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ON THE ROOTS OF EXPANDING INTEGER
POLYNOMIALS

HORST BRUNOTTE

Abstract. Monic polynomials with integer coefficients all of whose roots
lie outside the closed unit disk are studied. The results are applied to
canonical number systems and Garsia numbers.

1. Introduction

In this short note we consider monic polynomials with integer coefficients
all of whose roots lie outside the closed unit disk of the complex plane. Sev-
eral occurrences of polynomials of this type are mentioned and some results
on their roots are collected. To be more specific, in Section 2 we list some
examples and study the moduli and the arguments of the roots of these poly-
nomials. Our main motivation stems from so-called CNS polynomials which
have been introduced by A. Pethő [21]. Therefore, Section 3 is devoted to
these polynomials and some of their generalizations. Furthermore, we are in-
terested in semi-CNS polynomials defined by P. Burcsi and A. Kovács [9]
and we characterize irreducible semi-CNS polynomials with negative constant
terms.

Clearly, minimal polynomials of algebraic integers with all conjugates larger
than one in modulus belong to the class of polynomials which are dealt with
here. One may think of the number of conjugates of an algebraic number ζ
outside the closed unit disk as the complexity of ζ [15, p. 375]. Algebraic
integers with many conjugates outside the unit disk were investigated in [10]
aiming at generalizations of Pisot-Vijayaraghavan and Salem numbers.

The author is indebted to P. Varga for bringing the paper [24] to his
attention.
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2. Moduli and arguments of the roots of expanding integer
polynomials

Let us denote by E the collection of monic expanding polynomials of posi-
tive degrees with integer coefficients. We recall that a polynomial in C[X] is
expanding if all its roots lie outside the closed unit disk.

Example 1. (i) Every monic nonconstant factor of a CNS polynomial (see
[21] for the definition) belongs to E . This was proved by W. J. Gilbert
[14] for irreducible polynomials and by A. Pethő [21] (cf. the introduc-
tion of [3]) in an unrestricted form1. In these papers it was also shown
that real roots of CNS polynomials are negative and that their constant
terms are at least 2. To put it another way every CNS polynomial is
Ω-stable where Ω = R>0 ∪ {ζ ∈ C : |ζ| ≤ 1} (see [25, p. 81] for the defi-
nition). This fact is tacitly used in the sequel. The reader is referred to
[9] and [11] for search methods for CNS polynomials and to [5] for the
role of CNS polynomials in the theory of dynamical systems.

(ii) Let f be the minimal polynomial of a real algebraic integer larger than 1
all of whose conjugates have modulus larger than 1 and whose norm has
modulus 2. These numbers were first considered by A. Garsia [13] (see
[8], [7] for some examples). Clearly, f belongs to E .

(iii) The reader is referred to [23] for extensive calculations of expanding in-
teger polynomials.

In this section we collect some results on the moduli and the arguments of
the roots of these polynomials in E . Let us denote the multiset of zeros of the
polynomial f ∈ C[X] by Z(f).

Proposition 2. Let f ∈ E have degree d ≥ 2.

(i) For all ζ ∈ Z(f) we have

(1) 1 +
1

2c− 1
< |ζ| < |f(0)|

(
1− 1

2c

)d−1

with

c =
(
|f(0)|

√
d
)d
.

(ii)

min {|ζ| : ζ ∈ Z(f)} ≤ L2(f)
1/d

and

max {|ζ| : ζ ∈ Z(f)} ≥ |f(0)|1/d

where L2(f) denotes the square root of the sum of the squares of the
coefficients of f .

1W. J. Gilbert [14] showed |α| ≥ 1 for every root of an irreducible CNS polynomial.
In the respective part of the proof of [21, Theorem 6.1] the assumption ”without multiple
roots” was not used.



EXPANDING INTEGER POLYNOMIALS 163

Proof. (i) Applying [20, Th. 5] to the roots of the polynomial

sign(f(0))Xdf(1/X)

we find
1

|ζ|
< 1− 1

2c
=

2c− 1

2c

yielding the left inequality of (1) and then the right inequality of (1) by

|f(0)| = |ζ|
∏

η∈Z(f)\{ζ}

|η| > |ζ|
( 2c

2c− 1

)d−1

.

(ii) The left inequality is clear by [16, Theorem 28,4], and the right inequality
is trivial. �

Theorem 3. Let f ∈ E be irreducible of degree d and

R(f) =
∏

ζ∈Z(f)

(1 + |ζ|).

(i) We have

R(f) ≤ 2d−1
(
1 + |f(0)|

)
.

(ii) If all roots of f are real then

R(f) ≥ max
{
G

(5−
√

5)d
2 |f(0)|

√
5−1
2 , G

3d
2 |f(0)|

√
5

5 |f(1)f(−1)|
5−2

√
5

10

}
with G = (1 +

√
5)/2.

Proof. (i) Clear by [12, Lemma 2.1].
(ii) Pick c ∈ [0,

√
5− 2] arbitrarily. By [12, proof of Lemma 4.2] we have

R(f) ≥ G
(3−c)d

2 |f(0)|
√

5
5
+

(5+
√

5)c
10 |f(1)f(−1)|

5−2
√
5

10
−

√
5c

10

= G
3d
2 |f(0)|

√
5

5 |f(1)f(−1)|
5−2

√
5

10

(
|f(0)|

5+
√

5
10

)c(
G

d
2 |f(1)f(−1)|

√
5

10

)−c

and specializing c = 0 and c =
√
5− 2, respectively, yields our assertion. �

Theorem 4. [22, Cor. 1.6] Let f ∈ E and d = deg f ≥ max {H(f), 55} where
H(f) denotes the (naive) height2 of f . If all roots of f are simple then we have∣∣∣∣∣∣1d

∑
ζ∈Z(f)

1

ζ

∣∣∣∣∣∣ ≤ 8

√
log d

d
.

Proof. Apply [22, Cor. 1.6] to the reciprocal polynomial of f . �

2See e.g. [18, p. 83] for the definition.
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A famous result of M. Mignotte [17, p. 83] immediately yields the following
statements where we use Catalan’s constant

C =
∞∑
k=0

(−1)k−1

2k + 1
= 0.916 . . .

Theorem 5. Let f ∈ E be irreducible, d = deg f and Θ ∈ [0, 1]. The number
N of roots of f in the closed angular sector with opening 2πΘ is bounded by

N ≤ 2Θd+

√
2π

C

√
2d
(3
2
log(2d) + 2 log |f(0)|

)
.

Corollary 6. The number of real positive roots of the irreducible polynomial
f ∈ E of degree d does not exceed√

2π

C

√
3d log(2d) + 4d log |f(0)|.

Proof. Let Θ tend to 0 in Theorem 5. �

Corollary 7. Let f ∈ E of degree d be irreducible and assume that all roots of
f are real and of equal sign. Then we have

log |f(0)| ≥ Cd

8π
− 3

4
log(2d).

Proof. Let Z(f) ⊂ R>0, otherwise consider the polynomial (−1)df(−X). By
Corollary 6 we have

d ≤
√

2π

C

√
d(3 log(2d) + 4 log |f(0)|)

which immediately yields the result. �

Finally we state a result on the sum of the roots of an irreducible polynomial
f ∈ E in the case that all roots of f are real and positive.

Theorem 8. Let
∑d

i=0 aiX
i ∈ E be irreducible of degree d ≥ 3 with only real

positive roots. Then

ad−1 < −
(
2.66 +

1

2
(
|a0|

√
d
)d − 1

)
· d.

Proof. Let f =
∑d

i=0 aiX
i and ζ ∈ Z(f). Clearly, the trace of ζ satisfies

(2) Tr(ζ) = −ad−1,

and we can write

(3) f(0) = (−1)dm
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with m ∈ Z≥2. Set

A = {X3 − 5X2 + 6X − 1, X3 − 6X2 + 9X − 3, X3 − 7X2 + 14X − 7,

X4 − 7X3 + 13X2 − 7X + 1, X4 − 7X3 + 14X2 − 8X + 1,

X4 − 9X3 + 27X2 − 31X + 11}.

We distinguish two cases.
Case 1. For all g ∈ A, β ∈ Z(g) and k ∈ N we have ζ 6= β + k.
By [1] we then have

1

d
Tr(ζ) > 1.66 + minZ(f),

and Proposition 2 yields

minZ(f) > 1 +
1

2
(
|a0|

√
d
)d − 1

.

Now, (2) implies our assertion.
Case 2. There exist g ∈ A, β ∈ Z(g) and k ∈ N with ζ = β + k.
Then we have f(X) = g(X − k) for some g ∈ A. First, let

g = X3 − aX2 + bX − c,

hence

f = X3 − (3k + a)X2 + (3k2 + 2ak + b)X − (k3 + ak2 + bk + c),

and

3k + a ≥ 8 :

This is clear for k > 0, and k = 0 is excluded by (3).
Second, let g = X4 − aX3 + bX2 − cX + e, hence

f = X4 − (4k + a)X3 + h,

with some h ∈ Z[X] of degree less than 3, and

4k + a ≥ 11 :

Again, this is clear for k > 0, and k = 0 is excluded by (3) or by the fact that
f does not have a root in [−1, 1]. �

Example 9. (1) The only Garsia number with all conjugates real and pos-
itive is 2: There is only one quadratic Garsia number, namely

√
2 (see

[8, Corollary 3.3])), and this number has a negative conjugate. Let us
now assume that ζ1, . . . , ζd are the real positive conjugates of a Garsia
number of degree d > 2. Then Theorem 8 yields the contradiction

2d ≥ ζ1 + · · ·+ ζd > 2.66d.
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(2) Let f =
∑d

i=0 aiX
i be a monic irreducible factor of a CNS polynomial

of degree d ≥ 3. If

ad−1 ≤ 2.66d or a0 ≤ 1.66d+ 2 or a0 < exp

{
Cd

8π
− 3

4
log(2d)

}
then f has at least one pair of complex conjugate roots: This can easily
be deduced from Theorem 8, [9, Statement 2.1] and Corollary 7.

3. On the roots of semi-CNS polynomials

In this section we deal with semi-CNS polynomial which were introduced by
P. Burcsi and A. Kovács [9]. Further, we mention algebraic integers with
positive finiteness which were defined and studied by S. Akiyama [2]. For the
convenience of the reader we recall the definitions in a form slightly adapted
to our purposes here.

Definition 10. (1) [9, Definition 3.2] The polynomial f ∈ Z[X] is called
a semi-CNS polynomial if f is monic with f(0) 6= 0 and if for all
p, q ∈ D[X] there exists some r ∈ D[X] such that p + q ≡ r (mod f).
Here we set D = [0, |f(0)| − 1] ∩ Z.

(2) [2, p. 4] Let ζ be a nonzero algebraic integer. We say that ζ has
positive finiteness if for all q ∈ N[X] there is some r ∈ D[X] such that
q(ζ) = r(ζ). Here we set D = [0, |N(ζ)| − 1] ∩ Z where N(ζ) denotes
the absolute norm of ζ.

In the following theorem we exhibit the relations between CNS and semi-
CNS polynomials and algebraic integers with finiteness property. The assertion
that semi-CNS polynomials belong to E was stated in [24], and for the sake
of completeness we include a proof here. Further, Theorem 11 (ii) essentially
expresses [2, Theorem 2] in our language relating semi-CNS polynomials to the
notion of positive finiteness. In the last part of the theorem we characterize
irreducible semi-CNS polynomials with negative constant terms. We point out
that P. Varga [24] achieved an analogous result for arbitrary cubic semi-CNS
polynomials.

Theorem 11. Let f ∈ Z[X].

(i) If f is a semi-CNS polynomial with

(4) |f(0)| > 1

then f belongs to E. Furthermore, for every q ∈ N[X] there is some
polynomial

r ∈
(
[0, |f(0)| − 1] ∩ Z

)
[X]

such that q ≡ r (mod f).
(ii) Let f be the minimal polynomial of an algebraic integer ζ 6= 0. Then ζ

has positive finiteness if and only if f is a semi-CNS polynomial with (4).
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(iii) f is a CNS polynomial if and only if f is a semi-CNS polynomial with
f(0) > 1 and −1 ≡ r (mod f) for some r ∈ {0, 1, . . . , f(0)− 1} [X].

(iv) Let f be irreducible with f(0) < −1. Then f is a semi-CNS polynomial
if and only if f satisfies the following two conditions.
(a) f is monic and f(1) < 0.
(b) Apart from the constant term all coefficients of f are nonnegative.

Proof. Let m = |f(0)| and D = {0, 1, . . . ,m− 1}.
(i) Observing 1 ∈ D we see that for every k ∈ N there is some r ∈ D[X] such
that k ≡ r (mod f). Let q ∈ N[X]. By the semi-CNS property and induction
on the degree of q we easily find r ∈ D[X] such that q ≡ r (mod f). Thus we
have shown our second assertion.

As m > 1 there must be some β ∈ Z(f) with |β| > 1, and for all k ∈ N>0

we find a polynomial Dk ∈ D[X] \ {0} of degree nk such that

(5) km ≡ Dk (mod f).

We observe that the sequence (nk) is unbounded: Suppose to the contrary
that nk ≤ N for all k. Then the finite set{

N∑
i=0

diX
i : d0, . . . , dN ∈ D

}
contains all polynomials Dk. Hence there exist k 6= ` such that Dk = D`. But
then (5) yields

km = Dk(β) = D`(β) = `m

which is absurd.
Now, let us assume that there is some ζ ∈ Z(f) with |ζ| ≤ 1. Write

Dk =

nk∑
i=0

dk,iX
i,

hence by (5) we have
nk∑
i=0

dk,i
(
βi − ζ i

)
= 0

and further

0 =

∣∣∣∣∣
nk∑
i=0

dk,i
dk,nk

(
βi − ζ i

)∣∣∣∣∣ ≥ |βnk − ζnk | −
nk−1∑
i=0

dk,i
dk,nk

∣∣βi − ζ i
∣∣ .

Thus we have

|β|nk − 1 ≤ |β|nk − |ζ|nk = ||β|nk − |ζ|nk | ≤ |βnk − ζnk |

≤
nk−1∑
i=0

dk,i
dk,nk

∣∣βi − ζ i
∣∣ ≤ (m− 1)

nk−1∑
i=0

(
|β|i + 1

)
= (m− 1)

(
nk +

|β|nk − 1

|β| − 1

)
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which leads to(
|β|nk − 1

)
(|β| − 1) ≤ (m− 1)

(
nk(|β| − 1) + |β|nk − 1

)
which is impossible for large nk.
(ii) If ζ has positive finiteness then by [2, proof of Theorem 2] we have f ∈ E ,
hence (4). Let p, q ∈ D[X]. As D[X] ⊂ N[X] and f is irreducible there is
some r ∈ D[X] such that p + q ≡ r (mod f). Therefore, f is a semi-CNS
polynomial. The converse implication is clear by (i).
(iii) As pointed out in Example 1 (i) every CNS polynomial satisfies the prop-
erties mentioned above. To show the converse implication we proceed similarly
as in the proof of the second assertion of (i).
(iv) Let f is a semi-CNS polynomial, hence f is monic by definition. Clearly, f
cannot be a CNS polynomial by (iii). Let ζ ∈ Z(f), thus by (ii) ζ has positive
finiteness and by [2, Theorem 2] we find

f =
d∑

i=0

aiX
i

with a1, . . . , ad ≥ 0 and a1 + · · ·+ ad < −a0 which implies f(1) < 0.
Now we turn to the converse. By [3, Lemma 1] we know f ∈ E , and an

application of [9, Theorem 3.4] completes the proof. �
A result of M. Mignotte and M. Waldschmidt [19] immediately yields:

Theorem 12. Let ζ be a root of an irreducible semi-CNS polynomial f of
degree d ≥ 2 with |f(0)| > 1. Then we have

|ζ − 1| ≥ 1

|f(0)|3
√
d log d

.

Proof. Denoting by M(ζ) the Mahler measure of ζ we have

|ζ − 1| ≥ max {2,M(ζ)}−3
√
d log d

by [19], and Theorem 11 (i) yields M(ζ) = |f(0)|. �
We recall that by a result of E. Meissner – A. Durand [6, Théorème

2] for every polynomial f ∈ R[X] without nonnegative roots there exists a
polynomial g ∈ R[X] \ {0} such that the product fg admits only nonneg-
ative coefficients. The following theorem is an immediate consequence of a
result of J.-P. Borel [6, Corollaire, p. 101]. It shows that the roots of CNS
polynomials are relatively far away from the positive real axis.

Theorem 13. Let ζ be a root of the CNS polynomial f . Then we have

|arg ζ| ≥ π

deg(f) + δ0(f)

where δ0(f) denotes the minimal degree of a real polynomial g 6= 0 such that
the product fg admits only nonnegative coefficients.
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Proof. Let g ∈ R[X] \ {0} have minimal degree such that fg admits only
nonnegative coefficients and assume

|arg ζ| < π

deg(f) + δ0(f)
=

π

deg(f) + deg(g)
=

π

deg(fg)
.

Then (fg)(ζ) 6= 0 by [6, Theorem 4] which contradicts our hypothesis. �
Corollary 14. Let f be a CNS polynomial with only nonnegative coefficients.
For each root ζ of f we have

|arg(ζ)| ≥ π

deg(f)
.

We conclude with an illustration of our results by a simple example.

Example 15. Let f =
∑d

i=0 aiX
i ∈ Z[X] with d ≥ 3, ad = 1, a1 < 0, a2 ≥

−a1, a3, . . . , ad−1 ≥ 0 and

a0 >
d∑

i=2

ai − a1.

By [3, Lemma 1] we know f ∈ E , and in view of

d∑
i=1

ai ≥
d∑

i=3

ai > 0

f is a CNS polynomial by [4, Theorem 3.2]. Observing that the polynomial
(X + 1) · f has only nonnegative coefficients we have δ0(f) = 1, thus by
Theorem 13 we have

|arg ζ| ≥ π

d+ 1
for each ζ ∈ Z(f). If a0 is prime then f is irreducible by [18, Proposition 2.6.1],
hence f has at most

min

{
v,

√
2π

C

√
3d log(2d) + 4d log a0

}
real roots by [21, Theorem 6.1], Corollary 6 and Descartes’s rule of signs (see
e. g. [26]); here v denotes the number of variations in sign in the sequence
−a1, a2,−a3, . . . , (−1)d−1ad−1, (−1)d.
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