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ON THE CONVERGENCE OF CESÀRO MEANS OF
NEGATIVE ORDER OF WALSH-FOURIER SERIES

GVANTSA SHAVARDENIDZE AND MARIAM TOTLADZE

Abstract. In this paper we investigate the convergence of Cesàro means
of negative order of Walsh-Fourier series of functions of generalized bounded
oscillation.

Let r0 (x) be a function defined on R := (−∞, ∞) by

r0(x) =

 1, if x ∈
[
0, 1

2

)
−1, if x ∈

[
1
2,

1
) , r0(x + 1) = r0(x).

The Rademacher system is defined by
rn(x) = r0(2nx), n ≥ 1 and x ∈ [0, 1) .

Let w0, w1, . . . represent the Walsh functions, i.e., w0 (x) = 1 and if k =
2n1 + ... + 2ns is a positive integer with n1 > n2 > · · · > ns then wk (x) =
rn1 (x) × · · · × rns(x).

The idea of using products of Rademacher’s functions to define the Walsh
system originated from Paley [16].

The Walsh-Dirichlet kernel is defined by

Dn (x) =
n−1∑
k=0

wk (x) .

Recall that

D2n (x) =

2n, if x ∈
[
0, 1

2n

)
0, if x ∈

[
1

2n , 1
)

.

Suppose that f is a Lebesgue integrable function on [0, 1] and 1-periodic.
Then its Walsh-Fourier series is defined by

∞∑
k=0

f̂ (k) wk (x) ,

2020 Mathematics Subject Classification. 42C10.
Key words and phrases. Walsh-Fourier series, Cesàro means, generalized bounded variation.

1



2 GVANTSA SHAVARDENIDZE AND MARIAM TOTLADZE

where

f̂(k) =
1∫

0

f (t) wk (t) dt

is called the k-th Walsh-Fourier coefficient of the function f . Denote by Sn (f, x)
the n-th partial sum of the Walsh-Fourier series of the function f , namely

Sn (f, x) =
n−1∑
k=0

f̂(k)wk (x) .

The Cesàro (C, α)-means of the Walsh-Fourier series are defined as

σα
n (f, x) = 1

Aα
n

n∑
k=0

Aα
n−kf̂ (k) wk (x) ,

where
Aα

0 = 1,

Aα
n = (α + 1) · · · (α + n)

n! , α ̸= −1, −2, . . . .

Let C ([0, 1]) denote the space of continuous functions f with period 1. If
f ∈ C ([0, 1]), then the function

w (δ, f) = sup {|f (x′) − f (x′′)| : |x′ − x′′| ≤ δ, x′, x′′ ∈ [0, 1]}
is called the modulus of continuity of the function f. The modulus of continuity
of an arbitrary function f ∈ C ([0, 1]) has the following properties:

1) ω (0) = 0,
2) ω (δ) is nondecreasing,
3) ω (δ) is continuous on [0, 1] ,
4) ω (δ1 + δ2) ≤ ω (δ1) + ω (δ2) for 0 ≤ δ1 ≤ δ2 ≤ δ1 + δ2 ≤ 1.

An arbitrary function ω (δ) which is defined on [0, 1] and has properties 1) –
4) is called a modulus of continuity. If the modulus of continuity ω (δ) is given,
then Hω denotes the class of functions f ∈ C ([0, 1]) for which

ω (δ, f) = O (ω (δ)) as δ → 0.

Cw ([0, 1]) is the collection of functions f : [0, 1) → R that are uniformly
continuous from the dyadic topology of [0, 1) to the usual topology of R, or for
short: uniformly W -continuous.

Let f be defined on [0, 1) . We shall represent the dyadic modulus of continuity
by

ω̇ (δ, f) = sup
0≤h≤δ

sup
x

|f (x ⊕ h) − f (x)| ,

where ⊕ denotes dyadic addition (see [12] or [18]).
The problems of summability of Cesàro means of the Walsh-Fourier series

were studied in [4], [7], [10], [9], [8], [16], [18], [17].
Tevzadze [19] has studied the uniform convergence of Cesàro means of

negative order of the Walsh-Fourier series. In particular, in terms of modulus of
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continuity and variation of function f ∈ Cw ([0, 1]) he has proved the criterion
for the uniform summability by the Cesàro method of negative order of Fourier
series with respect to the Walsh system.

In [9] Goginava investigated the problem of estimating the deviation of
f ∈ Lp from its Cesàro means of negative order of Walsh-Fourier series in
the Lp-metric, p ∈ [1, ∞) . Analogous results for Walsh-Kaczmarz system were
proved by Nagy [15] and Gát, Nagy [6].

In his monograph [23, part 1, chapter 4] Zhizhiashvili investigated the
behaviour of Cesàro means of negative order of trigonometric Fourier series in
detail.

The notion of a function-bounded variation was introduced by Jordan [13].
Generalizing this notion Wiener [21] considered the class of function Vp. Young
[22] introduced the notion of the function of bounded Φ-variation. Water-
man [20] studied the class of function of bounded Λ-variation, and Chanturia
[3] defined the notion of the modulus of variation of a function. In 1990,
Kita and Yoneda [14] introduced the notion of the generalized Wiener’s class
BV (p (n) ↑ p) . Generalizing the class BV (p (n) ↑ p), Akhobadze [1, 2] consid-
ered the classes of function BV (p (n) ↑ p, φ) and BΛ (p (n) ↑ p, φ).

Definition 1. [11] Let 1 ≤ p (n) ↑ p as n → ∞ where 1 ≤ p ≤ ∞. We say that
a function belongs to the BO (p (n) ↑ p) class if

O (f ; p (n) ↑ p) := sup
n

{2n−1∑
l=0

sup
t,u∈[l2−n.(l+1)2−n)

|f (t) − f (u)|p(n)
} 1

p(n)

< ∞.

When p (n) = p for all n, BO (p (n) ↑ p) coincides with the class of p-bounded
fluctuation BFp [18].

Estimates of the Fourier coefficients of functions of bounded fluctuation with
respect to the Vilenkin system were studied by Gát and Toledo [5].

In [11] Goginava proved that the following statements are true.

Theorem 1. Let f be a function in the class BO (p (n) ↑ ∞) and

ω̇
( 1

2n
, f
)

= o

(
1

p(n + 1) log2 p (n + 1)

)
as n → ∞.

Then the Walsh-Fourier series of the function f converges uniformly in [0, 1] .

Theorem 2. Let p (2n) ≤ cp (n) , n ∈ P and p (n) log2 p (n) = o (n) as n → ∞.
If ω satisfies the condition

lim
n→∞

sup ω
( 1

n

)
p ([log2 n]) log2 p ([log2 n]) = c0 > 0,

then there exists a function in the class Hω ∩ BO (p (n) ↑ ∞) for which the
Walsh-Fourier series diverges at some point.

The theorem of Tevzadze [19] implies that if p < 1
α

and f ∈ BFp ∩ Cω, then
the Cesàro mean σ−α

n (f) of Walsh-Fourier series uniformly converges to the
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function f . On the other hand, for p = 1
α

there exists a continuous function
f for which σ−α

n (f, 0) diverges. On the basis of the above facts the following
problems arise naturally:

Let f ∈ BO
(
p (n) ↑ 1

α

)
, 0 < α < 1. Under what condition on the sequence

{p (n) : n ≥ 1} the uniform convergence of Cesàro (C, −α) means of Walsh-
Fourier series of the function f holds?

The following theorem is true.

Theorem 3. Let f ∈ Cw ([0, 1]) ∩ BO
(
p (n) ↑ 1

α

)
, 0 < α < 1, 2k ≤ n ≤ 2k∔1.

Then
∥∥∥σ−α

n (f) − f
∥∥∥

c
≤ c (α)


k∑

r=0
2r−k .

ω
( 1

2r
, f
)

c
+

(
.
ω
(

1
2k , f

))1−αp(k)

1 − αp (k)

 .

Corollary 1. Let f ∈ Cw ([0, 1]) ∩ BO
(
p (n) ↑ 1

α

)
, 0 < α < 1 and(

.
ω
(

1
2k , f

))1−αp(k)

1 − αp (k) → 0 as k → ∞.

Then ∥∥∥σ−α
n (f) − f

∥∥∥
c

→ 0.

In order to prove Theorem 3 we need the following lemmas proved by
Goginava in [9, 8].
Lemma 1 (Goginava [9]). Let f ∈ Cw ([0, 1]). Then for every α ∈ (0, 1) the
following estimation holds

1
A−α

n

∥∥∥∥∥∥
1∫

0

2k−1−1∑
ν=0

A−α
n−νwν (u) [f (· ⊕ u) − f (·)] du

∥∥∥∥∥∥
c

≤ c (p, α)
k−1∑
r=0

2r−k .
ω (1/2r, f)p ,

where 2k ≤ n < 2k+1.

Lemma 2 (Goginava [8]). Let f ∈ Cw ([0, 1]) and 2k ≤ n < 2k+1. Then for
every α ∈ (0, 1) the following estimations hold

1
A−α

n

∣∣∣∣∣∣
1∫

0

2k−1∑
ν=2k−1

A−α
n−νwν (u) [f (· ⊕ u) − f (·)] du

∣∣∣∣∣∣
≤ c (α)

2k−1−1∑
j=1

1
j1−α

∣∣∣∣f (x ⊕ 2j

2k

)
− f

(
x ⊕ 2j + 1

2k

)∣∣∣∣
 ,

1
A−α

n

∣∣∣∣∣∣
1∫

0

n∑
ν=2k

A−α
n−νwν (u) [f (· ⊕ u) − f (·)] du

∣∣∣∣∣∣
≤ c (α)

 2k∑
j=1

1
j1−α

∣∣∣∣f (x ⊕ 2j

2k+1

)
− f

(
x ⊕ 2j + 1

2k+1

)∣∣∣∣
 .
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Proof of Theorem 3. We can write

σ−α
n (f, x) − f (x) = 1

A−α
n

1∫
0

n∑
ν=0

A−α
n−νwν (x) [f (x ⊕ u) − f (x)] du

= 1
A−α

n

1∫
0

2k−1−1∑
ν=0

A−α
n−νwν (x) [f (x ⊕ u) − f (x)] du

+ 1
A−α

n

1∫
0

2k−1∑
ν=2k−1

A−α
n−νwν (x) [f (x ⊕ u) − f (x)] du

+ 1
A−α

n

1∫
0

n∑
ν=2k

A−α
n−νwν (x) [f (x ⊕ u) − f (x)] du

= I + II + III.

(1)

From Lemmas 1 and 2 we have

(2) ∥I∥c ≤ c (α)
k−1∑
ν=0

2r−kω
( 1

2r
, f
)

c
,

|II| ≤ c (α)
2k−1−1∑

j=1

1
j1−α

∣∣∣∣f (x ⊕ 2j

2k

)
− f

(
x ⊕ 2j + 1

2k

)∣∣∣∣


and

|III| ≤ c (α)
2k−1∑

j=1

1
j1−α

∣∣∣∣f (x ⊕ 2j

2k+1

)
− f

(
x ⊕ 2j + 1

2k+1

)∣∣∣∣
 .

Using Abel’s transformation, we get

|III| ≤ c (α)
( 2k−2∑

j=1

(
1

j1−α
− 1

(j + 1)1−α

)

×
j∑

l=1

∣∣∣∣∣f
(

x ⊕ 2l

2k+1

)
− f

(
x ⊕ 2l + 1

2k+1

)∣∣∣∣∣
+ 1

(2k − 1)1−α

2k−1∑
j=1

∣∣∣∣f (x ⊕ 2j

2k+1

)
− f

(
x ⊕ 2j + 1

2k+1

)∣∣∣∣
)

=III1 + III2.

(3)
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Let εk := αpk < 1, sk := p(k)
εk

, 1
sk

+ 1
tk

= 1. Then using Hölder’s inequality for
III2 we can write

III2 = 1
(2k − 1)1−α

2k−1∑
j=1

∣∣∣∣f (x ⊕ 2j

2k+1

)
− f

(
x ⊕ 2j + 1

2k+1

)∣∣∣∣εk

×
∣∣∣∣f (x ⊕ 2j

2k+1

)
− f

(
x ⊕ 2j + 1

2k+1

)∣∣∣∣1−εk

≤ c (α)
2k(1−α)

2k−1∑
j=1

∣∣∣∣f (x ⊕ 2j

2k+1

)
− f

(
x ⊕ 2j + 1

2k+1

)∣∣∣∣p(k)


εk
p(k)

×

2k−1∑
j=1

∣∣∣∣f (x ⊕ 2j

2k+1

)
− f

(
x ⊕ 2j + 1

2k+1

)∣∣∣∣(1−εk)tk

 1
tk

≤ c (α)
2k(1−α)

(
BO

(
f, p (k) ↑ 1

α

))εk
(

.
ω
(

f,
1
2k

))1−εk

2
k

tk

≤ c (α)
(

BO
(

f, p (k) ↑ 1
α

))εk
(

.
ω
(

f,
1
2k

))1−εk

2k

(
α− 1

sk

)

= c (α)
(

BO
(

f, p (k) ↑ 1
α

))εk
(

.
ω
(

f,
1
2k

))1−εk

2k(α− εk
p(k))

= c (α)
(

BO
(

f, p (k) ↑ 1
α

))εk
(

.
ω
(

f,
1
2k

))1−αp(k)
−→ 0

as k → ∞.
Fix m0 (k) and define it later

III1 ≤ c (α)
m0(k)∑
j=1

1
j2−α

j∑
l=1

∣∣∣∣∣f
(

x ⊕ 2l

2k+1

)
− f

(
x ⊕ 2l + 1

2k+1

)∣∣∣∣∣
+

2k−1∑
j=m0(k)+1

1
j2−α

j∑
l=1

∣∣∣∣∣f
(

x ⊕ 2l

2k+1

)
− f

(
x ⊕ 2l + 1

2k+1

)∣∣∣∣∣
≤ c (α)


m0(k)∑
j=1

1
j2−α

j
.
ω
( 1

2k
, f
)

+
2k−1∑

j=m0(k)+1

1
j1+1/p(k)−α

 j∑
l=1

∣∣∣∣∣f
(

x ⊕ 2l

2k+1

)
− f

(
x ⊕ 2l + 1

2k+1

)∣∣∣∣∣
p(k)

 1
p(k)


≤ c (α)

(m0 (k))α .
ω
( 1

2k
, f
)

+ m0 (k)α− 1
p(k)

1
p(k) − α

BO
(

f, p (k) ↑ 1
α

) .

Set

m0 (k) =
 1

.
ω
(

1
2k , f

)
p(k)

.



CONVERGENCE OF CESÀRO MEANS 7

Then we have

III1 ≤ c (α)

 .
ω
( 1

2k
, f
)1−αp(k)

+
.
ω
(

1
2k , f

)1−αp(k)

1
p(k) − α

 ≤ c (α)
.
ω
(

1
2k , f

)1−αp(k)

1 − αp (k) .

(4)

Combining (3) – (4) we have

(5) |III| ≤ c (α)
.
ω
(

1
2k , f

)1−αp(k)

1 − αp (k) .

Analogously we can prove that

(6) |II| ≤ c (α)
.
ω
(

1
2k , f

)1−αp(k)

1 − αp (k) .

Combining (1), (2), (5) and (6) we complete the proof of Theorem 3. □
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