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ON THE RHEONOMIC FINSLERIAN MECHANICAL
SYSTEMS

CAMELIA FRIGIOIU

ABSTRACT. In this paper it will be studied the dynamical system of a
rheonomic Finslerian mechanical system, whose evolution curves are given,
on the phase space TM xR, by Lagrange equations. Then one can associate
to the considered mechanical system a vector field S on TM x R, which
is called the canonical semispray. All geometric objects of the rheonomic
Finslerian mechanical system one can be derived from S. So we have the
fundamental notion as the nonlinear connection N, the metrical N-linear
connection, etc.

1. THE GEOMETRY OF PHASES SPACE (T'M x R,m, M)

Let be M a smooth C* manifold of finite dimension n, called the space of con-
figurations and (T'M, w, M) be its tangent bundle.The 2n-dimensional manifold
T M is called the phases space of M.

We denote by (2%),i =1,2,...,n, the local coordinates on M and by (z%,y*)
the canonical local coordinates on T'M.

We consider the manifold TM x R and we shall use the differentiable structure
on TM x R as product of the manifold T'M fibered over M with R.

The manifold £ = TM x R is a 2n 4+ 1—dimensional, real manifold. In a
domain of a local chart U x (a,b), the point v = (x,y,t) € E have the local
coordinates (z¢,y,t).

A change of local coordinates on E has the following form:

_oF

1.1 i= gl (et 2?2 g =
(1.1) gt =Mz, 0% a") g = o

¥t =o(t)
: 2zt _ /. do
with rank (@) =nand ¢ := T #0.
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Of course, we may take on R only one chart, that is £ = ¢ or we may consider
the affine change of charts on R, that ist =at+ b, a # 0, a,b € R.

The natural basis of tangent space T, E at the point u € U X (a,b) is given
by

g 0 0
" (5507 31)

The transformation of coordinates (1.1) determines the transformations of the
natural basis as follows

o 017 9 oy 9
0r 02 01 | 02 0
0 oy o o _ 0
oyt Oyt oyi’ Ot ot

(1.3)

where _ _ _ _
oy ozl oy 9*
oyt oxt’ Oxt driozh’
In [4], it is introduced on the manifold E, a vertical distribution V, generated

by n + 1 local vector fields (Biyl’ 8%2, ey %, %)
(1.4) ViueE—-V,CcT,E.
It follows:

V= Vrmu EB‘/E)WL Yu € Ea

where the linear space Vj,, is generated by the vector field % |, and it is an 1-

dimensional linear subspace of the tangent space T, E. Also, the n-dimensional

o) o)

linear space Vj,,, generated by the fields (871’ By %) | is a linear sub-

space of T, F.
On the manifold F there exists a tangent structure, [1],[4],[10],
J: X(E) = x(E),
given by

0 0 0 0 .

J is an integrable structure. [1],[4],[10].
On T'M x R there exists a globally defined vector field
0
Oyt

C =y

It is the Liouville vector field.
A semispray on F is a vector field S € x(F) which has the property

(1.6) JS =C.
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Proposition 1 ([8]). a) Locally a semispray S has the form

0 0 0
1.7 S=y'— —2G" t)— —G° t)~
(L.7) Y o (z,y, )W (@9 t) 5
where G*(x,y,t) and G°(x,y,t) are the coefficients of S.
b) The functions {G*(z,y,t) ,G(x,y,t)} transform under a change of coor-
dinates (1.1), as follows:
oz 8y ; ~
1.8 2Gi = 25-G7 — I G0 =¢'G.
( ) a 6 jy ) ¢
The integrals curves of S are the solutions of the following system of differ-
ential equations

dx? . dyi .
=y'(7); z(7),y(7),t(7)) =0
- =V G 420

7 T G @) y(r),t(r) = 0.

We shall say that S is a dynamical system on the phases manifold TM x R and
the equations (1.9) are the evolution equations of dynamical system S.
When G° = 1, we may take t = 7 and the system (1.9) reduces to the second
order differential equation (SODE):
2. i
dd; +2G"(z(t),y(t),t) = 0;y" = d;t :
In the following, we put ¢t = 3° and we introduce the Greek indices a, 3, . ..
ranging on the set {0,1,2,...,n}.
A non-linear connection in E' is a smooth distribution:

(1.10) N:weE—N,CT,E

which is supplementary to the vertical distribution V:

(1.11) T.E=N,®V,, VYu=(zr,y,t)€E.
The local basis adapted to the descomposition (1.11), is

w2 (52)

where

50 B 9
Szt Ot _Ni (xayvt)ayj N (.Z‘ Y, )6t

(1.13)

(NO(z,y,t), N7 (x,y,t)) are the local coefficients of the non-linear connection
N on E.
The following transformation rule, under (1.1), hold:
- 0™ 0% oyl ox -
1.14 N 9T O Oy 0% Go o
(1.14) ™zt dzm ' Qxt’ Ot o N
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Conversely, a set of local functions (N?(m,y,t),Nij(x,y,t)) satisfying (1.14)
determines %, hence it uniquely determines a non-linear connection N.
The dual basis of (1.12) is (dz¢, 6y*, dt) with
(1.15) Sx' = da'; 5y :dyi—|—N;dxj;5t=dt+Nlexi.
2. RHEONOMIC FINSLER SPACES. PRELIMINARIES

Definition 1. A rheonomic Finsler space is a pair RF" = (M, F(z,y,t)), for
which F': TM x R — R satisfy the following axioms:
(1) F is a positive scalar function on £ = TM x R;
(2) F is a positive 1—homogenous with respect to the variables y¢;
(3) F is differentiable on F = E \ {0} and continuous in the points (x,0,t);
(4) The Hessian of F, with the entries:
1 9%F?
C 20yi0yd
is positively defined on TM x R.

(2.1) 9ij(@,y,t)

F is called the fundamental function and g;;(z,y,t) is the fundamental tensor
of space RF™.

Remark 1. (1) F is a scalar function with respect to (1.1).
(2) gij(z,y,t) is a tensor field with respect to (1.1). It is covariant of order
2, symmetric and nesingular.
(3) The pair (M, L = F?(x,y,t)) is a theonomic Lagrange space.

The geometrical theory of rheonomic Finsler space F™ can be found in the
books [8],[10].

Using Remark 1 we can use the theory of rheonomic Lagrange spaces [1], [5],
[8], for developing the geometry of rheonomic Finsler spaces.

The variational problem for the rheonomic Lagrangian L(z,y,t) = F?(x,y,t)
lead us to the Euler-Lagrange equations:

dQJ)i .

(2.2) W""‘V}‘k(xa%t)ﬁﬁ 9 v =0y =
where 'y;k are the Christoffel symbols of the fundamental tensor g;;(x,y,t).

da? da* inO9nj o dat

Theorem 2. The FEuler-Lagrange equations are equivalent with the Lorentz
equations:

P2t , dxd dzk . dx  da?
2.3 — ¢ ) 2 = Fi(p. 22 )
(2:3) dt? + (@, 1) dt dt 5 () dt’ ) dt
where 5
i ih O9hj
Fj(xayvt):_g .

ot

is the electromagnetic tensor field determined by the fundamental tensor field
Gij -
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The system of equations (2.3) locally determine a dynamical system on the
phase space TM x R. We consider the following functions on TM X R

2G (x,y,t) = Vi (z,y, )y y”
- i O9ni

Nt t) = ih J ]
o(@y,t) =gy

Using the theory of the rheonomic Lagrange spaces it is obtain the canonical
spray S of RF™, as follows

;0 ; ; 0 0
2.4 =y'— — (N} t) + N} Oy — + =
( ) S Yy ozt ( O(xayv )+ k(xvya )y )8yl + ot
with
7 _ 1 a 7 r, S\. 0 _ ]‘agjk k
(25) Nj(x7y7t) - 281/] (’Yrs(zvyvt)y Y )a Nj (.’,E,y,t) - 2 Ot Yy

Equations of evolution (2.3) are the equations of the integral curves of the semis-
pray S.

The semispray S determines the Cartan non-linear connection N, [8], [10],
with the coefficients (N} (z,y,t), N7 (x,y,t)).

Then N is a differentiable distribution on TM X R, supplementary to the
vertical distribution V, i.e.:

(2.6) T,TM x R= N(u) ® V(u),Yu € TM x R.
Let (621. , a%iv %)u be the adapted basis to decomposition (2.6), with
5 0

; 0 0
- _ N/ — _nN© il
52 Dai N/ (z,y,t) ; 2z, y,t) .

The canonical metrical (or Cartan) N— connection CT(N) has the coefficients
(F;k(x, Y, t), C']’Ea(as7 y,t)) given by the generalized Christoffel symbols:

i 1 is 0gsk 0Gjs 09k
(2.8) T = ( e I

(2.7)

59 oxd oxk oxs
; 1 & (Ogsk  Ogjs  Ogjk
2.9 i1 ! _
( ) jk 29 (5‘yJ 5‘yk ays )
; 1 i (0gs0  0Ogs5  Ogjo
2.1 i1 : _ '
(2.10) =39 <8y3 ot oy

3. RHEONOMIC FINSLERIAN MECHANICAL SYSTEMS

The dynamical system of a nonconservative Lagrangian mechanical system
can not be correctly defined without geometrical frameworks of the phases man-
ifold TM. The Lagrangian mechanical systems, their equations and the asso-
ciated dynamical systems were studied in [1],[2],[4],[5],[7],[3],[10], and the Fins-
lerian mechanical systems in [6],[9]. The geometric study of the sclerhonomic
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Finslerian mechanical systems given by equations with the external forces a
priori given was studied in [4], [9].
Definition 2. A rheonomic Finslerian mechanical system is a triple
E = (M5 F2<:L‘7 y7 t)7 U(x7 y? t))

where F'(z,y,t) is the fundamental function of a rheonomic Finsler space RF™ =
(M, F(z,y,t)) and o(z,y,t) = o*(z,y,t) is a vertical vector field called the
external force of 3.

0
oyt

A rheonomic Lagrange space RL™ = (M, L(x,y,t)) reduces to a Finsler space
RF™ = (M, F(x,y,t)) if the Lagrangian function is second order homogeneous
with respect to the velocity coordinates.

A first consequence of the homogeneity condition is the energy of a Finsler
space coincides with the square of the fundamental function of the space:

i OF? i, j
(31) EFQ(x7y7t):y ayl _F2:2F2_F2:F2:gij(xay7t)yyja
and it is verified the next equality
dF? dx? OF?
3.2 — = ——FE;(F* - —,
(3-2) dt dt (F%) ot
where ) ,
OF d (OF
Ej(F?) =— - — ).
(F%) ort dt ( oy* >

Taking into account the variational problem of the integral action of L(z,y, t)
= F?(x,y,t) we introduce the evolution equations of ¥ by:

The evolutions equations of the rheonomic Finslerian mechanical system X
are the following Lagrange equations:

d (0L oL ( Dy dx’
— - )| — — =iz Ty =
dt \ oyt Ozt WEY LY dt
where 0'7;(1'7 Y, t) = gij (ZL’, Y, t)Uj (xa Y, t)
One can write an equivalent form of Lagrange equations (3.3) as a system of
second order differential equations, given by

d?z? - 1,
(3.4) =z T2 @y t) = 5oty ),

(3.3)

where
o = 2G* (2, y,t) + Ni(z,y, 1),
2G (2,y, 1) = 7l (@, 5, )y y* and Ni(w,y,1) = L 2L
The equations (3.4) are called equations of evolution of the mechanical system
Y.. The solutions of these equations are called evolution curves of the mechanical
system .
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With respect to (1.1), the functions I :
(3.5) o (2, y,t) = (2G" (x,y,t) — %Ui(x, y, 1)) + Ni(z,y,t)
transform as

I y ori O

j .
We can prove:

Theorem 3. a) S given by:

0
ozt

- 2f‘l(x7y7t)i + g

(3.6) S=y oy o

is a semispray on TM x R.

b) S is a dynamical system on TM x R depending only on the rheonomic
Finslerian mechanical system . We call this semispray the evolution semispray
of the mechanical system 3.

¢) The integral curves ofg are the evolution curves of X given by (3.3).

We can say:

The geometry of the rheonomic Finslerian mechanical system X is the geom-
etry of the pair (RF™, 5“), where RF™ is a rheonomic Finsler space and S is the
evolution semispray.

The variation of the kinetic energy Ep2 along the evolution curves of the
rheonomic mechanical system X, is given by:

dEp2 OF?
dt ot

The kinetic energy of the Finsler space RF™ is not conserved along the evo-
lution curves of the mechanical system.

Now we can consider some geometric objects determined by the evolution
semispray S and we will refer to these as the geometric objects of the mechanical
system .

a) The non-linear connection N of mechanical system X has the coefficients
(Ni,N9):

=y'oi(z,y,t) —

O A ) §
3.7) N =N 40y = 0y N0 = 2000y

with G = Gi(z,y,t) — 30" (z,y,t).
N is the canonical non-linear connection of mechanical system ..
The adapted basis to the distributions N and V =V,,  V} is given by

5 8 0
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where

5 o o o <o o 1907 8

The Lie brackets of the local vector fields from this basis are as follows:

5 9 T
l(sxaw] gy gy

(3.9)

sy |2 0] 0N o oo 5 o) oNjo 0Npo
B e B S I

0 o _[o o)_[o 9]_,
Sylloyh | |oyilot|  |ot’ot|

where
SNE ST ¥N70 %
(3.11) g = NG ONi g ONG 0N
' T sph g T TR T Sgh Sxd

The dual basis {dx?, Sy, 515} is given by

VI . o . . 1 ao'i Ly “0 )
(3.12) 0y’ = dy' + Njda! — 10y da’; 6t = dt + N; dz*

and we have
d(dz*) = 0;

v . 9

VPR BV . ONI. . ON!., .
(3.13) d(0y") = §thd$ Adz? + ay; oyl A da? + a—t]ét A dz?
S\ 1 0 h J aNJOV h 7 aNJOV J

We can prove the following theorem

Theorem 4. a)The canonical non-linear connection N s integrable if and only
if R;h =0 and R?h =0.

b)The canonical metrical N — connection of the rheonomic mechanical system
¥, CF(N), has the coefficients given by the generalized Christoffel symbols:

i, = Lgin <5ghk L 995 59jk>
J

2 oxd Sxk oxh

S L in (O9nk  Ogjn  Ogjr

14 =g , i
(3 ) ik 29 <By1 + ayk 8yh

i _} in 99;n
0= 99 To
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¢)The h— and v—covariant derivation with respect CT'(N) of Liouville vector
field C = 3¢ 838;" lead us to introduce followings h— and v—deflection tensors of

CT(N):

(3.15) D; = y‘ij; &' = y'|a.

We may also introduce the h— and v—electromagnetic tensors
< 1/ ¢ v v 1/ v

(3.16) Fij =3 (Dij - Dji) fig =5 (dij - dji)

where Dij = girD]T', CZZ‘Q = gird(ry
Let us consider the helicoidal tensor of X:

1 (00 Oo?
1 =2 -2 ).
(317 70T (&yﬂ 8yl>
We obtain fij = 0 and the following theorem

Theorem 5. Between the h—electromagnetic tensor of the rheonomic Finslerian
mechanical system F;;, the h—electromagnetic tensor of the rheonomic Finsler
space F;j and the helicoidal tensor o;; of ¥ the following relation holds:

v 1
(3.18) Fij = Fij + Zaij.
The proof is not difficult.
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