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ON A TYPE OF TRANS-SASAKIAN MANIFOLDS
KRISHNENDU DE

ABSTRACT. The object of the present paper is to study 3-dimensional
trans-Sasakian manifolds admitting a Ws-curvature tensor. Trans-Sasakian
manifolds satisfying the curvature condition S(X,¢).R = 0 is also consid-
ered.

1. INTRODUCTION

Trans-Sasakian manifolds arose in a natural way from the classification of
almost contact metric structures by Chinea and Gonzales [5] and they appear
as a natural generalization of both Sasakian and Kenmotsu manifolds. Again
in the Gray-Hervella classification of almost Hermite manifolds [8], there ap-
pears a class W, of Hermitian manifolds which are closely related to locally
conformally Kéhler manifolds. An almost contact metric structure on a mani-
fold M is called a trans-Sasakian structure [12] if the product manifold M x R
belongs to the class W,. The class Cs @ C5 ([10],[11]) coincides with the class
of trans-Sasakian structures of type (a,3). In [11], the local nature of the two
subclasses C5 and Cg of trans-Sasakian structures is characterized completely.
In [4], some curvature identities and sectional curvatures for C5 , Cs and trans-
Sasakian manifolds are obtained. It is known that [17] trans-Sasakian struc-
tures of type (0,0) , (0,5) , and (a,0) are cosymplectic, § - Kenmotsu and
a-Sasakian respectively where a, 5 € R.

The local structure of trans-Sasakian manifolds of dimension n > 5 has been
completely characterized by Marrero [10]. He proved that a trans-Sasakian
manifold of dimension n > 5 is either cosymplectic or a-Sasakian or S-Kenmotsu
manifold. Hence a proper trans-Sasakian manifold exists only for three dimen-
sion. Three-dimensional trans-Sasakian manifolds have been studied by De
and Tripathi [7], De and Sarkar [6], Shukla and Singh [15], and many others.

On the other hand, Pokhariyal and Mishra [14] have introduced new tensor
fields, called W5 and E-tensor fields, in a Riemannian manifold, and studied
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their properties. Then, Pokhariyal [13] has studied some properties of this
tensor fields in a Sasakian manifold. Recently, De and Sarkar [10] have studied
P-Sasakian manifolds admitting W, tensor field.

The curvature tensor W is defined by

(11) W2(X7 Ya U7 V) = R(X7 Y7 U; V)

+

where S is a Ricci tensor of type (0,2). The notion of the quasi-conformal
curvature tensor was introduced by Yano and Sawaki [19]. According to them
a quasi-conformal curvature tensor is defined by

(1.2) C(X,Y)Z =aR(X,Y)Z+b[S(Y, Z2)X — S(X,2)Y + g(Y, 2)QX

—9(X.2)QY] ~ [ + 2[g(V. 2)X — g(X. 2)Y],

where a and b are non-zero constants, R is the curvature tensor, S is the Ricci
tensor, @ is the Ricci operator defined by S(X,Y) = ¢(QX,Y) and r is the
scalar curvature of the Riemannian manifold (M",g)(n > 3). If a = 1 and
b= ——, then (1.2) takes the form

(1.3) C(X,Y)Z=R(X,Y)Z —

! 2[S(Y, )X - S(X,2)Y +9(Y,2)QX

n —

—9(X, 2)QY] + (Y, 2)X —g(X, 2)Y] = C(X,Y)Z,

(n—1)(n—2)

where C' is the conformal curvature tensor [18].
On the other hand, the concircular curvature tensor Z in a Riemannian
manifold is defined by

~ r

(1.4) Z(X,Y)U =R(X,Y)U — m(g(Y, U)X —g(X,U)Y).
Again an trans-Sasakian manifold is called Einstein if the Ricci tensor S is of
the form S = A\g, where A\ is a constant.

The paper is organized as follows: In section 2, some preliminary results
are recalled. After preliminaries in section 3, we construct some examples of
3-dimensional trans-Sasakian manifold. Then we have studied a 3-dimensional
trans-Sasakian manifold satisfying W, = 0. In the next section, we have
studied Wa-semisymmetric 3-dimensional trans-Sasakian manifolds. Also, we
have classified 3-dimensional trans-Sasakian manifolds satisfying Z.Wy = 0
and C.W5 = 0. Finally we prove that a 3-dimensional trans-Sasakian manifold
satisfying the condition S(X, £).R = 0 is an Einstein manifold, provided «, § =
constant.
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2. PRELIMINARIES

Let M be a connected almost contact metric manifold with an almost contact
metric structure (¢,£,n,9),that is, ¢ is an (1,1) tensor field, £ is a vector field
,n is a 1-form and g is a compatible Riemannian metric such that

(2.1) ¢*(X) = =X +n(X)§n(€) = 1o = 0,79 =0
(2.2) 9(0X,0Y) = g(X,Y) = n(X)n(Y)

for all X and Y tangent to M ([1],[2]).
The fundamental 2-form ® of the manifold is defined by
(2.4) O(X,Y) = g(X, ¢Y)

for all X and Y tangent to M.

An almost contact metric structure (¢,£,n7,9) on a connected manifold M
is called a trans-Sasakian structure [12] if ( M x R, J ,G) belongs to the
class Wy [8], where J is the almost complex structure on M x R defined by
J(X, f%) = (¢ X — ff,n(X)%), for any vector fields X on M, f is a smooth
function on M x R and G is the product metric on M x R. This may be
expressed by the condition [3]

(2.5) (Vx@)Y = a(g(X,Y)E —n(Y)X) + 5(g(¢X,Y)E = n(Y)oX)
for smooth functions o and 8 on M. Hence we say that the trans-Sasakian
structure is of type (a,f). From (2.5) it follows that

(2.6) Vx€ = —a(¢X) + B(X —n(X)E),
(2.7) (Vxn)Y = —ag(¢X,Y) + fg(¢X, ¢Y).

An explicit example of a 3-dimensional proper trans-Sasakian manifold is
constructed in [10]. In [7], Ricci tensor and curvature tensor for 3-dimensional
trans-Sasakian manifolds are studied and their explicit formulae are given.

From [7] we know that for a 3-dimensional trans-Sasakian manifold

(2.8) 2004+ Ea =0,
(2.9) S(X,€) = (2(a* = 8%) = B)n(X) — XB — (6X)a,
(210) S(X.Y) = (5488~ (a* = B))g(X.Y)

~ (5 +8-3(e” = A))(X)n(Y)
— (VB + (6Y)a)n(X) = (XB + (6X)a)n(Y),
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(2.11) R(X,Y)¢ = (o = ) (n(Y)X = n(X)Y) = n(Y)(XB)E + o(X)ag
+n(X)(YB)E + o(Y)ag — (YB)X + (XB)Y — (¢(Y)a) X + (¢(X)a)Y,
and

(2.12)  R(X,Y)Z = (= +2¢8 — 2(a® — B2)(g(Y, 2)X — g(X,2)Y

(3

—g(Y, )[( +&6—3(a® = 8%))n(X)¢

—n(X)(¢ grada—gradﬁ) (X8 + (9X)a)¢]

+9(X, )[( +E6—3(a® = B7)n(Y)¢

—n(Y )(¢grad04—gradﬁ) (Y3 + (¢Y)a)¢]

—[(ZB+ (¢Z)a)n(Y) + (Y B+ (¢Y)a)n(Z)
n(Z

+5 + 68— 3(a” = B)m(Y In(2)1X
(28 + (9Z)an(X) + (X5 + (#X)a)n(Z)
+5 4683 = )X (2)]Y

where S is the Ricci tensor of type (0,2) and R is the curvature tensor of type
(1,3) and r is the scalar curvature of the manifold M.

In a 3-dimensional trans-Sasakian manifold, using (2.9), (2.11) and (2.13),
equation (1.3) and (1.4) reduce to

(2.13) Z(€ XY = (a? = B = D{g(X. Y)§ ~n(Y)X},

(@ =B —Dn—D+r
(n—1)(n—2)

(2.14) C(& Y)W {g(Y, W)€ —n(W)Y'}

1
(n—2)

{S¥, W)€ —n(W)QY},

respectively.

3. EXAMPLES OF 3-DIMENSIONAL TRANS-SASAKIAN MANIFOLD

Example 3.1. We consider the 3-dimensional manifold M = {(x,y,z) € R3, 2 #
0}, where (z,y, 2) are standard co-ordinates of R?.
The vector fields

K ]
ox y82’62_z @ =

oy’ 0z
are linearly independent at each point of M.
Let g be the Riemannian metric defined by

€1 =2

9(61763) = 9(61762) = 9(62763) =0,
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9(617 61) = 9(627 62) = 9(637 63) = 1
Let n be the 1-form defined by n(Z) = ¢g(Z, e3) for any Zex(M).
Let ¢ be the (1, 1) tensor field defined by

ple1) = ez, ¢(e2) = —er,  P(es) = 0.
Then using the linearity of ¢ and g, we have

nes) =1, ¢°Z = —Z +n(Z)es, g(¢pZ,¢W) = g(Z,W) —n(Z)n(W),

for any Z, W € x(M), the set of all smooth vector fields on M.
Then for e3 = &, the structure (¢, &, 7, g) defines an almost contact metric
structure on M.
Let V be the Levi-Civita connection with respect to the metric g and R be
the curvature tensor of M. Then we have
1

[61762] = yéas — 22637 [61, 63] = —261 and [62,63] = —262-

Taking e3 = ¢ and using Koszul formula for the Riemannian metric g, we
can easily calculate

1 1 1 1 1

1
2 2
Ve €3 = ——e1+ ez, Ve er = —52%3, Ve er = —€3, Ve,e3 = ——ex — -27€y,
z z 2 z z 2
1 1 1
2 2
Ve, €2 = yer + 263, Ve,1 = 52 €3 — yez, Ve,e3 =0, Veep = —52 €1,
1
v63€1 == 52’262.

From the above it can be easily seen that (¢, &, 7, g) is a trans-Sasakian struc-
ture on M. Consequently M?3(4,€,m,g) is a trans-Sasakian manifold with
a=—1z"#0and f=—1 #£0.

Example 3.2. We consider the 3-dimensional manifold M = {(z,y,2) € R3,

(z,y,2) # 0}, where (x,y, 2) are standard co-ordinates of R3.
The vector fields

o9 9 0,0
Y78, Yor T 8y @7 “or

are linearly independent at each point of M. Let g be the Riemannian metric
defined by

glei,e3) = gler, ea) = gleg, e3) =
9(61761) 9( ) = (63763)
Let n be the 1-form defined by n(Z) = g(Z, e3) for any Z € x(M). Let ¢ be
the (1,1) tensor field defined by
ple1) = —ea, Plea) =e1, ¢(ez) = 0.

Then using the linearity of ¢ and g, we have

nes) =1, ¢°Z = —Z +n(Z)es, g(¢Z, W) = g(Z,W) —n(Z)n(W),
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for any Z, W € x(M). Thus for e3 = &, the structure (¢,&,n,g) defines an
almost contact metric structure on M.

Let V be the Levi-Civita connection with respect to the metric g. Then we
have

B 0 0.0 g ,0 g, o0 1

[e1, €2] = eres — ezer = (@ - yc‘)_x)f)_y - a—y(& - ya—x) T or 2%

Similarly,
le1,e3) =0 and [eg,e3] =0.

Taking e3 = £ and using Koszul formula for the Riemannian metric g, we

can easily calculate

Ve, €3 = 162, Ve ez = —4—163, Veer =0,
1
V62€3 - _1617 v62€2 - 07 V6261 - 1637
1
Ve3€3 = 0, ve3€2 = —161, Vegel = 162.

We see that the structure (¢, &, n, g) satisfies the formula (2.6) for a = %1 and
£ = 0. Hence the manifold is a trans-Sasakian manifold of type (i, 0).

4. 3-DIMENSIONAL TRANS-SASAKIAN MANIFOLDS SATISFYING Wy =0

In this section we consider a 3-dimensional trans-Sasakian manifolds satis-
fying Wy = 0. Then we have from (1.1)

(1) RXY.UV) = L[V 0)S(X,V) ~ g(X, U)S(Y, V)]

Using X =U = ¢ in (4.1), we have
12 REY.EV) = gV, O5(E V) — (& OS V)L

From (2.1), (2.9) and (2.11), we get
(4.3) S(YV.V) =2(a® = B> = €8)g(Y. V) + (8)n(Y)n(V)
—{(@V)ain(Y) — (VE)n(Y).
If a and 8 are constant, then we have
(4.4) S(Y,V) =2(a® - *)g(Y,V).
Thus we have the following:

Theorem 4.1. A 3-dimensional trans-Sasakian manifold satisfying Wy = 0 is
an FEinstein manifold, provided o, 3= constant.

Now using (4.4) in (4.1), we get
(45)  RXY,UV)=(a"=3)g(Y,U)g(X,V) = g(X,U)g(Y,V)].
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Corollary 4.1. A 3-dimensional trans-Sasakian manifold satisfying Wo = 0
is a manifold of constant curvature (o — 3?), provided o, 3= constant.

5. W5-SEMISYMMETRIC 3-DIMENSIONAL TRANS-SASAKIAN MANIFOLDS

A Riemannian or a semi-Riemannian manifold is said to be semi-symmetric
([16],[9]) if R(X,Y).R = 0, where R is the Riemannian curvature tensor and
R(X,Y) is considered as a derivation of the tensor algebra at each point of the
manifold for tangent vectors X, Y. If a Riemannian manifold satisfies

(5.1) R(X,Y). W, =0,
then the manifold is said to be W5 semi-symmetric manifold.

Proposition 5.1. Let M be an 3-dimensional trans-Sasakian manifold. Then
the Ws-curvature tensor on M satisfies the condition

(5.2) Wy (X,Y,U, &) = 0.
From (5.1)we have
(5.3) R(X,Y)YWo(Z,U)V —Wo(R(X,Y)Z,U)V
—Wh(Z, R(X,Y)U)V —Wo(Z,U)R(X,Y)V = 0.
This equation implies
(54) g(R(Xv Y)WQ(Zv U)VY, g) - g(WQ(R(Xv Y)Zv U)‘/, f)
—g(Wa(Z, R(X,Y)U)V,§) — g(W2(Z,U)R(X,Y)V,§) = 0.
Putting X = £ in(5.4) we obtain
(5.5) g(R(E,Y)W2(Z,U)V,€) — g(Wa(R(E,Y)Z,U)V,¢§)
—gWa(Z, R(&Y)U)V,§) = g(Wa(Z, U)R(§, Y )V, §) = 0.
Using (5.4) in (5.5), we get
(5.6) = g(Y,Wa(Z, U)V)§ +n(Wa(Z,U)V)Y +g(Y, Z)g(Wa(E, U)V, €)

= (2)gWa (Y, U)V, &) + g(Y, U)g(Wa(Z, )V, §) — n(U)g(Wa(Z,Y)V,€)
+9(Y, V)g(Wa(Z,U)E, &) —n(V)g(Wa(Z,U)Y, &) = 0.
Taking the inner product with & and using (5.2) in (5.7), we obtain
Wy (Z,U,V,Y) = 0.
Then from previous Theorem and Corollary we have

Theorem 5.1. A Wy-semisymmetric 3-dimensional trans-Sasakian manifold
is an Einstein manifold and hence a manifold of constant curvature (a? — %),
provided o, B= constant.
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6. 3-DIMENSIONAL TRANS-SASAKIAN MANIFOLDS SATISFYING

Z(X, Y)Wy =0

In this section we consider a 3-dimensional trans-Sasakian manifolds satis-
fying the condition

(6.1) Z(X,Y). Wy = 0.

This equation implies

(6.2) Z(X,YYWo(Z, U)WV —WH(Z(X,Y)Z,U)V
—Wo(Z, Z(X, Y U)V — Wy(Z,U)Z(X,Y)V = 0.
Putting X = £ in(6.2) we obtain

(6.3) Z(&,Y)Wo(Z,U)V —Wo(Z(£,Y)Z, U)WV
—Wo(Z, Z(&,Y)U)V — Wo(Z,U)Z(£,Y)V = 0.
Using (2.13) in (6.3), we obtain
(64)  (a® = B = D{g(YV:Wa( 2, U)V)E = g(Wal Z,U)V. )Y
—9(Y, Z)Wo (&, U)V +n(Z)Wo (Y, U)V — g(Y, U)Wo(Z,£)V
n(U)Wo(Z,U)V = g(Y,V)Ws(Z,U)§ +n(V)W(Z,U)Y} = 0.
Taking the inner product with ¢ and using (4.2)in (6.5), we have

(6.5) (a? = 2 = D)g(Y. Wa( Z.U)V) = 0.
Again from (2.13) we have (a? — 3% — L) # 0. Hence we have
(6.6) Wy (Z,U,V,Y)=0.

From the proof of Theorem 4.1 and Corollary 4.1 we have

Theorem 6.1. A 3-dimensional trans-Sasakian manifold satisfying the condi-
tion Z(X,Y).Wo = 0 is an Einstein manifold and hence a manifold of constant
curvature (a? — 3%), provided o, = constant.

7. 3-DIMENSIONAL TRANS-SASAKIAN MANIFOLDS SATISFYING
C(X, Y)Wy =0
In this section we characterize the 3-dimensional trans-Sasakian manifold
satisfying the condition
(7.1) C(X,Y).Wy=0.
This equation implies
(7.2) C(X, Y)W (Z,U)V —Wo(C(X,Y)Z,U)V
—Wh(Z,C(X,Y)U)V =Wy (Z,U)C(X,Y)V =0.
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Putting X = £ in(7.2) we obtain
(7.3) C(E,Y)Wo(Z,U)V — Wy (C(&,Y)Z,U)V
—W(Z,C(&Y)U)V = Wa(Z,U)C(E, YV = 0.
Using (2 14) in (7.3), we obtain
Hn—1)(n —4) +
n(U)Wo(Z,U)V = g(Y,V)Wa(Z,U)§ +n(V)W2(Z,U)Y'} = 0.
Taking the inner product with & and using (4.2)in (7.5), we have

{9V Wa(Z.U)V)E — g(Wa(Z,U)V. €)Y

(@ —pB%)(n—1mn—4)+r

w5 SRR Dz o) <o
Let U; and U, be a part of M satisfying (o — 8?)(n — 1)(n — 4) +r) = 0 and
(7.6) Wa(Z,U,V,Y) = 0.

This leads to the following:

Theorem 7.1. Let M be a 3-dimensional trans-Sasakian manifold satisfying
the condition C(X,Y).Wy = 0. Then either (a* — %)(n —1)(n —4) + 1) =0,

or M is a manifold of constant curvature (o — %), provided o, 3= constant.

8. 3-DIMENSIONAL TRANS-SASAKIAN MANIFOLDS SATISFYING
S(X,€).R =

We now consider a 3-dimensional trans-Sasakian manifold satisfying the
condition

(8.1) S(X,€).R =
By definition we have
(82) (SR, V)Z = (X As &) R)U,V)Z
= (X AsR(UV)Z + R((X Ns E)U, V) Z
+ R(U, (X As E)V)Z + R(U,V)(X As €)Z,

where the endomorphism X AgY is defined by
(8.3) (X AsY)Z = S(Y, Z)X — 8(X, Z)Y.
Using the definition of (8.3) in (8.2) we get by virtue of (8.1)
(8.4) S RUV)Z)X —S(X,R(U,V)Z)¢+ R(S(E U)X —S(X,U)¢,V)Z

+ R(U, S V)X = S(X,V)§)Z + R(U,V){S(&,2)X — S(X,Z2)¢} = 0.
Taking the inner product of (8.4) by & we obtain
(85) S RUV)Z)n(X)—S(X,RUWV)Z)+ S UnRX,V)Z
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= S(X,Un(R(E,V)Z) + 55, VIn(R(U, X)Z = S(X,V)n(R(U,£)Z)
+ 5 Z)n(R(U,V)X) = S(X, Z)n(R(U, V)¢) = 0.

Putting U = Z = ¢ in (8.5) and using (2.9) and (2.11) we get

(8.6) S(X, V) =2(a” = B%)%g(X, V) +4(a” = B°)*n(X)n(V),

provided «, = constant. This leads to the following:

Theorem 8.1. 3-dimensional trans-Sasakian manifold satisfying the condition
S(X,€).R =0 is an Einstein manifold, provided o, B = constant.
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