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ABSOLUTE |C, α, β; δ|k SUMMABILITY FACTOR OF
INFINITE SERIES

SMITA SONKER, XH. Z. KRASNIQI AND ALKA MUNJAL

Abstract. In this study, a generalized theorem on a minimal set of suf-
ficient conditions for absolute summable factor has been established by
applying a sequence of wider class (quasi-power increasing sequence) and
the absolute Cesàro |C,α, β; δ|k summability for an infinite series. Further
a well-known application of the above theorem has been obtained under
suitable conditions.

1. Introduction

Let
∞∑
n=0

an be an infinite series with sequence of partial sums {sn} and nth

sequence to sequence transformation (mean) of {sn} is given by un s.t.

un =
∞∑
k=0

unksk.

The series
∞∑
n=0

an is said to be absolute summable, if

lim
n→∞

un = s,

and
∞∑
n=1

|un − un−1| < ∞.

Let τn represent the nth (C, 1) mean of the sequence (nan), then the series
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∞∑
n=0

an is said to be |C, 1|k summable [11] for k ≥ 1, if

∞∑
n=1

1

n
|τn|k < ∞.

If uα
n and ταn represent the nth Cesàro mean [1] of order α > −1 of the sequence

(sn) and (nan), respectively, i.e.,

uα
n =

1

Aα
n

n∑
v=0

Aα−1
n−vsv

and

ταn =
1

Aα
n

n∑
v=0

Aα−1
n−vvav,

where

Aα
n =

(α + 1)(α + 2)...(α + n)

n!
= O(nα), Aα

−n = 0 and Aα
0 = 1 for n > 0.

The series
∞∑
n=0

an is said to be |C, α|k summable for k ≥ 1 and α > −1, if

∞∑
n=1

nk−1|uα
n − uα

n−1|k =
∞∑
n=1

1

n
|ταn |k < ∞.

The series is |C, α, β; δ|k summable for k ≥ 1, α > −1, 0 < β ≤ 1, α+β > 0,
and δ ≥ 0, if

∞∑
n=1

n(δk+k−1)|uα,β
n − uα,β

n−1|k =
∞∑
n=1

nδk−1|τα,βn |k < ∞.

Remark 1. If δ = 0, then |C, α, β; δ|k summability reduces to |C, α, β|k summa-
bility. If we take α = 1 & β = 1, then |C, α, β|k becomes |C, 1, 1|k summable
and similarly if β = 0, then |C, α, β|k summability reduces to |C, α|k summabil-
ity. If α = 1 & k = 1, then |C, α|k summable factor becomes |C, 1| summable
factor.

For the sequence {τα,βn } which is nth Cesàro means of {nan}, wα,β
n can be

expressed as [2]

wα,β
n =

{
|τα,βn |, α > −1, β = 1,

max1≤v≤n |τα,βv |, α > −1, 0 < β < 1.

2. Known results

Using |C, α|k summable factor, Bor [3] determined a minimal set of sufficient
conditions for an infinite series to be absolute summable. His result can be
stated as follows.
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Theorem 1. [3] Let (Xn) be a quasi-f -power increasing sequence for some
θ (0 < θ < 1). Assume that there exists a sequence of numbers (An) such that
it is ξ-quasi-monotone satisfying the following:∑

nξnXn = O(1),

∆An ≤ ξn,

|∆λn| ≤ |An|,∑
AnXn is convergent for all n.

If the conditions
|λn|Xn = O(1) as n → ∞,

m∑
n=1

(wα
n)

k

n
= O(Xm) as m → ∞

are satisfied, then the series
∑

anλn is |C, α|k summable for 0 < α ≤ 1 and
k ≥ 1.

3. Main results

Sonker et al. [7, 8, 9, 10] have determined various results for the general-
ization of the Cesàro summable factor. The aim of the present study is to
formulate the problem of generalization of absolute Cesáro summability fac-
tor (|C, α, β; δ|k for k ≥ 1, α > −1, 0 < β ≤ 1, α + β > 0 and δ ≥ 0) for
an infinite series. This work will also motivate the researchers interested in
theoretical studies of infinite series.

A positive sequence X = (Xn) is said to be a quasi-f -power increasing
sequence if there exists a constant K = K(X, f) ≥ 1 such that KfnXn ≥
fmXm for all n ≥ m ≥ 1, where f = [fn(θ, ζ)] = {nθ(log n)ζ , ζ ≥ 0, 0 < θ < 1}
[12]. If ζ = 0, then a quasi-θ-power increasing sequence [6] can be obtained.

The results of Bor [3] have been modernized with the help of generalized
Cesàro |C, α, β; δ|k summability and we establish the following theorem.

Theorem 2. Let (Xn) be a quasi-f -power increasing sequence for some θ (0 <
θ < 1). Assume that there exists a sequence of numbers (An) such that it is
ξ-quasi-monotone satisfying the following:

(1)
∑

nξnXn = O(1),

(2) ∆An ≤ ξn,

(3) |∆λn| ≤ |An|,

(4)
∑

AnXnis convergent for all n.

If the conditions

(5) |λn|Xn = O(1) as n → ∞,
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(6)
m∑

n=1

(wα,β
n )k

n1−δk
= O(Xm) as m → ∞

are satisfied, then the series
∑

anλn is |C, α, β; δ|k summable for k ≥ 1, α >
−1, 0 < β ≤ 1, α + β > 0 and δ ≥ 0.

4. Lemmas

The following lemmas have been used to prove the main theorem.

Lemma 1. [5] If 0 < β ≤ 1, α > −1 and 1 ≤ v ≤ n, then∣∣∣∣∣
v∑

p=0

Aβ−1
n−pA

α
pap

∣∣∣∣∣ = max
1≤m≤v

∣∣∣∣∣
m∑
p=0

Aβ−1
m−pA

α
pap

∣∣∣∣∣.
Lemma 2. [4] Let (Xn) be a quasi-f -power increasing sequence for some
θ (0 < θ < 1). If (An) is a ξ-quasi-monotone sequence with ∆An ≤ ξn and∑

n ξn Xn < ∞, then
∞∑
n=1

nXn|An| < ∞,

nAnXn = O(1) as n → ∞.

5. Proof of Theorem 2

Let Tα,β
n be the nth (C, α, β) mean of the sequence (nanλn). The series is

|C, α, β; δ|k summable, if

(7)
∞∑
n=1

nδk−1|Tα,β
n |k < ∞.

Applying Abel’s transformation and Lemma 1, we have

Tα,β
n =

1

Aα,β
n

n∑
v=1

Aβ−1
n−vA

α
v vavλv

=
1

Aα,β
n

n−1∑
v=1

∆λv

v∑
p=1

Aβ−1
n−pA

α
ppap +

λn

Aα,β
n

n∑
v=1

Aβ−1
n−vA

α
v vav(8)

and

|Tα,β
n | = 1

Aα,β
n

n−1∑
v=1

|∆λv|

∣∣∣∣∣
v∑

p=1

Aβ−1
n−pA

α
ppap

∣∣∣∣∣+ |λn|
Aα,β

n

∣∣∣∣∣
n∑

v=1

Aβ−1
n−vA

α
v vav

∣∣∣∣∣
=

1

Aα,β
n

n−1∑
v=1

Aα,β
v wα,β

v |∆λv|+ |λn|wα,β
n

= Tα,β
n,1 + Tα,β

n,2 .(9)
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Using Minkowski’s inequality,

(10) |Tα,β
n |k = |Tα,β

n,1 + Tα,β
n,2 |k < 2k

(
|Tα,β

n,1 |k + |Tα,β
n,2 |k

)
.

In order to complete the proof of the theorem, it is sufficient to show that

(11)
∞∑
n=1

nδk−1|Tα,β
n,r |k < ∞ for r = 1, 2.

By using Hölder’s inequality, Abel’s transformation and conditions of Lemma
2, we have

m+1∑
n=2

nδk−1|Tα,β
n,1 |k ≤

m+1∑
n=2

nδk−1 1

(Aα,β
n )k

(
n−1∑
v=1

Aα,β
v wα,β

v |∆λv|

)k

≤
m+1∑
n=2

n−1−(α+β−δ)k

n−1∑
v=1

v(α+β)k(wα,β
v )k|Av|

(
n−1∑
v=1

|Av|

)k−1

= O(1)
m∑
v=1

v(α+β)k(wα,β
v )k|Av|

m+1∑
n=v+1

1

n(α+β−δ)k+1

= O(1)
m∑
v=1

v(α+β)k(wα,β
v )k|Av|

∞∫
v

dx

x(α+β−δ)k+1

= O(1)
m∑
v=1

v|Av|(wα,β
v )kvδk−1

= O(1)
m−1∑
v=1

∆(v|Av|)
v∑

r=1

(wα,β
r )krδk−1

+O(1)m|Am|
m∑
v=1

(wα,β
v )kvδk−1

= O(1)
m−1∑
v=1

∣∣∣(v + 1)∆|Av| − |Av|
∣∣∣Xv +O(1)m|Am|Xm

= O(1)
m−1∑
v=1

v|∆Av|Xv +O(1)
m−1∑
v=1

|Av|Xv +O(1)m|Am|Xm

= O(1) as m → ∞,
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and
m∑

n=2

nδk−1|Tα,β
n,2 |k = O(1)

m∑
n=1

|λn|(wα,β
n )knδk−1

= O(1)
m−1∑
n=1

∆|λn|
n∑

v=1

(wα,β
v )kvδk−1

+O(1)|λm|
m∑

n=1

(wα,β
n )knδk−1

= O(1)
m−1∑
n=1

|∆λn|Xn +O(1)|λm|Xm

= O(1)
m−1∑
n=1

|An|Xn +O(1)|λm|Xm

= O(1) as m → ∞.(12)

Collecting (7) - (12), we have

∞∑
n=1

nδk−1|Tα,β
n |k < ∞.

Hence the proof of the theorem is complete.

6. Corollaries

Corollary 1. Let (Xn) be a quasi-f -power increasing sequence for some θ (0 <
θ < 1). Assume that there exists a sequence of numbers (An) such that it is
ξ-quasi-monotone satisfying (1)-(5) and the following:

(13)
m∑

n=1

(wα,β
n )k

n
= O(Xm) as m → ∞.

Then the series
∑

anλn is |C, α, β|k summable for k ≥ 1, α > −1, 0 < β ≤ 1
and α + β > 0.

Proof. Putting δ = 0 in Theorem 3.1, we will get (13). We omit the details as
the proof is similar to that of Theorem 3.1 and we use (13) instead of (6). □

Corollary 2. Let (Xn) be a quasi-f -power increasing sequence for some θ (0 <
θ < 1). Assume that there exists a sequence of numbers (An) such that it is
ξ-quasi-monotone satisfying (1)-(5) and the following:

(14)
m∑

n=1

(wβ
n)

k

n
= O(Xm) as m → ∞.

Then the series
∑

anλn is |C, β|k summable for 0 < β ≤ 1 and k ≥ 1.
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Proof. Putting α = 0 and δ = 0 in Theorem 3.1, we get (14). We omit the
details as the proof is similar to that of Theorem 3.1 and we use (14) instead
of (6). □
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