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ON THE FIXED POINT OF A COLLINEATION OF THE
REAL PROJECTIVE PLANE

ISTVÁN KRISZTIN NÉMET

Abstract. Using the “extended Euclidean plane” model we prove the ex-
istence of the fixed point of a collineation of the real projective plane. At
first we obtain the collineation as a product of a reflection in a line, a reflec-
tion in a point and a central-axial collineation. Then we prove the existence
of the fixed point of the product of the second and the third mappings, and
also that it is possible to choose the center of the second one so that this
fixed point will lie on the axis of the first one. We examine the locus of the
mentioned fixed point, too.

1. Introduction

The theorem on the existence of the fixed point of a collineation of the
real projective plane is proved most frequently by using analytical methods.
There are synthetic ways, too: e.g. in [1], [3], [6] the fixed points are points of
intersection of certain conics; in [4], [5] there is a special proof which is mainly
based on Dedekind’s axiom of continuity.

In this paper we will construct another synthetic proof. Our method will
not be a pure projective one because we will use the so-called Euclidean plane
extended by ideal elements model and Euclidean metrical concepts. The prin-
ciple of the proof is to obtain the given collineation as a product of three
transformations whose certain properties can be chosen arbitrarily. We deter-
mine these properties that a fixed point under the product of the second and
the third transformations will exist, and also that this point will be fixed under
the first one, too. Hence, this point is fixed under the given collineation.

Due to the principle of duality it is enough to prove either the existence of
a fixed point or that of an invariant line. Our aim is to prove this theorem:

Theorem. Any collineation of the real projective plane has either a fixed point
or an invariant line.
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Any central-axial collineation has fixed points: e.g. its center. The ideal
line is invariant under any affine collineation. Thus in the sequel we have to
examine only the non-affine, non-central-axial collineations. The proof is based
on the following three lemmas:

Lemma 1. Any non-affine, non-central-axial collineation of the real projective
plane can be obtained as a product of an opposite isometry and either an elation
or a homology with a positive characteristical cross ratio.

Lemma 2. Let us consider the product of a reflection in a point and a non-
affine elation with distinct centers. This product has an ordinary fixed point
on the line of the centers.

Lemma 3. Let us consider the product of a reflection in a point and a non-
affine homology with a positive characteristical cross ratio with distinct centers.
This product has an ordinary fixed point on the line of the centers.

We remark here that in this paper we use directed line segments. The
following properties of the central-axial collineations will be important in the
proofs:

In the case of the non-affine homology with center C, axis t and characteris-
tical cross ratio λ if P 6= C, P 6∈ t, then (P ′PCM) = λ, where M := (CP )∩ t.
In the case of ordinary points CP ′

MP ′ = λ CP
MP

; if M is an ideal point, then
CP ′ = λCP .

In the case of the non-affine elation with center C, axis t and line of direction
e (the image line of the ideal line; e ‖ t) if P (6∈ t) is an ordinary point, then
CP ′
PP ′ = LC

CP
, where L := (CP ) ∩ e.

2. The proofs of the lemmas

Let us denote the ideal line by i, its image under the given collineation by
i′.

Proof of Lemma 1. Consider a non-affine, non-central-axial collineation Φ. Let
P ′, Q′, R′ denote three non-collinear ordinary points so that (P ′Q′) ‖ i′ and
R′ 6∈ i′. The originals of P ′, Q′, R′ under Φ are P , Q, R, respectively; they
are non-collinear, ordinary points, too. Φ is uniquely determined by i, P , Q,
R and their images under Φ. Consider the opposite similarity S which trans-
forms P to P ′, Q to Q′. Let X := S(R), and µ(> 0) is the ratio of S. Now
consider the central-axial collineation Φ1 with axis (P ′Q′) which transforms i
to i′ and X to R′; the center of Φ1 is denoted by C. Let us express S as the
product of an opposite isometry M and a central dilatation N with center C.
The ratio of N can be either µ or −µ, we will choose it later. The product
of N and Φ1 is a line-preserving transformation with center C which trans-
forms i to i′. Thus this product is a non-affine central-axial collineation Φ2

with center C. The original collineation Φ is obtained as the product of the
opposite isometry M and the central-axial collineation Φ2. Now we show that
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Figure 1

it is possible to choose the ratio of S so that Φ2 will be either an elation or a
homology with a positive characteristical cross ratio. If Φ1 is an elation and
µ = 1, then let us choose 1 as the ratio of S. If Φ1 is an elation and µ 6= 1,
then Φ2 is a homology whose characteristical cross ratio equals the ratio of S.
In this case let us choose µ as the ratio of S. If Φ1 is a homology, then Φ2

is either an elation or a homology whose characteristical cross ratio equals the
product of the ratio of S and the characteristical cross ratio of Φ1, depending
on this product whether it is 1 or not. In this case let us choose the ratio of S
so that the product of this ratio and the characteristical cross ratio of Φ1 will
be positive. The proof is completed. ¤

Proof of Lemma 2. (Fig. 1.) We use the same notations in connection with
the elation Φ2 as at the end of Paragraph 1.; the center of the reflection in
a point is denoted by O, O 6= C, and at first let O 6∈ t. We are looking for
an ordinary point P on line (CO) for which Φ2(P

∗) = P , where P ∗ denotes
the image of P under the reflection in point O. This equation holds — due
to the formula in Paragraph 1. — iff CP

P ∗P = LC
CP ∗ . Due to the reflection:

CP
P ∗P = CO+OP

2OP
, LC

CP ∗ = LC
CO−OP

. Let x := OP
CO

and c := LC
CO

(6= 0); the second one
is constant, independent of P . Applying these equations, if x 6= 0, 1, then we
get the following condition for the fixed point:

1 + x

2x
=

c

1− x
, x2 + 2cx− 1 = 0.

Neither 0 nor 1 is a solution, because c 6= 0. The discriminant is 4c2 + 4 > 0,
thus the equation has two distinct real solutions: x1,2 = −c±√c2 + 1. Using
OP = xCO we get the ordinary fixed point P , if O 6∈ t.

If O ∈ t then O is obviously fixed and OO
CO

= 0. On the other hand, c → −∞
or c → ∞ depending on whether O tends to t in the halfplane containing e
or in the other one. lim

c→∞
(−c +

√
c2 + 1

)
= lim

c→−∞
(−c−√c2 + 1

)
= 0. Thus

the formula mentioned above determines — as a limiting case — an ordinary
fixed point in the case of O ∈ t, too. ¤
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Figure 2

Proof of Lemma 3. (Fig. 2.) We use the same notations in connection with
the homology Φ2 as at the end of Paragraph 1.; the center of the reflection in
a point is denoted by O, O 6= C, and at first let (CO) 6‖ t. We are looking for
an ordinary point P on (CO), for which Φ2(P

∗) = P , where P ∗ denotes the
image of P under the reflection in point O. This equation holds — due to the
formula in Paragraph 1. — iff CP

MP
= λ CP ∗

MP ∗ , λ 6= 1, λ > 0. CP
MP

= CO+OP
MO+OP

,

and due to the reflection: CP ∗
MP ∗ = CO−OP

MO−OP
. Let x := OP

CO
and a := MO

CO
(6= 1);

the second one is constant, independent of P . Applying these equations, if
x 6= ±a, then we get the following condition for the fixed point:

1 + x

a + x
= λ

1− x

a− x
, x2 +

λ + 1

λ− 1
(a− 1)x− a = 0.

In the case of x = ±a either a(a − 1) 2λ
λ−1

= 0 or a(1 − a) 2
λ−1

= 0, so ±a are

solutions iff a = 0. If a = 0, then x1,2 = 0, λ+1
λ−1

. x2 6= 0, thus this solution

determines a fixed point. a = MO
CO

= 0 iff M = O, O ∈ t. In this case O is
obviously a fixed point, so the x1 = 0 solution determines a fixed point, too.
In the sequel a 6= 0; let r := λ+1

λ−1
and s := a− 1. Now x2 + rsx− (s + 1) = 0,

its discriminant is r2s2 + 4s + 4, (r2 > 0). The discriminant of this second
formula is 16(1− r2) = − 64λ

(λ−1)2
< 0. Thus the first discriminant is positive, so

the equation determining the fixed point has two distinct solutions:

x1,2 =
−rs±

√
r2s2 + 4 (s + 1)

2
.

If in this formula s = −1 (a = 0), then it gives the solutions of the “a = 0”
case. Hence, this formula determines the fixed point not depending on a. Using
OP = xCO we get the ordinary fixed point P if (CO) 6‖ t.

If (CO) ‖ t (M is an ideal point), then the condition for the fixed point
P is CP = λCP ∗, λ 6= 1, λ > 0 (according to the formula in Paragraph 1.).
CO + OP = λ(CO − OP ) so OP

CO
= λ−1

λ+1
= 1

r
. On the other hand, s → −∞

or s → ∞ depending on whether O tends to the line containing C, being
parallel to t in the halfplane containing t or in the other one. If r > 0, then

lim
s→∞

(
−rs +

√
r2s2 + 4(s + 1)

)
= lim

s→−∞

(
−rs−

√
r2s2 + 4(s + 1)

)
= 2

r
. If
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r < 0, then changing the signs of the square roots we get the same limits.
Thus the formula mentioned above determines — as a limiting case — an
ordinary fixed point in the case of (CO) ‖ t, too. ¤

3. The proof of the Theorem

Let us consider a non-affine, non-central-axial collineation Φ, and — using
Lemma 1. — let us obtain it as Φ = Φ2M, where M is an opposite isometry
and Φ2 is a non-affine central-axial collineation. M is either a reflection in
a line or a glide reflection. If M is a reflection in a line, then the point of
intersection of the axes is fixed under Φ, the proof is completed. Now M is a
glide reflection, its invariant line is m, the center and axis of Φ2 are C and t,
respectively. If C ∈ m, then m is invariant under Φ, the proof is completed.
If either m ⊥ t or m ‖ t, then the ideal point of t is fixed under Φ, the proof
is completed. In the sequel C 6∈ m, m 6⊥ t, and m intersects t in an ordinary
point T . Let us express M as the product of a reflection in a line and a
reflection in a point: M = TOTd, O ∈ m, d ⊥ m, O 6∈ d. This factoring is not
a unique one: e.g. we can choose O on m arbitrarily. O 6= C because O ∈ m
and C 6∈ m; thus — according to Lemmas 2., 3. — there exists at least one
ordinary fixed point of the product Φ2TO on (CO). We will prove that it is
possible to choose O so that one of these fixed points will be on d. Thus this
point will be fixed under Φ.

I. Φ2 is an elation. (Fig. 3.) We use the same notations in connection with
Φ2 as above. Let K: K ∈ m, (CK) ⊥ m; E := m ∩ e; O: an arbitrary point
on m, but not T ; D := d ∩m. The length and the direction of the segment
OD are constants, these are determined by the glide reflection M. P (∈ (CO))
is one of the fixed points of Φ2TO. Our aim is to make P incident to d; this
holds, iff OP

CO
= OD

KO
. At the end of the proof of Lemma 2. we got the formula

for OP
CO

using c = LC
CO

that is now equal to ET
TO

. On the other hand

OD

KO
=

OD
ET

KT
ET

+ TO
ET

.

Let α := OD
ET

(6= 0), β := KT
ET

(6= 0); they are constants, independent of O. If

c 6= 0, − 1
β
, then the condition for P ∈ d is:

−c±
√

c2 + 1 =
α

β + 1
c

, 2αβc3 + (α2 + 2α− β2)c2 − 2βc− 1 = 0.

Neither 0 nor − 1
β

is a solution, because α, β 6= 0. Moreover, the equation has

degree 3, so it has at least one real solution. Applying TO = 1
c
ET we get the

appropriate O for P ∈ d. (We assumed O 6= T ; we obviously got an O distinct
from T .) Thus the case of elation is completed.

II. Φ2 is a homology. (Fig 4.) We use the same notations in connection
with Φ2 as above. Points K, D and P are defined as in the previous case. Let
g : C ∈ g, g ‖ t; L := g ∩ m; O: an arbitrary point on m, but not L. The
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Figure 3

Figure 4

length and direction of OD are constants as in case I. The condition for P ∈ d
is again OP

CO
= OD

KO
. At the end of the proof of Lemma 3. we got the formula

for OP
CO

using r = λ+1
λ−1

and s = MO
CO

− 1. Now

MO

CO
=

TO

LO
=

TL
OD

LK
OD

+ KO
OD

+ 1.
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Let α := TL
OD

(6= 0), β := LK
OD

(6= 0); they are constants, independent of O. So

s = α
β+KO

OD

, OD
KO

= s
α−βs

. If s 6= α
β
, then the condition for P ∈ d is:

−rs±
√

r2s2 + 4 (s + 1)

2
=

s

α− βs
,

β(β + r)s3 + (β2 − 2αβ − αr − 1)s2 + (α2 − 2αβ)s + α2 = 0.

Neither 0 nor α
β

is a solution, because α 6= 0. If this equation has degree either

1 or 3, it has at least one real solution. In the case of degree 2, β + r = 0 and
the new main coefficient is not 0:

(r2 + αr − 1)s2 + α(α + 2r)s + α2 = 0.

Its discriminant is α2(α + 2r)2 − 4(r2 + αr − 1)α2 = α2(α2 + 4) > 0, thus the
equation has a real solution in this case, too. Finally, we have to prove that
the equation has at least degree 1. If it was false, then r(r + α) = 1, α = −2r
and their consequence −r2 = 1 would hold, which is impossible. Applying
LO = 1

s
TL we get the appropriate O for P ∈ d. (We assumed O 6= L; we

obviously got an O distinct from L.) Thus the case of homology is completed,
too, the Theorem is proved.

4. The locus of the fixed points

Finally, we examine the locus of the fixed points of Φ2TO while O “runs”
on m. We use the analytical way.

I. Φ2 is an elation. (Fig. 3.) We use the coordinate system as follows:
T (0; 0), t: y = 0, e: y = −1. C(k; 0) (k 6= 0), m: x + by = 0, O(−bo; o)

(o 6= 0). Then
−→
CO(−bo− k; o), L

(
ok+k+bo

o
;−1

)
,
−→
LC

(−k−bo
o

; 1
)
.
−→
LC = c

−→
CO, so

c = 1
o
. Using the formula that is at the end of the proof of Lemma 2. we get

for the fixed point P :

−→
OP =

(
−1

o
±

√
1

o2
+ 1

)
−→
CO or P = T

depending on whether O 6= T (o 6= 0) or O = T (o = 0). If P (x; y), then:

x + bo = (−bo− k)
−1±√1 + o2

o
or x = 0;

ox2 + 2o2xb− 2oxb− 2xk − 2b2o2 − 2bok − 2bo2k − ok2 = 0 or x = 0.

y − o = o
−1±√1 + o2

o
or y = 0;

y2 − 2yo + 2y − 2o = 0 or y = 0.

Using the computer algebra software “CoCoA” ([2]), we get the following equa-
tion for (x; y):

by2 + xy + 2x + (k + 2b)y = 0
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The examination of the matrix of the equation shows that it is an equation
of a hyperbola: the determinant of the matrix is det(A) = k

2
6= 0, and its

subdeterminant is det(A33) = −1
4

< 0. A line passing through C has one
common point with the hyperbola iff it is parallel to one of its asymptotes.
(CT ) has one point on the curve — T (0; 0) — thus the first asymptote is
parallel to t; its equation is y = −2. The other (CO) lines (O ∈ m, O 6= T )
have two points on the curve, so the second asymptote is parallel to m; its
equation is x + by = −k. Consider the line s: C ∈ s, s ‖ t; s: x + by = k. The
point of intersection of s and the hyperbola is S(k + b;−1); this point is not a
fixed point of Φ2TO for any O ∈ m.

II. Φ2 is a homology. (Fig. 4.) We use the coordinate system as follows:
T (0; 0), t : y = 0, C(k; 1). m: x + by = 0, (k + b 6= 0), O(−bo; o) (o 6= 1),

L(−b; 1). Then
−→
CO(−bo−k; o−1), M

(
ok+ob
o−1

; 0
)
,
−−→
MC

(−k−bo
o−1

; 1
)
.
−−→
MC = s

−→
CO,

so s = 1
o−1

. Using the formula that is at the end of the proof of Lemma 3. we
get for the fixed point P :

−→
OP =

− r
o−1

±
√

r2

(o−1)2
+ 4o

o−1

2

−→
CO or

−→
OP =

1

r

−→
CO

depending on whether O 6= L (o 6= 1) or O = L (o = 1). If P (x; y), then:

x + bo = (−bo− k)
−r ±

√
r2 + 4o(o− 1)

2(o− 1)
or x + b = (−b− k)

1

r
;

ox2 − x2 + 2xbo2 − 2xbo− xbor − xkr − b2o2r − bokr − b2o2 − 2bo2k − k2o = 0

or x =
−rb− b− k

r
.

y − o = (o− 1)
−r ±

√
r2 + 4o(o− 1)

2(o− 1)
or y = 1;

y2 − 2oy + ry − or + o = 0 or y = 1.

Using “CoCoA”, now we get the following equation for (x; y):

by2 + xy + (r − 1)x + (k + br)y = 0.

The examination shows that it is an equation of a hyperbola, too: the determi-

nant of the matrix is det(A) = (r−1)(b+k)
4

= b+k
2(λ−1)

6= 0, and its subdeterminant

is det(A33) = −1
4

< 0. As in the previous case, we get that the asymptotes are
parallel to t and to m. Their equations are y = 1 − r and x + by = −k − b.
The line s and the point S are defined as in case I. Now s: x + by = k + b and
S

(
2k+br+b

2
; 1−r

2

)
.

Thus in both cases the locus of the fixed points of Φ2TO is a hyperbola
except one point.
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