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A CENTRAL LIMIT THEOREM FOR RANDOM FIELDS

ISTVÁN FAZEKAS AND ALEXEY CHUPRUNOV

Abstract. A central limit theorem is proved for α-mixing random fields. The
sets of locations where the random field is observed become more and more
dense in an increasing sequence of domains. The central limit theorem con-
cerns these observations. The limit theorem is applied to obtain asymptotic
normality of kernel type density estimators. It turns out that in our setting the
covariance structure of the limiting normal distribution can be a combination
of those of the continuous parameter and the discrete parameter cases.

1. Introduction

In statistics, most asymptotic results concern the increasing domain case, i.e.
when the random process (or field) is observed in an increasing sequence of domains
Tn, with |Tn| → ∞. However, if we observe a random field in a fixed domain and
intend to prove an asymptotic theorem when the observations become dense in
that domain, we obtain the so called infill asymptotics (see Cressie [4]). It is known
that several estimators being consistent for weakly dependent observations in the
increasing domain setup, are not consistent if the infill approach is considered.
In this paper we combine the infill and the increasing domain approaches. We
call infill-increasing approach if our observations become more and more dense in
an increasing sequence of domains. Using this setup, Lahiri [15] and Fazekas [8]
studied the asymptotic behaviour of the empirical distribution function. Practical
applications of this approach was given in Lahiri, Kaiser, Cressie, and Hsu [17].
Also in the infill-increasing case, consistency and asymptotic normality of the least
squares estimator for linear and for linear errors-in-variables models were proved
in Fazekas and Kukush [10]. In Putter and Young [22] the kriging was considered
using infill-increasing approach. General central limit theorems were obtained in
Lahiri [16] for spatial processes under infill-increasing type designs.

The main result of this paper is Theorem 2.1 in Section 2. It is a Bernstein
type central limit theorem for α-mixing random fields. It is analogous to Theorem
1.1 in Bosq, Merlevède and Peligrad [2]. The novelties of our theorem are the
infill-increasing setting and that it concerns random fields and not only random
processes. The detailed proof is given in Section 3. The method of proof is the well-
known big-block small-block technique often applied to obtain asymptotic normality
of nonparametric statistics (see, e.g., Liebscher [18]). In Section 4 we give an
application of Theorem 2.1. Theorem 4.1 states asymptotic normality of the kernel
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type density estimator (4.2) in the infill-increasing case. The underlying random
field is α-mixing. The conditions are similar to those of Theorem 2.2 (continuous
time process) and Theorem 3.1 (discrete time process) of Bosq, Merlevède and
Peligrad [2]. Our result is in some sense between the discrete and the continuous
time cases.

Kernel type density estimators are widely studied, see e.g. Prakasa Rao [21],
Devroye and Györfi [6], Bosq [1], Kutoyants [14]. Several papers are devoted to the
density estimators for weakly dependent stationary sequences (see, e.g., Castellana
and Leadbetter [3], Bosq, Merlevède and Peligrad [2], Liebscher [18]). In most of
the papers the goal is to find weak dependence conditions of asymptotic normality.
A few papers study the relation of the rate of dependence and the asymptotic
behaviour (see, e.g., Csörgő and Mielniczuk [5]). The asymptotic normality of the
kernel type density estimator is well known for weakly depenedent continuous time
processes, too (see, e.g., Bosq, Merlevède and Peligrad [2]). The paper Guillou and
Merlevède [12] gives an estimator for the asymptotic variance. However, in the
continuous time case, if we calculate numerically the kernel type density estimator,
its asymptotic variance can be different from that of the theoretical one. To point
out this phenomenon is the goal of Theorem 4.1, and therefore we turn to so called
infill-increasing setup.

The results of this paper were announced at conferences, see e.g. Fazekas [9].

2. A Bernstein-type central limit theorem

The following notation is used. N is the set of positive integers, Z is the set of all
integers, Nd and Zd are d-dimensional lattice points, where d is a fixed positive inte-
ger. R is the real line, Rd is the d-dimensional space with the usual Euclidean norm
‖x‖. In Rd we shall also consider the distance corresponding to the maximum norm:
%(x,y) = max1≤i≤d |x(i) − y(i)| , where x = (x(1), . . . , x(d)), y = (y(1), . . . , y(d)).
The distance of two sets in Rd corresponding to the maximum norm is also denoted
by % : %(A,B) = min{%(a, b) : a ∈ A, b ∈ B}.

For real valued sequences {an} and {bn}, an = o(bn) (resp. an = O(bn)) means
that the sequence an/bn converges to 0 (resp. is bounded). We shall denote different
constants with the same letter c (or C). |D| denotes the cardinality of the finite
set D and at the same time |T | denotes the volume of the domain T .

We shall suppose the existence of an underlying probability space (Ω,F ,P). The
σ-algebra generated by a set of events or by a set of random variables will be
denoted by σ{.}. The symbol E stands for the expectation. The variance and
the covariance are denoted by var(.) and cov(., .), respectively. The Lp-norm of a
random (vector) variable η is ‖η‖p = {E‖η‖p}1/p

, 1 ≤ p < ∞.
The symbol ⇒ denotes convergence in distribution. N (m,Σ) stands for the

(vector) normal distribution with mean (vector) m and covariance (matrix) Σ.
Now we describe the scheme of observations. For simplicity we restrict ourselves

to rectangles as domains of observations. Let Λ > 0 be fixed. By (Z/Λ)d we denote
the Λ-lattice points in Rd, i.e. lattice points with distance 1/Λ:

(Z
Λ

)d

=
{(k1

Λ
, . . . ,

kd

Λ

)
: (k1, . . . , kd) ∈ Zd

}
.

T will be a bounded, closed rectangle in Rd with edges parallel to the axes and D
will denote the Λ-lattice points belonging to T , i.e. D = T∩(Z/Λ)d. To describe the
limit distribution we consider a sequence of the previous objects. I.e. let T1, T2, . . .
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be bounded, closed rectangles in Rd. Suppose that

(2.1) T1 ⊂ T2 ⊂ T3 ⊂ . . . ,

∞⋃

i=1

Ti = T∞.

We assume that the length of each edge of Tn is integer and converges to ∞, as
n → ∞. Let {Λn} be an increasing sequence of positive integers (the non-integer
case is essentially the same) and Dn be the Λn-lattice points belonging to Tn.

Let {ξt, t ∈ T∞} be a random field. The n-th set of observations involves
the values of the random field ξt taken at each point k ∈ Dn. Actually, each
k = k(n) ∈ Dn depends on n but to avoid complicated notation we often omit
superscript (n). By our assumptions, limn→∞ |Dn| = ∞.

Define the discrete parameter (vector valued) random field Yn(k) as follows. For
each n = 1, 2, . . . , and for each k ∈ Dn

(2.2) let Yn(k) = Yn(k(n)) be a Borel measurable function of ξk(n) .

We need the notion of α-mixing (see e.g. Doukhan [7], Guyon [13], Lin and Lu
[19]). Let A and B be two σ-algebras in F . The α-mixing coefficient of A and B is
defined as follows.

α(A,B) = sup{|P(A)P(B)− P(AB)| : A ∈ A, B ∈ B}.
The α-mixing coefficients of {ξt : t ∈ T∞} are

α(r, u, v) = sup{α(FI1 ,FI2) : %(I1, I2) ≥ r, |I1| ≤ u, |I2| ≤ v},
α(r) = sup{α(FI1 ,FI2) : %(I1, I2) ≥ r},

where Ii is finite a subset in T∞ with cardinality |Ii| and FIi = σ{ξt : t ∈ Ii},
i = 1, 2. We shall use the following condition. For some 1 < a < ∞

(2.3)
∫ ∞

0

s2d−1α
a−1

a (s)ds < ∞ .

Now, we turn to the version of the central limit theorem appropriate to our
sampling scheme. Our Theorem 2.1 is a modification of Theorem 1.1 of Bosq,
Merlevède and Peligrad [2]. The novelties of our theorem are the infill-increasing
setting and that it concerns random fields.

We concentrate on the case when ξt and ξs are dependent if t and s are close
to each other. Therefore our theorem does not cover the case when Yn(k)’s are
independent and identically distributed. On the other hand, if ξt is a stationary
field with continuous covariance function and positive variance, then the covariance
is close to a fixed positive number inside a small hyperrectangle. We intend to cover
this case. Recall that Dn is a sequence of finite sets in (Z/Λn)d with

lim
n→∞

|Dn| = ∞.

Theorem 2.1. Let ξt be a random field and let Yn(k) = (Y (1)
n (k), . . . , Y (m)

n (k)) be
an m-dimensional random field defined by (2.2). Let

Sn =
∑

k∈Dn

Yn(k), n = 1, 2, . . . .

Suppose that for each fixed n, the field Yn(k), k ∈ Dn, is strictly stationary with
EYn(k) = 0. Assume that

(2.4) ‖Yn(k)‖ ≤ Mn,

where Mn depends only on n;

(2.5) sup
n,k,r

E
(
Y (r)

n (k)
)2

< ∞;
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for any increasing, unbounded sequence of rectangles Gn with Gn ⊆ Tn

(2.6) lim
n→∞

1
Λd

n|Gn|E
[ ∑

k∈Gn

Y (r)
n (k)

∑

l∈Gn

Y (s)
n (l)

]
= σr,s, r, s = 1, . . . , m,

where Gn = Gn ∩ (Z/Λn)d; the matrix Σ = (σr,s)m
r,s=1 is positive definite; there

exists 1 < a < ∞ such that (2.3) is satisfied; and

(2.7) Mn ≤ c|Tn|
a2

(3a−1)(2a−1) for each n.

Then

(2.8)
1√

Λd
n|Dn|

Sn ⇒ N (0,Σ), as n →∞.

3. Proof of the main result

The covariance inequality in the α-mixing case is

(3.1) | cov(X, Y )| ≤ Cα1/t(X, Y ) ‖X‖p ‖Y ‖q ,

if t, p, q > 1, 1/t + 1/p + 1/q = 1. We remark that for bounded random variables

| cov(X, Y )| ≤ Cα(X,Y ) ‖X‖∞ ‖Y ‖∞ ,

is satisfied, see, e.g., Lin and Lu [19].

Lemma 3.1. Let D ⊂ (Z/Λ)d be a finite set and let ξi, i ∈ D, be a strictly
stationary random field with zero mean and with |ξi| ≤ M < ∞ and a > 1. Then

(3.2) E
(∑

i∈D
ξi

)4

≤ c|D|2Λ2dM4− 2
a

(
Eξ2

i

) 1
a ,

if

(3.3)
∫ ∞

0

s2d−1α
a−1

a (s, u, v)ds < ∞

for pairs u = 3, v = 1 and u = v = 2, where α(s, u, v) denotes the mixing coefficient
of the field ξi.

Proof of Lemma 3.1. The following calculation is similar to the ones in Lahiri [15]
and Maltz [20]. For simplicity, consider the case Λ = 1 (the other cases can be
reduced to this).

(3.4) E
{ ∑

i∈D
ξi

}4

≤

≤ C

{∑

i∈D
Eξ4

i +
∑

i 6=j

|Eξ3
i ξj|+

∑

i 6=j

Eξ2
i ξ2

j +
∑

i6=j 6=k

|Eξ2
i ξjξk|+

∑

i6=j 6=k 6=l

|Eξiξjξkξl|
}

=

= C[J1 + J2 + J3 + J4 + J5],
where C denotes a finite constant.

J1 =
∑

i∈D
Eξ4

i ≤ |D|M4− 2
aE|ξi| 2a ≤ |D|M4− 2

a

(
E|ξi|2

) 1
a .

J2 =
∑

i6=j

| cov(ξ3
i , ξj)| ≤ C

∑

i6=j

α
a−1

a (‖i− j‖, 1, 1) ‖ξ3
i ‖2a ‖ξj‖2a

≤ C|D|
∞∑

r=1

rd−1α
a−1

a (r, 1, 1)M2 ‖ξi‖22a

≤ C|D|
∞∑

r=1

rd−1α
a−1

a (r, 1, 1)M4− 2
a

(
Eξ2

i

) 1
a .
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J3 ≤
∑

i6=j

(| cov(ξ2
i , ξ2

j )|+ Eξ2
i Eξ2

j

)

≤ C
∑

i6=j

α
a−1

a (‖i− j‖, 1, 1) ‖ξ2
i ‖2a ‖ξ2

j ‖2a + |D|2(Eξ2
i

)2

≤ C|D|
∞∑

r=1

rd−1α
a−1

a (r, 1, 1)M4− 2
a

(
Eξ2

i

) 1
a + |D|2M4− 4

a

(
Eξ2

i

) 2
a .

For J4 let r be the greatest distance between subsets of {i, j,k}. Then we have
two cases. In the first case r is the distance of {i} and {j,k}. If r = ‖i − j‖, say,
then ‖i − k‖ ≤ 2r. In the second case r is the distance of {j} and {i,k}, say. If
r = ‖j− i‖, say, then ‖j−k‖ ≤ 2r. Therefore, if we separate terms according to the
greatest distance, we obtain the following (the first sum represents the first case
while the second sum represents the second case):

J4 ≤
∑

i6=j 6=k

(| cov(ξ2
i , ξjξk)|+ Eξ2

i |Eξjξk|
)

+
∑

i6=j 6=k

| cov(ξ2
i ξk, ξj)|

≤ C|D|
∞∑

r=1

r2d−1α
a−1

a (r, 1, 2) ‖ξ2
i ‖2a ‖ξjξk‖2a

+ C|D|2
∞∑

r=1

rd−1α
a−1

a (r, 1, 1)Eξ2
i ‖ξj‖2a ‖ξk‖2a

+ C|D|
∞∑

r=1

r2d−1α
a−1

a (r, 1, 2) ‖ξ2
i ξk‖2a ‖ξj‖2a

≤ C|D|
∞∑

r=1

r2d−1α
a−1

a (r, 1, 2)M4− 2
a

(
Eξ2

i

) 1
a

+ C|D|2
∞∑

r=1

rd−1α
a−1

a (r, 1, 1)M4− 4
a

(
Eξ2

i

) 2
a .

For J5 let r be the greatest distance between subsets of {i, j,k, l}. Then we have
two cases. In the first case r is the distance of a one-point set and a three-point set,
{i} and {j,k, l}, say. If r = ‖i − j‖, say, then at least one of the remaining points
is closer to j than r: ‖j− k‖ ≤ r. Moreover, the remaining point is closer to j than
2r: ‖j− l‖ ≤ 2r. Therefore, for this part of J5 we have

J ′5 ≤
∑

i 6=j 6=k 6=l

| cov(ξi, ξjξkξl)| ≤ C|D|
∞∑

r=1

r3d−1α
a−1

a (r, 1, 3)M2 ‖ξi‖2a ‖ξj‖2a

≤ C|D|
∞∑

r=1

r3d−1α
a−1

a (r, 1, 3) M4− 2
a

(
Eξ2

i

) 1
a .

In the second case for J5, r is the distance of two two-point sets. Assume that
the sets are {i,k} and {j, l}, moreover i and j are the closest points of these sets:
r = ‖i− j‖. Then the two remaining points are closer to one of them, say, to i, than
2r: ‖i − k‖ ≤ 2r, ‖i − l‖ ≤ 2r. (Otherwise the distance of {i, j} and {k, l} would
be greater than r.) Therefore, for the second part of J5, we have

J ′′5 ≤ C
∑

i

∑

j

∑
‖k−i‖≤2‖i−j‖
‖l−i‖≤2‖i−j‖

{| cov(ξiξk, ξjξl)|+ |Eξiξk| |Eξjξl|} .

Here the second term is bounded by

C
{∑

i∈D

∑
k∈D

|Eξiξk|
}2

= C
{∑

i∈D

∑
k∈D

| cov(ξi, ξk)|
}2

.
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Therefore

J ′′5 ≤ C|D|
∞∑

r=1

r3d−1α
a−1

a (r, 2, 2) M2 ‖ξi‖2a ‖ξj‖2a

+
(
C|D|

∞∑
r=1

rd−1α
a−1

a (r, 1, 1) ‖ξi‖2a ‖ξk‖2a

)2

≤ C|D|
∞∑

r=1

r3d−1α
a−1

a (r, 2, 2) M4− 2
a

(
Eξ2

i

) 1
a

+ C|D|2
( ∞∑

r=1

rd−1α
a−1

a (r, 1, 1)
)2

M4− 4
a

(
Eξ2

i

) 2
a .

Finally,

E

{ ∑

i∈D
ξi

}4

≤ C|D|
{

1 +
∞∑

r=1

rd−1α
a−1

a (r, 1, 1) +
∞∑

r=1

r2d−1α
a−1

a (r, 1, 2)

+
∞∑

r=1

r3d−1α
a−1

a (r, 1, 3) +
∞∑

r=1

r3d−1α
a−1

a (r, 2, 2)
}

M4− 2
a

(
Eξ2

i

) 1
a

+C|D|2
{

1 +
∞∑

r=1

rd−1α
a−1

a (r, 1, 1) +
( ∞∑

r=1

rd−1α
a−1

a (r, 1, 1)
)2}

M4− 4
a

(
Eξ2

i

) 2
a .

It is easy to see that we can modify the above argument so that instead of∑∞
r=1 r3d−1 we can write |D|∑∞

r=1 r2d−1. Therefore we obtain

E

{∑

i∈D
ξi

}4

≤ C|D|2
{

1 +
∞∑

r=1

r2d−1α
a−1

a (r, 1, 3)

+
∞∑

r=1

r2d−1α
a−1

a (r, 2, 2) +
( ∞∑

r=1

rd−1α
a−1

a (r, 1, 1)
)2}

M4− 2
a

(
Eξ2

i

) 1
a .

The Λ = 1 case follows from the above calculation. The infill case follows from
the integer lattice case. The field ξi, i ∈ D, where D ⊂ (Z/Λ)d, Λ > 1, can be
interpreted as a field with integer lattice indices: just multiply the parameter i
by Λ and at the same time use the mixing coefficient α(r/Λ, . , . ) for parameter
subsets of distance r. ¤
Proof of Theorem 2.1. We use the version of Bernstein’s method applied in Bosq,
Merlevède and Peligrad [2].

Let a > 1 be the constant in the theorem and let

(3.5) 0 < γ < min
{

a− 1
3ad

,
a

3(a− 1)

}
.

Let A > 1 be fixed. Let β1 = max
{

1 , maxk≥1

{
kα

a−1
2da

k

}}
and

(3.6) βn = max
{

1
n3/(3γ+1)

, max
k≥n

{
kα

a−1
2da

k

}
,

βn−1

A

}
,

for n = 2, 3, . . . . Here αk = α(k), k = 1, 2, . . . , are the α-mixing coefficients of the
underlying random field {ξt : t ∈ T∞}. Then

(3.7) βn ≥ 1
n3/(3γ+1)

, βn is decreasing.

We prove that

(3.8) β−d
n n2dα

a−1
a

n → 0 as n →∞ .
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Condition (2.3), i.e.
∫∞
0

s2d−1α
a−1

a (s)ds < ∞ implies
∑∞

n=1 n2d−1α
a−1

a
n < ∞.

Therefore one can prove that n2dα
a−1

a
n → 0. Then nα

a−1
2da
n → 0. So we have

βn ≥ max
k≥n

{
kα

a−1
2da

k

}
→ 0 , as n →∞ .

Furthermore
0 < β−d

n n2dα
a−1

a
n ≤ ndα

a−1
2a

n → 0 , as n →∞ .

Therefore we have (3.7), (3.8) and βn ↓ 0.
Now |Tn| is the volume of the d-dimensional rectangle Tn. We have

|Tn| = |Dn|/Λd
n,

where |Dn| is the cardinality of Dn. Denote [ . ] the integer part. Let

(3.9) mn =
[
|Tn|

a−1
d(3a−1)

]
, pn =

[
mn βγ

[
√

mn ]

]
, qn =

[
pn β

1/3
[
√

mn ]

]
.

Now we prove that

(3.10) pn →∞, qn →∞, and pn/qn →∞.

Indeed,

pn ≥ mn βγ
[
√

mn ]− 1 ≥ mn (
√

mn)−
3γ

3γ+1 − 1 = m
1− 3γ

2(3γ+1)
n − 1 = m

3γ+2
2(3γ+1)
n − 1 →∞,

because mn →∞. Also

qn > pn β
1/3
[
√

mn ] − 1 ≥
(
mn βγ

[
√

mn ] − 1
)

β
1/3
[
√

mn ] − 1

= mn β
γ+1/3
[
√

mn ] − β
1/3
[
√

mn ] − 1 ≥ mn [
√

mn ]
−3

3γ+1 (γ+ 1
3 ) − β

1/3
[
√

mn ] − 1

=
mn[√
mn

] − β
1/3
[
√

mn ] − 1 ≥ √
mn − o(1)− 1 .

So we obtained that qn >
√

mn−o(1)−1, i.e. qn >
[√

mn

]−2 if n is large enough.
Finally,

pn

qn
≥ β

− 1
3

[
√

mn ] →∞,

because βn → 0.
Now we divide Tn into big and small blocks. First divide Tn into d-dimensional

cubes each having size (pn + qn)d. Let kn denote the number of these cubes. Then
divide each cube into 2d d-dimensional rectangles (called a family of rectangles).
The largest one of these rectangles is of size pd

n. This will be a large block. The
other ones of sizes pd−1

n qn, . . . , pnqd−1
n , qd

n will be the small blocks. However, at
the ‘border’ of Tn we have to make blocks with sizes different from the ones just
listed. Namely, we can make big blocks having edge lengths between pn and 2pn.
Moreover, the small blocks may have edge lengths between pn and 2pn but each
small block has at least one edge with length between qn and 2qn.

We prove that the contribution of the small blocks converges to 0. We deal with
a fixed coordinate of Yn(k). Recall that kn is the number of big blocks (it is also
the number of 2d-member families consisting of big and small blocks).

Let Vl,j be the sum of random variables having indices in the (l, j)th small block.
Here j shows the type of the small block, j = 2, . . . , 2d, while l is the index of the
rectangle family, l = 1, . . . , kn.

We show that the L2-norm of the normed total sum in the small blocks converges
to 0. We have

L =
1

Λd
n|Dn|E

{∑2d

j=2

∑kn

l=1
Vl,j

}2

≤ 2d − 1
Λd

n|Dn|
∑2d

j=2
E

{∑kn

l=1
Vl,j

}2

.

Here we used 2E|XY | ≤ EX2 + EY 2.
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We shall calculate an upper bound for E
{∑kn

l=1 Vl,max

}2

, where Vl,max denotes

the sum in the largest small block (i.e. the block of size pd−1
n qn). It will serve as an

upper bound for the other small blocks, therefore we can calculate formally

L ≤ (2d − 1)2

Λd
n|Dn| E

{∑kn

l=1
Vl,max

}2

≤ (2d − 1)2

Λd
n|Dn|

∑kn

l=1
EV 2

1,max +
c(2d − 1)2

Λd
n|Dn| kn

∑∞
l=1

ld−1α
1/2
lpn

{
EV 4

1,max

}1/2

= L1 + L2 ,

where we used the covariance inequality. We have

L1 =
{

cΛd
nknpd−1

n qn

|Dn|
}{

1
Λ2d

n pd−1
n qn

EV 2
1,max

}
.

Here the first factor is bounded by cqn/pn → 0. The second factor, by (2.6),
converges to a finite limit. Therefore L1 → 0.

By Lemma 3.1, (2.5), and using that (2.3) implies that
∑∞

l=1 ld−1α
1/2
lpn

≤ cp
− da

a−1
n ,

L2 ≤ c(2d − 1)2

Λd
n|Dn| kn

∑∞
l=1

ld−1α
1/2
lpn

{(
pd−1

n qnΛd
n

)2Λ2d
n M

4− 2
a

n

}1/2

≤ cknpd−1
n qnΛd

nΛd
nM

2− 1
a

n

Λd
n |Dn| p

da
a−1
n

≤ cqnM
2− 1

a
n

pnp
da

a−1
n

.

Using the definitions of pn and qn,

L2 ≤ cβ
1
3
[
√

mn ]

M
2− 1

a
n

(
mnβγ

[
√

mn ]

) da
a−1

= c

{
β

1
3−γ da

a−1

[
√

mn ]

} {
M

2− 1
a

n

m
da

a−1
n

}
.

Here the first factor converges to 0 because βn → 0 and its exponent is positive.
The second factor, by the definition of mn, is smaller than

c
M

2− 1
a

n
(
|Tn|

a−1
d(3a−1)

) da
a−1

= c
M

2− 1
a

n

|Tn|
a

3a−1
.

By (2.7), this is bounded. Therefore L2 → 0.
We remark that each small block at the ‘border’ contains at most 2d times more

terms than the corresponding one ‘inside’ the domain Tn. So their contribution can
also be covered by the above calculation.

Now we turn to the big blocks. We use
∣∣∣Eeit(η1+···+ηn) − Eeit(eη1+···+eηn)

∣∣∣ ≤ cnα ,

where η1, . . . , ηn are dependent having maximal α-mixing coefficient α between two
disjoint subsets, η̃1, . . . , η̃n are independent, moreover η̃l has the same distribution
as ηl, l = 1, . . . , n.

Therefore the difference of the characteristic function of the sum of the big block
terms and that of independent blocks is less, than cknαqn . Now

knαqn ≤ c
|Tn|
pd

n

(
βd

qn

q2d
n

) a
a−1
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because (3.8) implies that α
a−1

a
qn ≤ cβd

qn
/q2d

n . Therefore

knαqn
≤ c

|Tn|
pd

n


 βd

qn

p2d
n β

2d
3

[
√

mn ]




a
a−1

= c
|Tn|

p
d(3a−1)

a−1
n

β
da

a−1
qn β

− 2ad
3(a−1)

[
√

mn ]

≤ c

{
|Tn|

m
d(3a−1)

a−1
n

} {
β
−γ

d(3a−1)
a−1 − 2ad

3(a−1)

[
√

mn ] β
da

a−1
qn

}
.

The limit of the first factor is 1. The second factor is less than cβ
ad

3(a−1)−γ
d(3a−1)

a−1

[
√

mn ] A
2da
a−1 .

This expression converges to 0 because βn → 0 and the exponent is positive.
Therefore, we can consider independent big blocks. We shall apply Lyapunov’s

theorem. Let b ∈ Rd be an arbitrary nonzero vector, then we use b>Yn(k), i.e. a
linear combination of the coordinates of Yn(k). Let Ui denote the sum of these
linear combinations in the i-th big block. Using that U1, . . . , Ukn are independent,

var

{ ∑kn

i=1 Ui√
Λd

n|Dn|

}
=

{
knpd

nΛd
n

|Dn|
}

var

{
Ui√
pd

nΛ2d
n

}
.

Here the first factor converges to 1. The second factor, by (2.6), converges to
b>Σb > 0. Therefore, Lyapunov’s condition is

U =
∑kn

i=1
E

{
Ui√

Λd
n|Dn|

}4

→ 0 .

But this is true since, by Lemma 3.1,

U ≤ knc
(pd

nΛd
n)2Λ2d

n M
4− 2

a
n

Λ2d
n |Dn|2 ≤ knc

p2d
n Λ2d

n M
4− 2

a
n

(|Tn|Λd
n)(knpd

nΛd
n)

=
cpd

nM
4− 2

a
n

|Tn| ≤ cβγd
[
√

mn ]

md
n

|Tn|M
4− 2

a
n ≤ c

{
βγd

[
√

mn ]

}




M
2(2a−1)

a
n

|Tn|
2a

3a−1



 .

Here the first factor converges to 0. By (2.7), the second factor is bounded. So
U → 0. Therefore Lyapunov’s condition is satisfied. The theorem is proved. ¤

4. Application: asymptotic normality of kernel-type density
estimators

Now we apply Theorem 2.1 to kernel-type density estimators. We obtain the as-
ymptotic normality of the kernel type density estimator when the sets of locations
of observations become more and more dense in an increasing sequence of domains.
It turns out that the covariance structure of the limiting normal distribution de-
pends on the ratio of the bandwidth of the kernel estimator and the diameter of the
subdivision. This is an important issue when we approximate the integral in the
estimator fTn(x) = 1

|Tn|
1

hn

∫
Tn

K
(

x−ξt
hn

)
dt by a sum, i.e. in practical applications

we use an estimator of the form fDn(x) = 1
|Dn|

1
hn

∑
i∈Dn

K
(

x−ξi
hn

)
.

Let ξt, t ∈ T∞, be a strictly stationary random field with unknown continuous
marginal density function f . We shall estimate f from the data ξi, i ∈ Dn.

A function K : R → R will be called a kernel if K is a bounded continuous
symmetric density function (with respect to the Lebesgue measure),

(4.1) lim
|u|→∞

|u|K(u) = 0,

∫ +∞

−∞
u2K(u) du < ∞ .
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If K is a kernel and hn > 0, then the kernel-type density estimator is

(4.2) fn(x) =
1
|Dn|

1
hn

∑
i∈Dn

K

(
x− ξi

hn

)
, x ∈ R .

Let fu(x, y) be the joint density function of ξ0 and ξu, u 6= 0. Denote by Rd
0

the set Rd \ {0}. Let

(4.3) gu(x, y) = fu(x, y)− f(x)f(y), u ∈ Rd
0, x, y ∈ R.

We assume that gu(x, y) is continuous in x and y for each fixed u. Let gu denote
gu(x, y) as a function g : Rd

0 → C(R2), i.e. a function with values in C(R2), the
space of continuous real-valued functions over R2. Let ‖gu‖ = sup(x,y)∈R2 |gu(x, y)|
be the norm of gu.

For a fixed positive integer m and fixed distinct real numbers x1, . . . , xm, intro-
duce the notation

(4.4) σ(xi, xj) =
∫

Rd
0

gu(xi, xj) du , i, j = 1, . . . , m,

(4.5) Σ(m) =
(
σ(xi, xj)

)
1≤i,j≤m

.

Theorem 4.1. Assume that gu is Riemann integrable (as a function
g : Rd

0 → C(R2)) on each bounded closed d-dimensional rectangle R ⊂ Rd
0, moreover

‖gu‖ is directly Riemann integrable (as a function ‖g‖ : Rd
0 → R). Let x1, . . . , xm

be distinct real numbers and assume that Σ(m) in (4.5) is positive definite. Suppose
that there exists 1 < a < ∞ such that (2.3) is satisfied and

(4.6) (hn)−1 ≤ c|Tn|
a2

(3a−1)(2a−1) for each n .

Assume that limn→∞ Λn = ∞ and limn→∞ hn = 0.
If

(4.7) lim
n→∞

1
Λd

n

1
hn

= 0,

then

(4.8)

√
|Dn|
Λd

n

{(
fn(xi)− Efn(xi)

)
, i = 1, . . . ,m

}
⇒ N (0, Σ(m)) as n →∞.

If, instead of (4.7),

(4.9) lim
n→∞

1
Λd

n

1
hn

= L > 0

is satisfied, then (4.8) remains valid if Σ(m) is replaced by

(4.10) Σ
′(m) = Σ(m) + D ,

where D is a diagonal matrix with diagonal elements

Lf(xi)
∫ +∞

−∞
K2(u) du, i = 1, . . . ,m.

If f(x) has bounded second derivative and limn→∞ |Tn|h4
n = 0, then in (4.8)

Efn(xi) can be replaced by f(xi), i = 1, . . . ,m, and both of the above statements
remain valid.

The proof of Theorem 4.1 is given in Fazekas and Chuprunov [11]. In that paper
numerical evidence is also given for the interesting and important phenomenon
following from the form of the limiting covariance matrix.
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