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REST BOUNDED SECOND VARIATION SEQUENCES AND
p-TH POWER INTEGRABILITY OF SOME FUNCTIONS
RELATED TO SUMS OF FORMAL TRIGONOMETRIC
SERIES

XHEVAT Z. KRASNIQI

ABSTRACT. In this paper we have studied p-th power integrability of func-
tions sin zg(z) and sinz f (z) with a weight, where g(x) and f(x) denote the
formal sum functions of sine and cosine trigonometric series respectively.
This study may be taken as a continuation for some recent foregoings re-
sults proven by L. Leindler [3] and S. Tikhonov [7] employing the so-called
rest bounded second variation sequences.

1. INTRODUCTION

Many authors have studied the integrability of the formal series

(1.1) g(x) = i A Sinna
n=1

and

(1.2) f(z) = Z)\n cos nx
n=1

imposing certain conditions on the coefficients \,,.

Some classical results of this type are obtained by Young-Boas-Haywood
(see [1], [2], [8]) which deal with above mentioned trigonometric series whose
coefficients are monotone decreasing.

Theorem 1.1. Let A\, [ 0. If 0 < «a < 2, then

r %(z) € L(0,7) <~ Zn‘kl)\n < 00.

n=1
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If0 < a <1, then

27 f(x) € L(0,7) <= )Y n®"'A, < 0.
n=1

The monotonicity condition on the sequence {\,} was replaced by
L. Leindler [3] to a more general ones {\,} € Rf BV'S.

A sequence ¢ := {¢,} of positive numbers tending to zero is of rest bounded
variation, or briefly R4 BV'S, if it possesses the property
(1.3) D e = enga| < K(c)em
for all natural numbers m, where K (c) is a constant depending only on c.

His theorems on integrability of the sum functions of the sine and the cosine
trigonometric series state as follows:

Theorem 1.2. Suppose that {\,} € REBVS, 1 <p<oo, and1/p—1<0<
1/p. Then

:E_p9|¢(x)|p e L(0,7) < an9+p—2>\z < o0,
n=1

where (x) represents either f(z) or g(z).

Later on, J. Németh [4] considered weight functions more general than power
one and obtained some sufficient conditions for the integrability of the sine
series with such weights. Namely, he proved:

Theorem 1.3. Suppose that {\,} € R{BVS and the sequence v := {v,}
satisfies the condition: there exists an € > 0 such that the sequence {y,n >}
15 almost decreasing. Then

3 %An < 00 = (2)g(z) € L(0, 7).
n=1

A sequence v := {v,} of positive terms will be called almost increasing
(decreasing) if there exists a constant C' := C(y) > 1 such that

CY > Ym (Y < Cvm)

holds for any n > m.
Here and in the sequel, a function y(x) is defined by the sequence v in the
following way: (;—r) ‘= Yn, n € N and there exist positive constants C; and

Cy such that C1vy, < y(z) < Cyypyq for x € ( us £>‘

n+l’n
In 2005 S. Tikhonov [7] has proved two theorems providing necessary and
sufficient conditions for the p—th power integrability of the sums of sine and
cosine series with weight . His results refine the assertions of Theorems 1.2-
1.3 which show that such conditions depend on the behavior of the sequence

-
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We present Tikhonov’s results below.

Theorem 1.4. Suppose that {\,} € RfBVS and 1 < p < co.

(A) If the sequence {7, } satisfies the condition: there exists an e, > 0 such
that the sequence {~,n P11} is almost decreasing, then the condition

(1.4) Z%np—z)\z < 00
n=1
is sufficient for the validity of the condition
(1.5) v(2)|g(@)|P € L(0, 7).

(B) If the sequence {~,} satisfies the condition: there exists an e > 0 such
that the sequence {v,n?~17°2} is almost increasing, then the condition
(1.4) is necessary for the validity of condition (1.5).

Theorem 1.5. Suppose that {\,} € R BVS and 1 < p < co.

(A) If the sequence {7, } satisfies the condition: there exists an €3 > 0 such
that the sequence {y,n 1753} is almost decreasing, then the condition

(1.6) nynnp’z)\ﬁ < 00

n=1
is sufficient for the validity of the inclusion
(1.7) v(@)|f(@)[” € L0, 7).
(B) If the sequence {v,} satisfies the condition: there exists an €4 > 0 such

that the sequence {v,n?~17%4} is almost increasing, then the condition
(1.6) is necessary for the validity of condition (1.7).

In 2009 B. Szal [6] introduced a new class of sequences as follows.

Definition 1.1. A sequence « := {¢;} of nonnegative numbers tending to
zero is called of Rest Bounded Second Variation sequence, or briefly {c¢;} €
RBSV S, if it has the property

oo
> ek = cral < K(a)em
k=m

for all natural numbers m, where K («) is positive, depending only on sequence
{ck}, and we assume it to be bounded.

Before we state the purpose of this paper we give the following definition:

Definition 1.2. A sequence « := {¢;} of nonnegative numbers tending to
zero is called of Mean Rest Bounded Second Variation sequence, or briefly
{cx} € MRBSV S, if it has the property

e’} 2m—1

K(«a
Z Elck — cryo| < (a) Z klck — crial
k=m

m
k=2m
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for all natural numbers m, where K («) is positive, depending only on sequence
{ck}, and we assume it to be bounded.

The aim of this paper is to extend Tikhonov’s results ( as well as Leindler’s
result) so that the sequence {\,} belongs the class MRBSV'S or RBSV S
which is a wider one than RBV'S class. To achieve this goal we need some
helpful statements given in next section.

Closing this section we shall assume, throughout this paper, that A\ = Ay =
0.

2. HELPFUL LEMMAS

We shall use the following lemmas for the proof of the main results.
Lemma 2.1 ([5]). Let A\, >0 and a,, > 0. Then

Z (ch) SppiA;‘paz (iA) , p>1
n=1 v=n

v=1

and
%S 1S9 p %) n p
(L) sy (Yn) ez
n=1 v=n n=1 v=1

Lemma 2.2. The following representations of g(x) and f(x) hold true:

2sinzg(zr) = — Z(Ak — Ae2) cos(k + 1)z
k=1
and .
2sinz f(z) = Z()\k — Ngt2) sin(k + 1)z,
k=1

where we have assumed that A\; = Ay = 0.

Proof. We start from obvious equality

1 o
g A\ cos kx = g (A + Apy1) coskx + 3 g (Ak — Agy1) cos kx,
2o k=1

or

oo
Z A, cos kx
k=1

1 & 1 = 1 =
=5 Z()‘k + Apy1) coskx — 5 cos X Z A, cos kx — 3 sinx Z A sin kx.
k=1 k=2 k=2

N | —

Thus we have

1 (o]
w Z A cos kx
k=2

1 & 1
= 5; Ak + Aer1) coskaz—ismx;)\ksmka:——)\lcosm
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or since )\1 = (0 we obtain

1 o0
(2.1) Z)\kcoskx —{Z)\k+)\k+1)coskx—sme)\ksmkaﬁ}
k=2

2cos? Z
-1 k=2

Slmllarly as above we obtain

1 , 1 .
Z Mg sinkz = Z()\k + Apy1) sinkzx + 3 ;(Ak — A1) sin kz,

k 1
or
I & , I & _
5 Z A\ sin kx = 5 Z()\k + Apy1) sin kx
k=1 k=1
(2.2) Deose S hpsinke + Ssine 3 Ay cosk
) ——CoST sinkxr + —sinx cos kzx.
2 =2 ' 2 k=2 '
Inserting (2.1) into (2.2) we have (A\; = 0)
3 Z Apsinkx = 3 Z(Ak + Apy1) sinkz — 3 COS T Z A sin kx
k=1 k=1 k=2
sinf & sin £ sin 7 —
2 A+ A kx — —2—— A sin k
+2cos§k:1( g+ Akr1) cos kx Tcos T z:: & Sin kx
] — sin? &
=5 Z()\k + A1) sinka + 5 oos Z()\k + Apy1) cos kx
k=1 2 k=1

cosa: sin § sinx
) E A, sin kx

2 2(305 5
or
i)\k sin kx = L i()\k—i—)\kﬂ)sin (k+ 1) x
P 2cos 3 — 2

Applying the summation by parts to above equality and taking into account
that A\ = Ay = 0 we obtain

k
1
ZQsin <i+§>xs z =1—cos(k+1)x

2
=0
we get
; A\ sinkz = — ey Zl()\k — Agt2) cos(k + 1)z,
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which clearly proves the first part of this lemma.
For the proof of the second part of this lemma, it is enough to put n =1 to
the equality (3.10), see page 167 of [6]. O

3. MAIN RESULTS

Our first result deals with p—th power integrability of the function sin x f (x)
with weight ~.

Theorem 3.1. Suppose that 1 < p < oo. Let {\,} € MRBSVS. If the
sequence {7} satisfies the condition: there exists an €1 > 0 such that the
sequence {y,n P11} is almost decreasing, then the condition

(3.1) Z VP Ap — Apgalf < 00

n=1

15 sufficient for the validity of the condition
(3.2) v(z)|sinz f(x)P € L(0, 7).

Proof. For the proof we shall use the idea of Tikhonov which he used for his

results. For this, let x € (nL-i-l’ ﬂ Based on Lemma 2.2 and applying the

summation by parts we obtain
D (k= Aega) sin(k + D)z

k=n+1

2lsinaf(x)] < x ) (k+ 1)\ — Aesa| +

k=1

1 n oo — ~
< Z EIAk — Apyal| + Z | AN+ A2 X || Di(@)] + st = Ans| | Dy () |
k=1 k=n

where IN),’;(x) are defined by

COS%—COS(’C—F%).T

: xT
2 sin 5

k
5;:,(37) = Zsin(z’ + 1)z = , keN,
i=0
and AQ)\k = )\k — 2/\k+1 + )‘kt?
Taking into account that |Dj(z)| = O () and {)\,} € MRBSVS we have
that

' 1 n oo
2[sinz f(z)] < - D kA = Mgl 4 D kA = Aol + 1l Ani1 — Anys|

k=1 k=n

n n—1
1 1
<E§:MM—AHﬂ+Eg?MM—AHﬂ+MMH—AMﬂ

k=1

1 n
< =D k= Mgl

k=1
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where we have used the fact that from {\,} € MRBSV'S it follows

00 n—1
1
njAn+¢ —-An+3|<< E k‘Ak‘—'Ak+2’<< ;: E k’Ak-— Ak+2L

k=n+1 k=2
Hence, we get
| v@lsinarapas
0
o w/n (e ~ n p
<3 [ shsmartopar <32 (S Hh )
o /(1) =1 k=1

Applying Lemma 2.1 with A, = —I#5 > 0 and a,, = n|\, — A,42| We obtain

o0 o0 p
" : Y 1P g
/0 ()| sinxf(z)Pde < Z;(M/\n — Ansal)” <np+2> ( 4 VP+2> :

Moreover, by the assumption on {v,}, we get

o0 oo

T In 1 Tn
]/p+2 << nl‘l‘p_El Z I/1+51 << rn/l‘i‘p7

v=n v=n

which along with above inequality we have

[ r@lsmes@pde <3 - Aol =
0

n=1

Theorem 3.2. Suppose that {\,} € MRBSVS and 1 < p < oo. If the
sequence {7v,} satisfies the condition: there exists an €5 > 0 such that the
sequence {~y,n" '} is almost decreasing, then the condition

(3.3) D P A = Angal” < 00

n=1
is sufficient for the validity of the inclusion
(3.4) ~v(z)|sinxg(x)|? € L(0, ).
Proof. Based on Lemma 2.2 and applying the summation by parts we obtain

o)

Z (A — Agr2) cos(k + 1)

k=n+1

2| sinzg(x)] < Z | Ak — Apgo| +

k=1

< Z | M — Apsa| + Z AN 4+ AN || Dy ()| + (At — Ana] | Dl ()]
k=1 k=n
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where Dj(x) are defined by
sin (k+2)z —sinZ

: X
281n§

k
Di(x) ::Zcos(i—i-l):c: , keN.
i=0

Since |Dj(z)] = O (%) and {\,} € MRBSV'S then

2| SiIll’g(CL’)| < Z |/\k — )\k+2| + TLZ |)\k; — )\k+2| + n|/\n+1 — /\n+3|
k=1 k=n

n n—1
1
< E |/\k—)\1€+2|+5 E k|)\k—)\k+2|—|—n|/\n+1—/\n+3|
k=1 k=1

<Y Ak = Aegal,

k=1
for x € (nLH, %], where we have used the fact that from {\,} € MRBSV'S it
follows
o] n—1 n
1
P Ans1 = Anys] < nk_zﬂ Mk = Ao < = ; k[ Ak — M| < ; Ak — M),

Therefore, applying Lemma 2.1 and based on conditions imposed on 7, we
have
0 w/n

[wisnagpa <> [ @i

n=1 w/(n+1)

e’} n p
Tn
<32 (el
n=1 k=1
oo 1—p 00 p
Ve 87
< Z Ak — Apaal? (ﬁ) (Z 7%)
k=1 j=n

< Z'kap_2|/\k — Mig2|f < 00,
=1

which implies v(x)|sin zg(x)|P € L(0, 7). O
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