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INTEGRAL REPRESENTATION OF BOUNDED AND ABSOLUTELY

INTEGRABLE FUNCTIONS

KAMEL AL-KHALED

Abstract. In this paper, we obtain an integral representation formula for an even function,
as a consequence, we show that if the function satisfying some conditions over (0; 1) then it
is completely characterized by its value in the neighborhood of 1.

1. Introduction

Let f(x) be an even function over �1 � x � 1 and G(u) is any even bounded function and
integrable over the interval �1 � u � 1. In the �rst theorem we will show that the function
f(x) can be written as an integral representation of the function G(u). Then we proved
that if f(x) is bounded and absolutely integrable over the interval (0; 1� �), and satisfy the
integral representation of f(x) is bounded and absolutely integrable over the interval (0; 1).
Integrable functions have frequently appeared in the literature of the last few years, for

example, see [1], [3] and [4]. Before proving the main result we state and proof the following
theorem.

Theorem 1.1. Suppose f(x) is even function over �1 � x � 1, and G(u) be an even

bounded integrable function over the interval �1 � u � 1. And that G(u) together with its

derivatives of all orders is continuous over the interval (�1; 1) and that it vanishes with all

its derivatives for u = �1. Then, for
R 1

�1
G(u)du 6= 0, we have

f(x) = lim
n!1

1

n!
R 1

�1
G(u)du

Z 1

�1

dn+1

dun+1

h
(u� x)n

Z u

�1

G(�u)d�u
i
f(u)du

Proof. Taylor series for f(x) is given by

f(x) = f(u) + (x� u)f 0(u) + � � �+
(x� u)n

n!
f (n)(u) + � � �

which we shall suppose uniformly convergent in the real argument u for �1 � u � 1 and
for every x such that �1 � x � 1. Since G(u) is bounded and integrable over the interval
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�1 � u � 1. Then

f(x)

Z 1

�1

G(u)du =

Z 1

�1

f(u)G(u)du+

Z 1

�1

(x� u)f 0(u)G(u)du+ � � �

+
1

n!

Z 1

�1

(x� u)nf (n)(u)G(u)du

(1.1)

with the assumption that G(u) together with its derivatives of all orders is continuous over
the interval (�1; 1), and that it vanishes with all its derivatives for u = �1. Then, integrating
by parts yieldsZ 1

�1

(x� u)nf (n)(u)G(u)du =

Z 1

�1

(x� u)nG(u)dff (n�1)(u)g

=
h
(x� u)nG(u)f (n�1)(u)

i1
�1
�

Z 1

�1

f (n�1)(u)df(x� u)nG(u)g

= �

Z 1

�1

d

du
f(x� u)nG(u)gf (n�1)(u)du = �

Z 1

�1

d

du
f(x� u)nG(u)gdff (n�2)(u)g

= �

�
d

du

h
(x� u)nG(u)

i
f (n�2)(u)

�1

�1

+

Z 1

�1

f (n�2)(u)

�
d2

du2

h
(x� u)nG(u)

i�
du

...

=

Z 1

�1

dn

dun

h
(u� x)nG(u)

i
f(u)du

(1.2)

We shall now use the fact that
R 1

�1
G(u)du 6= 0. We consequently obtain from (1.1) and

(1.2) the formula

f(x) =
1R 1

�1
G(u)du

nZ 1

�1

G(u)f(u)du+

Z 1

�1

d

du
[(u� x)G(u)]f(u)du+ � � �

+
1

n!

Z 1

�1

dn

dun
[(u� x)nG(u)]f(u)du+ � � �

o(1.3)

Set
R u
�1

G(~u)d~u = F (u). Then F (u) will then characterized by the same properties as those
have determined for G(u), as to the existence and continuity of its derivatives, and as to the
vanishing of the function and its derivatives at the end of the interval, except that F (1) 6= 0.
Let us consider the expression

1

n!

dn+1

dun+1
[(u� x)nF (u)]

Clearly,

1

n!

dn+1

dun+1

h
(u� x)nF (u)

i
=

1

n!

dn

dun
d

du

h
(u� x)nF (u)

i
=

1

n!

dn

dun

h
n(u� x)n�1F (u) + (u� x)nG(u)

i
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=
1

(n� 1)!

dn

dun

h
(u� x)n�1F (u)

i
+

1

n!

dn

dun

h
(x� u)nG(u)

i

=
1

(n� 2)!

dn�1

dun�1

h
(u� x)n�2F (u)

i

+
1

(n� 1)!

dn�1

dun�1

h
(x� u)n�1F (u)

i
+

1

n!

dn

dun

h
(u� x)nG(u)

i

= G(u) +
d

du

h
(u� x)G(u)

i
+ � � �+

1

n!

dn

dun

h
(u� x)nG(u)

i
Hence (1.3) becomes

f(x) = lim
n!1

1

n!F (1)

Z 1

�1

dn+1

dun+1

h
(u� x)nF (u)

i
f(u)du(1.4)

But G(x) and f(x) are even functions, so (1.4) becomes

f(x) = lim
n!1

1

n!F (1)

Z 1

0

dn+1

dun+1

nh
(u� x)n + (u+ x)n

i
F (u)

o
f(u)du(1.5)

which ends the proof of the theorem.

2. The Main Result

We will show that if we take our G(u) the function exp(1=(u2�1)), the di�erence between
(1.5) and an expression of the Fourier type is really essential. In particular, we will show
that if f(x) is bounded and absolutely integrable over (0; 1� �), is zero over (1� �; 1), and
satis�es (1.5) at every point of (0; 1), then it is identically zero over (0; 1). From this it will
follow at once that a function satisfying (1.5) over (0; 1), bounded, and absolutely integrable,
is completely characterized by its value in the neighborhood of 1. It is not even necessary,
however, that the function satisfy (1.5) over the whole of (0; 1); it is a su�cient condition
that the following limit exist

lim
n!1

2

n!F (1)

Z 1

0

dn+1

dun+1

h
unF (u)

i
f(u)du

.
De�ne the auxiliary function of a complex variable by

�(�) =
2�R 1

�1
exp(1=(x2 � 1))dx

Z 1��

0

exp(1=(�2u2 � 1))f(u)du

To �nd the singularities of the function �(�) note that j exp(1=(�2u2 � 1))j � j1=(�2u2 � 1)j.
If j�u+1j > �; j�u� 1j > �, we have j exp(1=(�2u2� 1))j < exp(1=�2). Now de�ne the region
� in the complex plane in which � lies when j�u + 1j > �; j�u � 1j > � for every u in the
interval (0; 1� �). In the region � , the function exp(1=(�2u2� 1))f(u) is uniformly bounded
and integrable in u, so that �(�) is de�ned. The related function

�0(�) =
2R 1

�1
exp( 1

x2�1
)dx

Z 1��

0

exp

�
1

�2u2 � 1

�
f(u)du�

�
4�2R 1

�1
exp( 1

x2�1
)dx

Z 1��

0

u2

(�2u2 � 1)2
exp

�
1

�2u2 � 1

�
f(u)du
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may be proved to exist by a similar argument over the same region � . There is no di�culty
in showing directly that

lim
j�j!0

�(� + �)� �(�)

�
= �0(�)

whenever � and � + � lie in the region � . Hence � is analytic over � . Now let us consider
�(x=(1� y)) as a function of y, given that jxj < 1=(1� �). It is clearly that � is analytic in a
neighborhood containing the origin, as is also 1=(1� y)�(x=(1� y)). Let us put

R z
0
�(�z)d�z =

�(z), where the path of integration lies entirely within the circle of convergence of the Taylor
series about the origin for �(x). We shall then have

1

1� y
�

�
x

1� y

�
=

@

@x
�(

x

1� y
)

=
h @
@x

�(
x

1� y
)
i
y=0

+ y
h @2

@x@y
�(

x

1� y
)
i
y=0

+ � � �

+
yn

n!

h @n+1

@x@yn
�(

x

1� y
)
i
y=0

+ � � �

(2.1)

Now let x=(1� y) = z, or z = x+ yz. Then

@z

@y
=

x

(1� y)2
= z

@z

@x

Hence,
@�(z)

@y
= �0(z)

@z

@y
= z�0(z)

@z

@x
= z

@�(z)

@x
Again,

@2�(z)

@y2
=

@

@y

�
z
@�(z)

@x

�
=

@z

@y

@�(z)

@x
+ z

@2�(z)

@x@y

= �0(z)
@z

@y

@z

@x
+ z

@2�(z)

@x@y
=

@�(z)

@y

@z

@x
+ z

@2�(z)

@x@y
=

@

@x

�
z2
@�(z)

@x

�
In general,

@n�(z)

@yn
=

@n�1

@xn�1

�
zn
@�(z)

@x

�
Hence, h@n+1�(z)

@x@yn

i
y=0

=
h @n
@xn

�
zn
@�(z)

@x

�i
y=0

=
@n

@xn

h
xn�(x)

i
Formula (2.1) thus becomes

1

1� y
�

�
x

1� y

�
= �(x) + y

d

dx
(x�(x)) + � � �+

yn

n!

dn

dxn
(xn�(x)) + � � �(2.2)

It has been given here for the purpose of showing that there is actually a region for which the
two sides of (2.2) are identical, provided that as in the present case the radius of convergence
of the MacLaurin series for �(x) is greater than 1.

We now say that if limn!1
1
n!

h
dn

dxn
(xn�(x))

i
x=1

exists, �(x) is identically zero. To establish

this, a consideration of the singularities of � is su�cient. To begin with, � is an odd
function, and its singularities always occur in pairs. Again, we have already seen that all
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the singularities of � lie on the real axis, with a modulus greater than 1=(1� �). Now, since
we may write (2.2) in the form

�

�
1

1� y

�
= �(1) + y

�h d
dx

(x�(x))
i
x=1

� �(1)

�
+ � � �

+ yn
�
1

n!

h dn
dxn

(xn�(x))
i
x=1

�
1

(n� 1)!

h dn�1
dxn�1

(xn�1�(x))
i
x=1

�
+ � � �

(2.3)

and since this power series converges for y = 1, it follows that � has no singularities on the
�nite positive real axis, and hence no singularities on the real axis at all, except possibly
at in�nity. The singularities at in�nity, for a function with only one singularity must be
single-valued (see, [3]).
Let y ! 1 along any path for which arg(1=(1 � y)) lies between � sin�1 � and sin�1 �.

Since the power series (2.3) converges to limn!1
1
n!

h
dn

dxn
(xn�(x))

i
x=1

, if this quantity exists,

it follows that

lim
y!1

�

�
1

1� y

�
= lim

n!1

1

n!

h dn
dxn

(xn�(x))
i
x=1

The limx!1 � (1=(1� y)) will also exist if y ! 1 for any path for which arg(1=(1� y)) lies
between � � sin�1 � and � + sin�1 �, since � is odd.
Now consider the function �(�)=�, this has no singularities at the origin, and is uni-

formly bounded whenever arg(�) lies outside of the angles (� sin�1 �; sin�1 �) and (� �
sin�1 �; � + sin�1 �). All this follows from the uniformly bounded and integrable charac-
ter of exp(1=(�2u2�1))f(u). On the other hand, it follows from what we have just seen that
if � !1 along any path within the angles (� sin�1 �; sin�1 �) and (�� sin�1 �; �+ sin�1 �),
then Lim�!1�(�)=� = 0. It follows that �(�)=� can neither have a pole nor an essential
singularity anywhere, and so reduce to a constant, which can only be zero. Hence �(�) � 0.
Now let f(u) =

P1
m=0 amu

m. Then G(u) =
P1

m=0mamu
m�1 and

�(�) =
2�

F (1)

Z 1��

0

(
1X

m=0

mam(�u)
m�1

)
f(u)du

=
1X

m=0

2�m

F (1)

Z 1��

0

mamu
m�1f(u)du; j�j <

1

1� �

and so,

1

n!

h dn
dxn

(xn�(x)
i
x=1

=

=

(
1X

m=0

2(m+ n)(m + n� 1) � � � (m+ 1)m

n!F (1)
xm
Z 1��

0

amu
m�1f(u)du

)
x=1

=
2

n!F (1)

Z 1��

0

dn+1

dun+1

h
unF (u)

i
f(u)du:

That is the validity of (1.5) for x = 0 involves the identical vanishing of �(�). In other words,
if (1.5) holds, Z 1��

0

exp

�
1

�2u2 � 1

�
f(u)du = 0; 8�:(2.4)
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Let us now consider the sequence of derivatives of exp(1=(�2u2 � 1))f(u). and note that
the derivative is of the formh 2A1

x� 1
+

2A2

(x� 1)3
+ � � �+

2A2n�1

(x� 1)2n�1

i
exp

�
1

x� 1

�
where the A0s are positive or negative integers. If we di�erentiate this expression we geth �2A1

(x� 1)2
�

4A2

(x� 1)3
� � � �

�
2n

(x� 1)2n+1
�

2A1

(x� 1)3
� � � � �

2A2n�1

(x� 1)2n�1
�

1

(x� 1)2n+2

i
exp(

1

x� 1
)

which is of the same form. Hence by mathematical induction, every derivative of exp(1=(1�
x)) is of this form. It follows that there is an integer k such thath dn

dxn
exp

�
1

x� 1

�i
x=0

=
2k + 1

e
6= 0

so that h d2n
dx2n

exp

�
1

x2 � 1

�i
x=0

6= 0(2.5)

as is obvious from a comparison of the Taylor series for exp(1=(1� x)) and exp(1=(x2 � 1)).
It follows from (2.4) on di�erentiation that

0 =

Z 1��

0

h @2n
@�2n

exp

�
1

�2u2 � 1

�i
�=0

f(u)du =

Z 1��

0

u2n
h d2n
dx2n

exp

�
1

x2 � 1

�i
x=0

f(u)du

Hence by (2.5) Z 1��

0

u2nf(u)du = 0; 8n:

it is a direct consequence from this and the fact that the even powers of u forms a complete
set over the interval (0; 1 � �) (as follows from Weierstrass's Theorem on polynomials rep-
resentation) that except for a set of points of zero measure, f(u) = 0 over (0; 1� �). From
this and (1.5) it follows again that f(u) = 0 everywhere over (0; 1). This complete the proof
of our Theorem.
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