , p.
If f ∈ Ap, then

(1)
∣∣∣f(zi)− f(zj)− f ′(zj)

zi − zj
1! − · · · − f (p)(zj)

(zi − zj)p

p!

∣∣∣ = o(|zi − zj |p)

uniformly in zi, zj . Let A∞ denote the algebra of functions f such that f (k) ∈ A
for all k ≥ 0. If f ∈ A∞, then the estimate in (1) holds for all p. Let Λp be the
Lipschitz class of order p consisting of all functions f ∈ Ap−1 (A0 := A) such that∣∣f (p−1)(z)− f (p−1)(w)

∣∣ = O(|z − w|) .

2020 Mathematics Subject Classification: primary 30E05; secondary 41A05.
Key words and phrases: interpolation on sequences, bounded analytic function, Lipschitz class,

disc algebra.
Received December 27, 2024. Editor M. Kolář.
DOI: 10.5817/AM2025-2-85

http://www.emis.de/journals/AM/
http://dx.doi.org/10.5817/AM2025-2-85


86 L. TUGORES

If f ∈ Λp, then∣∣∣f(zi)− f(zj)− f ′(zj)
zi − zj

1! − · · · − f (p−1)(zj)
(zi − zj)p−1

(p− 1)!

∣∣∣ = O(|zi − zj |p)

uniformly in zi, zj . If s > 0 is not an integer and m = [s], let Λs be the Lipschitz
class of order s consisting of all functions f ∈ Am for which

|f (m)(z)− f (m)(w)| = O(|z − w|s−m) .

In [3], Λs is defined as the space of all jets f = (f (0), . . . , f (m)) of continuous
functions such that∣∣∣f (k)(zi)− f (k)(zj)− f (k+1)(zj)

zi − zj
1! − · · · − f (m)(zj)

(zi − zj)m−k

(m− k)!

∣∣∣
= O(|zi − zj |s−k)(2)

uniformly in zi, zj , k = 0, 1, . . . ,m.
Given a function f inH and a sequence Z, we denote by Qn(z) a rational function

of degree at most n (Qn = p
q , where p and q are polynomials and degree (p) =

degree (q) ≤ n) interpolating f on Zn, namely, Qn(zi) = f(zi), i = 0, . . . , n. We
put E[Qn] for the “error” at the first uninterpolated point of Z, that is,

E[Qn] = |Qn(zn+1)− f(zn+1)|.

Let Rn(z) be the rational function defined, as in Newton’s divided differences ([2]),
by

(3) Rn(z) = [z0] +
n∑
k=1

[z0, . . . , zk]
k−1∏
j=0

ψ(z, zj) , z ∈ D ,

where [zi] = f(zi), and

(4) [zi, . . . , zj ] = [zi+1, . . . , zj ]− [zi, . . . , zj−1]
ψ(zj , zi)

, i < j .

As a consequence of the Schwarz lemma, if f ∈ H∞, then

(5) |f(z)− f(w)| ≤ c |ψ(z, w)| ,

so that [zi, zj ] is bounded for any i, j, but also all quotients [zi, . . . , zj ] in (4) are
bounded (see ([6]). Thus,

(6) E[Rn] ≤ c |ψ(zn+1, z0)|+ c

n∑
k=1

k−1∏
j=0
|ψ(zn+1, zj)| < (n+ 1)c |ψ(zn+1, z0)| .

In [5], sequences that provide Qn with E[Qn] ≤ c(n) |zn+1 − zn| are given for the
Lipschitz class of order 1. This bound and that of (6) facilitate a simple control of
the error, but they do not allow it to be as small as desired. The motivation of this
paper is to get the error so. Regarding this aim, we pose the following sequences Z
for a given subspace S of H.
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Definition 1.1. We say that Z is S-placed if for each f in S and ε > 0, there
exists n ∈ N and a rational function Qn, such that Qn interpolates f on Zn and
E[Qn] < ε.
Definition 1.2. We say that Z is S-placed in the strong sense if for each f in
S and ε > 0, there exists n ∈ N and a polynomial Pn of degree n, such that Pn
interpolates f on Zn and E[Pn] < ε.

We distinguish between “placed” and “placed in the strong sense”, depending
on if the interpolation is performed by a rational function or a polynomial. We
determine different function spaces and sequences with these properties.
Definition 1.3. We say that Z is compatible for the distance d if for each n ≥ 2,
(7) d(zn, zi) ≤ c d(zi, zj) , 0 ≤ i, j < n ,

where the constant c is independent of n.
Our results, which will be proven in Section 3, are the following ones.

Proposition 1.1. If Z is compatible for the pseudo-hyperbolic distance and G(Z) <
1
2 , then Z is H∞-placed. Besides, given f ∈ H∞ and ε > 0,

(i) For sufficiently large m, there exists a rational function Qm that interpolates
f on Zm, satisfies E[Qm] < ε, and, on a subsequence (zni)i of Z, also
satisfies

|Qm(zni)− f(zni)| < ε

for any ni > m.
(ii) If Qm is as in (i) for all m ≥ N , then f is the uniform limit on the compact

set (zni)i ∪ {limi zni} of a subsequence of (Qm)m≥N .
Proposition 1.2. If Z is compatible for the Euclidean distance and D(Z) < 1

2 ,
then there exists

a) s0 > 1 such that Z is Λs-placed in the strong sense for all s > s0.
b) p0 > 1 such that Z is Λp-placed in the strong sense for all p > p0.
c) q0 > 1 such that Z is Aq-placed in the strong sense for all q > q0.
As an immediate consequence of Proposition 1.2 c), we have the following result.

Corollary 1.1. If Z is compatible for the Euclidean distance and D(Z) < 1
2 , then

Z is A∞-placed in the strong sense.
For example, Z = (3−(i+1))∞i=0 is compatible for distances pseudo-hyperbolic

and Euclidean, and G(Z) = D(Z) = 1
3 .

2. Crucial Lemma

We prove an estimate for a function in H∞ and all its derivatives up to any
order, which will be used in the proof of Proposition 1.1. For a fixed w ∈ D, let
τw(z) := ψ(z, w) be the automorphism of D interchanging w and 0. We recall that
the Bell polynomials are

βjN (x1, . . . , xN−j+1) =
∑ N !

m1! · · ·mN−j+1!

(x1

1!

)m1
· · ·
( xN−j+1

(N − j + 1)!

)mN−j+1
,
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where the sum is extending over all sequences m1, . . . ,mN−j+1 of non-negative
integers such that {

m1 + · · ·+mN−j+1 = j

m1 + · · ·+ (N − j + 1)mN−j+1 = N ,

and the Stirling numbers of the second kind are S(N, j) = βjN (1, . . . , 1).

Lemma 2.1. Let

A(f,N,w) =
∑N
j=1 S(N, j)wN−j(|w|2 − 1)jf (j)(w)

N ! .

If f ∈ H∞, then for all k ∈ N,

(8) |f(z)− f(w)−
k∑
N=1

A(f,N,w)ψ(w, z)N | = O(|ψ(w, z)|k+1) , w, z ∈ D .

Proof. We write

Tkf(0, z) = f(0) + f ′(0)z + · · ·+ f (k)(0)
k! zk

and define the function

gk(z) =


f(z)−Tkf(0,z)

zk+1 , if z 6= 0 ;
f(k+1)(0)

(k+1)! , if z = 0 .

It is immediate to check that gk is analytic and

‖gk‖∞ ≤ ‖f‖∞ + |f(0)|+ |f ′(0)|+ · · ·+ |f
(k)(0)|
k! ≤ (k + 2)‖f‖∞ .

Then,
|f(z)− Tkf(0, z)| ≤ c |z|k+1 .

Replacing f by f ◦ τw,

(9) |(f ◦ τw)(z)− Tk(f ◦ τw)(0, z)| ≤ c |z|k+1 .

We have

Tk(f ◦ τw)(0, z) = f(w) +
k∑
N=1

∑N
j=1 β

j
N (τ ′w(0), . . . , τN−j+1)

w (0))f (j)(τw(0))
N ! zN .

Replacing z by τw(z) in (9) and taking into account that

τ (k)
w (z) = k!wk−1(|w|2 − 1)

(1− wz)k+1 ,



FINITE INTERPOLATION ON SEQUENCES IN THE DISC 89

(9) becomes∣∣∣f(z)− f(w)

−
k∑
N=1

∑N
j=1 β

j
N ((|w|2 − 1), . . . , (N− j+ 1)!wN−j(|w|2 − 1))f (j)(w)

N ! ψ(w, z)N
∣∣∣

≤ c |ψ(w, z)|k+1

and (8) follows. �

3. Proof of results

Proof of Proposition 1.1. Let f ∈ H∞ and ε > 0. We define

αn(z) =
n∑
N=1

A(f,N, z)ψ(z, zn+1)N , z ∈ D ,

where n will be determined later. We take [zi] := f(zi) − αn(zi), [zi, . . . , zj ]
as in (4), and qn(z) as Rn(z) in (3). Since |f (j)(w)| = O((1 − |w|2)−j) for all
f ∈ BMOA ([1]) and H∞ ⊂ BMOA, note that |A(f,N, z)| = O(1) and then,
|αn(z)| = O(|ψ(z, zn+1)|). We have that Qn = qn + αn is a rational function of
degree at most n interpolating f on Zn. On the other hand,

(10) E[Qn] = E[qn] < |f(z0)− αn(z0)− f(zn+1)|+ |ψ(zn+1, z0)|
n∑
k=1

[z0, . . . , zk].

By (8), the first term in (10) is O(|ψ(zn+1, z0)|n+1). By (8) and (7),

|[zi, zj ]| ≤
|f(zi)− αn(zi)− f(zn+1)|+ |f(zj)− αn(zj)− f(zn+1)|

|ψ(zi, zj)|

≤ c |ψ(zn+1, zi)|n+1 + |ψ(zn+1, zj)|n+1

|ψ(zi, zj)|
≤ c (|ψ(zn+1, zi)|n + |ψ(zn+1, zj)|n) ≤ cG(Z)n .

Thus, by (10),

E[Qn] ≤ c [1 + (1 + 2) + · · ·+ (1 + 2 + · · ·+ 2n−1)]G(Z)n+1

= c [2n+1 − (n+ 2)]G(Z)n+1 < c (2G(Z))n+1.

Since 2G(Z) < 1, there exists N such that E[Qn] < ε for all n ≥ N .

(i) Condition G(Z) < 1
2 implies that the sequence Z is relatively compact in

D. So, let (zni)i be a convergent subsequence. Assume m ≥ N and ni > m. Using
the fact that Qm is bounded independently of m, together with (5), and taking
m ≥ nj with sufficiently large nj , we obtain

|Qm(zni)− f(zni)| ≤ |Qm(zni)−Qm(znj )|+ |f(znj )− f(zni)|

≤ c |ψ(zni , znj )| < ε .
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(ii) Since (Qm)m≥N is uniformly bounded, by Montel’s theorem, it has a sub-
sequence (Qmk)k that converges uniformly to a holomorphic function Q on the
compact set K = (zni)i ∪ {limi zni}. Given zni ∈ K, choosing mk such that
mk ≥ ni, we have

|Q(zni)− f(zni)| = |Q(zni)−Qmk(zni)| ,

and |Q(zni)−Qmk(zni)| < ε if mk is taken sufficiently large. So, Q = f on K and
(ii) holds. �

Proof of Proposition 1.2.
a) The proof is quite similar to that of the Proposition 1.1. Let ε > 0. We define

(11) αn(z) =
n∑
N=1

f (N)(z) (zn+1 − z)N

N ! , z ∈ D ,

where n ≥ 2 will be determined later. Suppose f ∈ Λs, where [s] = n. We take
[zi] := f(zi)−α(zi), [zi, . . . , zj ] as in (4), and the polynomial pn of degree n defined
by

pn(z) = [z0] +
n∑
k=1

[z0, . . . , zk]
k−1∏
j=0

(z − zj) , z ∈ D .

Note that |αn(z)| = O(|z − zn+1|), because |f (n)(z)| = O(1). We have that Pn =
pn + αn is a polynomial of degree n interpolating f on Zn and

(12) E[Pn] = E[pn] < |f(z0)− αn(z0)− f(zn+1)|+ |zn+1 − z0|
n∑
k=1

[z0, . . . , zk] .

By (2), the first term in (12) is O(|zn+1 − z0|s). By (2) and (7),

|[zi, zj ]| ≤
|f(zi)− αn(zi)− f(zn+1)|+ |f(zj)− αn(zj)− f(zn+1)|

|zi − zj |

≤c |zn+1 − zi|s + |zn+1 − zj |s

|zi − zj |
≤ cD(Z)s−1 .

Thus, by (12) and continuing as in the proof of Proposition 1.1,

E[Pn] < c (2D(Z))n+1 .

Since 2D(Z) < 1, choosing n sufficiently large, it follows E[Pn] < ε.
To prove b) and c), take αn(z) as in (11), p − 1 = n and q = n, respectively,

and proceed as in the proof of a). �

Remark 3.1. Regarding this topic, we believe that it could be interesting to
identify more S-placed sequences and S-placed sequences in the weak sense.
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