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SOME GENERAL OSTROWSKI TYPE INEQUALITIES
ZHENG LIU

ABSTRACT. A new general Ostrowski type inequality for functions whose
(n — 1)th derivatives are continuous functions of bounded variation is es-
tablished. Some special cases are discussed.

1. INTRODUCTION

In 2001, J. Pecari¢ and S. Varosanec in [4] have proved the following Simpson
type inequality involving bounded variation:

Theorem 1. Let f: [a,b] — R be such that f®~V(n > 1) is a continuous
function of bounded variation on [a,b]. Then

(1)

b —a a
[ rterae =T @) 452 + o)

Y VG - )

k=5, k is odd

< Culb—a)"\/(f"),

1 1 1 1 n—3
where C1 = 3, Cy = 55, O3 = 557 and C,, = ;252 n > 4.

In 2008, the author in [2] has proved the following Ostrowski type inequality
involving bounded variation:
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Theorem 2. Let f: [a,b] — R be such that f' is a continuous function of
bounded variation on |a,b]. Then for any x € [a,b] and 0 € [0, 1] we have

v-a [1- 07 +e" I g )|

+[4(b — 2)* = 46(b — a) (b — 2) = 0*(b — )*[| \/ (/'

fora<uxz < “T*b with 0 € [0,1], and

/f Bdt — (b—a)(1 - 0)f(z)

+e+f” (1-0)(z — 307
< %6[4(20 —a)? —40(b —a)(x —a) + 6*(b — a)?

+ |4(x — a)* = 46(b — a)(x — a) — 63 (b — )’ \/ (")

a

Jor “£2 < < b with 6 € [0, 1].

The purpose of this paper is to derive further generalization of the above
inequalities which will also lead to some interesting special cases.

2. THE RESULTS

We need the following result similar to that given by C. E. M. Pearce et al.
in [3]:

Lemma 1. Let {P,},en and {Qp}nen be two sequences of harmonic polyno-
maals, i.e.,
Pl(t) = P,1(t), P(t)=1, teR,
and
Qn(t) = Qu-a(t), Qo(t) =1, teR.
Set

. Pn(t), te [a7 :C],
Sn(t, @) = {Qn(t), te (b,
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Then we have the identity

(4) <—1>"/abs<tx A /f

+ 3 (DMREOFEV0) + (Pi(e) = Qu()) f* V(@) = Pila) f* D (a)]
k=1
provided that f: [a,b] — R is such that f™ Y is a continuous function of
bounded variation on [a,b).

Proof. Observe that S,,(t, x) is a piecewise continuous function of ¢ on [a, b], the
Riemann-Stieltjes integral in the left-hand side of (4) is guaranteed to exist.
Then (4) is not difficult to find by using the integration by parts formula for
Riemann-Stieltjes integrals. OJ
Lemma 2. Let f: [a,b] — R be such that =Y is a continuous function of
bounded variation on [a,b]. Then for all x € [a,b] and any 6 € [0, 1] we have
the identity

6) (<1 [ Kofti2,0)dr*D () =
b

b —a
[ rteyae= 5 65 @) + 201 - 0)f() + 05 0)

n—1 (_1>k<x o a)k;+1 4 (b _ I)k—i—l
-2 { (k+1)!

k=1

k k i
00 = (=D —a) + b= D) 19
2k!
where
(o) _ O0-at-a)™ g g,

6 Kn tyx; 0 = ! n z(n_l)!n*
(6) ( ) { (t:ll!?) +e(b—2a()n<t_—ll;3 = t € (z,b].

Proof. The proof is immediate by using the identity (4) in Lemma 1. O

Theorem 3. Let f: [a,b] — R be such that {7V is a continuous function of
bounded variation on |a,b]. Then for any x € [a,b] and 0 € [0, 1] we have

“[efw) +2(1—0)f(z) + 0 (b)]

a

JZ o a)k-l—l + (b _ I)k-i—l
_Z{ (k+1)!

0(b—a)[(—=1)*(z — a)* + (b — z)* &
_ 00— a)f ><2k! )+ H}f()(a:)

< L,(0,2) \/(1"),
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where
(8) In(0,7)
x—b)" 0(b—a)(z—b)"" 1| (n—1)""10"(b—a)” a
B max{|( nf’) 4+ o 2()7571;’!) I (n—1) 7mn(b ) 1, agxg%b,
- z—a)” 0(b—a)(z—a)"1 n—1)""197(b—a)" a
max{|{ n!) _ o 2()7(171)!) |, (=L mn(b Y et < b,
foro<(n—1)0 <1, and
((n—1)""10"(b—a)"
nl2n
zfa <z < b— (b — a)
) O(b—a)(z— a" 1 e(b a)(z—b)"!
(9) [n(e,x) = maX{.l n! (n1 2(n— 1)' | | 2(n—1)! |},
sz—T(b )<x<a+ Lo — a),
(n—1)""10"(b—a)"
nl2m ’
\ ifa+@(b—a)§x§b

for1<(n—1)8 <2, and
(10) 1,.(0,x)

. { (r—a)" 0b-a)(z—a)!
n! 2(n —1)!

fora <z <bwith (n—1)0 > 2.

(x=0)"  O(b—a)(x—"0b)""
n! 2(n —1)!

Y

"

Proof. Using the identity (5) in Lemma 2, we can easily derive that

) | [ #@de— 250500 + 201 - 0)7(w) + 61 0)
- n—1 {(_Uk(x . a)k+1 + (b _ x)k+1
— (k+1)!
O(b—a)[(—=1)*(z —a)k + (b— x)* ’ 1
_0(b—a)[( )(%! )"+ ( )]}f(k \a/f(n ).
where
(12) I,(0,z) = tlélaax | K, (t,z,0).
For brevity, we put
P,(t):=(t—a)" 't —a— %e(b —a)], te€la,bl,
Qut) =t —b)" 't —b+ %e(b —a)], tE€ la,b],

where 6 € [0,1]. It is clear that both P,(t) and @Q,(t) have only one zero in
(a,b) for 0 < nf < 2. Denote t; = a+ 2(b—a) and t, =b—2(b—a). It is
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easy to find that a < t; < C‘TH’ <ty < bif and only if 0 < nf < 1 as well as
a <ty <<ty <bifandonlyif 1 <nf <2.

By differentiation, we get
(n—1)0

P(t):=(t—a)"*[t—a— 5

(b—a)], tE€la,b],

1)0

Q) :=({t—-b)"2[t—b+ (T(b— a)l, te€ab],

where 6 € [0,1]. It is clear that both P! (t) and Q). (t) have only one zero in
(a,b) for 0 < (n—1)8 < 2. Denote t] = a—l—( Y9 (b—a) and ¢} = b— =10 1 9 (h—a).
It is easy to find that a <t} < “*b <ts<b 1f and only if 0 < (n — 1)9 <1 as
Wellasagtgg“TH’St’{gbifandonlyiflg(n—1)9§2.

By differential calculus, it is easy to find that ¢} is a minimum point of P, (t)
with

(n—1)"10"(b — a)”
13 P,(t) = — ,
as well as ¢} is a minimum point of @, (t) for an even n and a maximum point

of @Q,(t) for an odd n > 1 with
(n—1)"71"(b —a)”

14 5) = (—1)"!
(1) Qulty) = (-1) -
From (6), (13) and (14) it is not difficult to find that

(15) max |K,(t,x,0)]|
te[a,b]

{max{|($;?)n + 0(b—a)(z—b)"~ 1‘ (n—1)"~167(b— a)"}’ a<x< a_+b,

ots 2(n—1)! L n'12g ,
z—a)" —a)(x—a)™~ n—1)" "(b—a)™ a+ !
max{|( n!) ( 2()75—1)!) |’ : ) : ) }’ : <z <— )

nl2n

for 0 < (n—1)0 <1, and

(16) max |K,(t,z,0)]
t€(a,b]
( (n—1)""10™(b—a)™

nlan I

ifa<z<b-— n21)9(b_ a),
xa" __ f(b—a)(z—a) z—b)" O(b—a)(z—b)"~1
B max{ | £=% ( 2(),5_1)! ‘ e 4 & 2()75—1)!) I

ﬁb—m;ww—a%<x<a+@§ﬁ@—ah
(n—1)""10"(b—a)"
nlan

\ if @ + (210 De(b—a)ﬁxﬁb
for 1 < (n—1)0 <2, and

(17) max | K, (t, z,0)]

tela,b]
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n n—1
:max{ (x—a)" 0(0b—a)(x—a) }
n! 2(n —1)! ’
for a <z < b with (n —1)6 > 2.
Consequently, the inequality (7) with (8), (9) and (10) follows from (11),
(12) and (15)-(17). O

(x—=0)" 0(b—a)(z—0b"!
T 2o

Y

Remark 1. It is clear that Theorem 2 is just the special case n = 2 of Theorem
3.

Corollary 1. Let the assumptions of Theorem 3 hold. Then for alln > 1 and
x € [a,b] we have midpoint type inequalities

b n—1 k+1 k k+1
b—ux +(=D*z—a
(18) / f(t)dt—(b—a)f(x)—z {( ) (k<+ 13‘( ) ] F®) (z)
“ k=1 :

’ o) < g < atb

< V(") x { S Ly e

\a/ ( n!) ) Tb <z < b
Proof. Letting @ = 0 in (7) with (8) readily produces the result (18). O

Remark 2. For n =1, it is clear that (18) can be written as

]

/ f(t)dt — (b— a) ()

1
< |:§(b—a)-‘r ‘x—
which was first appeared in [1].

Corollary 2. Let the assumptions of Theorem 3 hold. Then for n = 1,2 we
have trapezoid inequalities

b
(19) “f(a) + FO) \ V)
and
b —a —a)?\
20 rai ="+ )| < SV

and for n > 3 we have trapezoid type inequalities

21 f dt [ Z{ x_a)/:i—-l_;_.(b )k—i—l
(b—a Dz —a)k + (b— )k b »
- = )(2k! s )]}f () _\a/(f(" )%
X max{ (—a (b—a( —a)" | [(=b)" (b—a)(x—b)"! }
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Proof. Letting 6 = 1 in (7) with (8), (9) and (10) readily produces the results
(19)-(21). O

Corollary 3. Let the assumptions of Theorem 3 hold. Then forn =1,2,3,4,5,6,
we have Simpson type inequalities

b h—
@ |[ roa- "5t + 41 + 0]
b a+5b atb
= \/(f> 8 {xG Bng.: gifézb:
’ b b— b
@) |[ s — "2 +ar) + o)+ 2w - Y
b 1/a+b 2 b—a (a+b (b—a)? a+b
, (52 —2)? + 54(2 — ) + , a<z <42
Vo (T L I
b b—a
o) | [ =" +as@) + 1)
Q(b—a) a+b ’ b—a a+b ? "
e (e PR 2)]”()‘
(4550 — o)t 4 (e ot
R -0+ U
b +|(;%()“%" — o)+ *’1—2@()%" —x)?
" + —a2(a_+b_x)_ —a3|’ ifa§x§“—+b,
< \a/(f ) X 1_12(;8_2(1743;)3 + b1—_2a(x618;z%b)2 ’
+ gl (o - oty 4 Loty
[ — 52" + (o — 52
| +05 (z — o) — Gy, if st < <b,
b — b
@) | [ f0d =" @+ g+ o+ 205 (o= )
b— b\> b— b\’
— 3a(_a—2i_>f//()+ ga(_a;—)fl//()‘
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(@) +47) + £ + 20 Do T

b h— b
3a(fﬁ a;r )2 f" () + ga(a:—a;r )3 ()
(b—a)5 b—a a+b4 ()
gy T W)@
[ i ifa<z<a+ 2t
: oo — b2 (a — o)1
vamx<t$wiﬁ%ﬁgff | |
' Hot(r =)t = Sl R <w <
\ (l;)ggzg ) Zf%% << b7
b b a
F(t)dt — ——=[f(a) + 4f (x) + f(b)]
2(b—a a+b b—a a+b\2
(3 )( T2 )f’(x)— 2 (a:— : >f”(x)
b—a a+b\® ,, (b—a)P® b-a ath "
9(_2 f()[2880_36 z———) 1f7(2)
° 5
b= oo 0Dy boaf ath FO)(2)
2880 2 180 :
’%7 ifa§$§a+5a6+b,
(b—a)b (b—a)* “ (b—a)? .
(5) 46080 2304 (z — %b); ., 576 (z — #)4
S A anrb)6 + 4[5
625(b—a)® -
\Mu Zf 4%5[] S T S b

and forn > 7 with a < x < b we have Simpson type inequalities

b b—a

(t) dt — [f(a) +4f(x) + f(b)]

-2

RI{PDWx—®“4+@—xV“

p (k+1)!
b_a)[<_1) ('IG; Cl) + (b—{E) ]}f(k)(l‘> < \a/(]c(n—l))><
X { (r—a)" (-a)@z—a)" ' [(@=b0"  (b-a)(z-0b"" }
n! 6(n—1)! on! 6(n—1)! '
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Proof. Letting § = % in (7) with (8), (9) and (10) readily produces the results
(22)-(28). 0

Corollary 4. Let the assumptions of Theorem 3 hold. Then forn =1,2,3,4,
we have averaged midpoint-trapezoid type inequalities

b b—a
@) |[ rd - 1@ 4250 + 10)
b at3b ifa < p < otb
< 0 r, ifa<z <57,
_Y(f)x{x—B“:b, ifer<ash,
b b— b—a a+b
(30) ft)dt — ——I[f(a) +2f(z) + fF(O)] + — (w— 5 >f’( )’
b 15 - @) IR — ) £ O
<\/<f/)>< |zll(aTb_‘r2+bTa(aT+b_x)_z6Zi |7 a§x<a7+b7
Vgt 4 e — o) ¢
4 2 8 2 64 2
b b—a —a a+b
(31) ft)dt — ——I[f(a) +2f(z) + fF(O)] + — (w— 5 >f’(x)
b—a)® b—a a+b\’| , b—a)\"), .,
| b (:c— ! ) | < CEN g, a<a<o
and
b b—a b—a a+b\ ,
(32) f#)dt — ——[f(a) +2f(z) + f(O)] + — (x— 5 )f(fc)
(b—a)® b-a a+b\?| ., (b — a)? a+b
T 4 \"7 2 ') 8 \"T 2
b—a a+b\* "
-5t (1) f<x>|
275;2)47 a<z<a+ et
" U + U555 — ot
< " %
SYUDX) Bap B g, o<
i s <<y
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and for n > 5 with a < x < b we have averaged midpoint-trapezoid type
inequalities

(33) /af B dt — =—[f(a) + 2/ (x) + (b))

S ,Z’TJ —

- -l 0+ o) } 0] < \i/< 1)
e e e (=

Proof. Letting § = L in (7) with (8), (9) and (10) readily produces the results
(29)-(33). 0

Corollary 5. Let the assumptions of Theorem 3 hold. Then for any 6 € [0, 1]
we have

swyae =25 osta v - () + o5

(23]

-y [1—(n+ 1D)OJ(b — a)%“f(zk) (a_er)

(34)

a

192k
- (2k+1)12 2
b max{|1—né|,(n—1)""10"}(b—a
a = (;!))(g;a) ; n>g+l

where [”T_l] denotes the integer part of ”T_l

Proof. Letting x = %2 in (7) with (8), (9) and (10) readily produces the result
(34). 0O

Remark 3. If we take § = 0 in (34), we get the midpoint type inequality
[251]

cboof \b/(f(”‘”»

nl2n

a
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If we take @ = 1 in (34), we get the trapezoid type inequality

b —a [n 1] 2k+1 a
@) | [ sde =500+ F0]+ Y uf@k)( +b)
¢ k=1

2k + 1)122k-1 2

b
e =1, n=1,
< \/(f( V) x { (r—2)(b—a)" 0> 9

nl2n+l

If we take 0 = % in (34), we get the Simpson type inequality

a+b
(37) [f(a)+4f( : )+f(b)}
)(b— a)Q"“‘Jrl a-+b
2k (21 7
3 M (221)
%a? n - b
b (b—a)?
) n= 27
< \/(f(n_l)) X Qo)
‘ YR
(n!)Qn ) Z 4

which is just equal to (1) in Theorem 1.
If we take 0 =

n (34), we get the averaged midpoint-trapezoid type
inequality

(38) x)d

(2k — 1)(b — a)**!
(2K)
+ Z (2k + 1)122k+1 f
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Theorem 4. Let f: [a,b] — R be such that f™=Y is absolutely continuous on
[a,b]. Then for any x € [a,b] and 6 € [0, 1] we have

(6 dt — 22105 (@) + 20— 0) () + 670)
~1 {(—1)k(fb o a)k+1 + (b o l,)kJrl
(k+ 1)

(b — a)[(~1) (:;k—' a)* + (b — x)"] } F8) ()

T

3

k=1

< In('gv I)Hf(n)“l?

where 1,,(0,z) is as given in (8)-(10) and ||f™], = f; | ™) (t)|dt is the usual
Lebesgue norm on Li[a, b).

Proof. Tt is immediate from Theorem 3, since if £~ is absolutely continuous
on [a,b] then we certainly have

b

\ ) = (15 0

a

Theorem 5. Let f: [a,b] — R be such that f"~Y) is L-Lipschitzian on [a,b].
Then for any x € [a,b] and 6 € [0, 1] we have

b —a
[ rteyae =5 5@) + 201 - 0)f() + 05 0)

> { (=D)*z = )" + (b= 2)*™
2 (k+1)!

S ey

(39)

where 1,(0, ) is as given in (8)-(10).

Proof. Tt is immediate from Theorem 3, since if f™*~Y is L-Lipschitzian on
[a, b] then we certainly have

b

V(") = Lb - a). m

a
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Theorem 6. Let f: [a,b] — R be such that f"~Y is monotonic on [a,b].
Then for any x € [a, b and 6 € [0,1] we have

(40)

fydi - a[Gf(a) +2(1 = 0)f(x) + 0 (b)]

a

—a)**t + (b — )
B Z { (k+1)!

< 1(0,2) 70 () = F 7 (a)],
where I,,(0,x) is as given in (8)-(10).

Proof. Tt is immediate from Theorem 3, since if f("~! is monotonic on [a, b]
then we certainly have

b

V() = (£ () — fD(a). O

a

Remark 4. It should be noticed that we can also get some further results
similar to Corollaries 1-5 for Theorem 4-6 and so are omitted.
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