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DERIVATIONS OF CONVOLUTION ALGEBRAS ON FINITE
PERMUTATION SEMIGROUPS

MARÍA J. ALEANDRO

Abstract. If n ∈ N let Sn be the lexicographically ordered discrete semi-
group of permutations of {1, . . . , n}. Our matter is to seek about the struc-
ture and behauviour of derivations of the convolution algebra l1 (Sn). This
problem has its own interest even in the finite case and emerges from stud-
ies of several kinds of amenability on Banach algebras supported on infinite
discrete groups or semigroups.

1. Introduction

The problem of derivations on convolution algebras has a long-standing in-
terest and even today it is a matter of research (among a huge literature the
reader can see [2], [11]). Given a semigroup S and u, v ∈ S we shall write[

uv−1
]
= {x ∈ S : xv = u} and

[
v−1u

]
= {x ∈ S : vx = u} .

It is known that if S is discrete and contains an infinite pairwise disjoint
sequence of sets X (un) = unS ∩ [unu

−1
n ] then l1 (S,w) is not amenable for any

weight function w, that is there is always a Banach l1 (S,w)-bimodule H and a
non-inner derivation Dw : l1 (S,w) → H∗ (cf. [5], Theorem 1.). In particular,
let SN be the discrete semigroup of functions of the positive integers into itself
and let P be the set of prime positive integers. Given a fix p ∈ P and n ∈ N
we write up(n) = pn(p) if n = pn(p)m, with (m : p) = 1. We can represent
n = Πq∈Pq

υq(n), where υq (n) = max {s ∈ N0 : q
s | n} for each q ∈ P. Thus, if

η (n) ≜ pυp(n) then ηup = up and since up is idempotent then upη ∈ X (up).
Further, since upηup = up then (upη) (p

s) = ps for all s ∈ N0. Hence it is readily
seen that {X (up)} is an infinite disjoint sequence of non empty subsets of SN
and l1 (SN, w) is never amenable.
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Now, remember that a semigroup S is called inverse semigroup if for all
v ∈ S there exist a unique element v−1 ∈ S so that vv−1v = v and v−1vv−1 =
v−1. Hence, if S is an inverse semigroup with an infinite set ES of idempo-
tents l1 (S,w) is never amenable (cf. [5], Corollary 1.). Further, combining
this result with the investigation in [4] the algebra l1 (S,w) on an inverse semi-
group S is amenable if and only if ES is finite and every subgroup of S is
amenable. Certainly, for all n ∈ N, by finiteness, each group contained in
Sn is amenable but not necessarily an inverse semigroup. For instance, let us
consider (1, 1, 2) ∈ S3, i.e., the function (1, 1, 2) : 1 → 1, 2 → 1, 3 → 2. Then
(1, 1, 2) has no unique inverse, for

(1, 1, 2) (1, 3, 1) (1, 1, 2) = (1, 1, 2), (1, 1, 2) (1, 3, 3) (1, 1, 2) = (1, 1, 2).
(1, 3, 1) (1, 1, 2) (1, 3, 1) = (1, 3, 1) , (1, 3, 3) (1, 1, 2) (1, 3, 3) = (1, 3, 3).

It is worth mentioning that any derivation on the group algebra of a discrete
group is inner (cf. [7], Theorem 4.). A closer look on the structure and
properties of derivations on l1(Sn) will allow us to derive the results described
in Subsection 1.2.

1.1. Notations. If n ∈ N and g ∈ Sn, let δg = {δg,h}h∈Xn
, where δg,h denotes

the usual Kronecker symbol. Clearly {δg}g∈Sn
is a basis of l1 (Sn) and given

D ∈ L (l1 (Sn)) there is a unique subset
{
λh
g

}
g,h∈Sn

of C such that D (δg) =∑
h∈Sn

λh
gδh for g ∈ Sn. If {δg}g∈Sn

denotes the dual basis of {δg}g∈Sn
then

λh
g =

〈
D (δg) , δ

h
〉
for all g, h ∈ Sn. If m, p ∈ l1 (Sn) then there is a unique set

{F g
h}g,h∈Sn

of linear forms on l1 (Sn) so that

(1) m ∗ p =
∑
g∈Sn

[∑
h∈Sn

mhF g
h (p)

]
δg.

We shall also write Sn as the disjoint union Sn = ∪n
k=1Sn,k, where Sn,k contains

the elements g ∈ Sn so that # Im (g) = k. The Jacobson radical of l1 (Sn) is
denoted by J (l1 (Sn)) and the set of derivations on l1 (Sn) by Z (l1 (Sn)).

1.2. Our results. In Section 2 we shall seek about derivations on l1 (Sn). In
Theorem 1, (2) we determine the precise conditions on the coefficients λh

g in
order that D be a derivation; (3) will be related to the innerness matter while
(4) will describe the beauviour of the transpose of derivations on the forms
F g
h . In Proposition 1 it is shown how l1 (Sn) can be antihomomorphically

embedded into a subalgebra F of Mnn (C). In Theorem 2 we shall see that
Z (l1 (Sn)) is linearly isomorphic to a quotient of the Lie algebra of matrices
λ ∈ Mnn (C) so that adλ (F) ⊆ F. Here upon in Proposition 2 we will give
a complete description of Z (l1 (S2)). Among other properties, it will seen
that any derivation maps onto the explicitly evaluated Jacobson radical. In
[8] it is shown that any element in the image of a bounded derivation on a
Banach algebra U so that [[U ,U ] ,U ] = (0) is quasi-nilpotent. In [10] it is
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proved that any centralizing derivation D on a Banach algebra U maps into
the radical. Although those conditions are sufficient by Proposition 2, they
are not necessary, even in the finite dimensional context. From Proposition 2
we deduce that [[

δ(2,1), δ(2,2)
]
, δ(1,1)

]
= q0 ̸= 0.

Further, we know that any non zero derivation D on l1 (S2) maps onto the
radical and is given as D (m) = ⟨m, λ⟩ q0 for some suitable linear form λ. But

[D (m) ,m] = ⟨m, λ⟩
(
m(1,1) + 2m(2,1) +m(2,2)

)
q0,

i.e., [D (m) ,m] is not centralizing since Z (l1 (S2)) = Cδ(1,2).

2. Derivations on l1 (Sn)

The proof of the following theorem is straightforward:

Theorem 1.

(i) D is a derivation if and only if the following identity holds

(2) λl
gh =

∑
k∈[lh−1]

λk
g +

∑
k∈[g−1l]

λk
h if l, g, h ∈ Sn.

(ii) Let D be an inner derivation, say D = adm for some m ∈ l1 (Sn). If
m =

∑
k∈Xn

mkδk then

(3) λh
g =

∑
k∈[hg−1]

mk −
∑

k∈[g−1h]

mk.

(iii) If D is a derivation then

(4) D∗ (F g
h ) =

∑
l∈Sn

(λg
l F

l
h − λl

hF
g
l ) if g, h ∈ Sn.

Corollary 1. (cf. [1], Lemma 1.1. (ii)) If D ∈ Z (l1 (Sn)) then κ0 (D (m)) =
0, where m ∈ l1 (Sn) ,, κ0 is the augmentation functional, i.e.,

κ0 (D (m)) = ⟨D (m) , 1⟩ .

Proof. Given l, h ∈ Sn by (2) we see that

(5) λl
g =

∑
k∈[lh−1]

λk
g +

∑
k∈[g−1l]

λk
h.
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As Sn ◦ Sn,1 ∪ Sn,1 ◦ Sn ⊆ Sn,1 if l ∈ Sn − Sn,1 then [g−1l] = ∅. By (5), if we
choose h ∈ Sn,1 then [lh−1] = ∅ and λl

g = 0. Now, if g, h ∈ Sn,1 we can write∑
l∈Sn,1

λl
gδl = D (δg)

= D (δgh)

= D (δg ∗ δh)
= D (δg) ∗ δh + δg ∗D(δh)

=
∑
l∈Sn,1

λl
gδl + [

∑
l∈Sn,1

λl
h]δg,

i.e.,
∑

l∈Sn,1
λl
h = 0. Now, given h ∈ Sn we choose any g ∈ Sn,1. Now we get

D (δg) = D (δg ∗ δh)
= [

∑
l∈Sn,1

λl
gδl] ∗ δh + δg ∗

∑
l∈Sn

λl
hδl

= D (δg) + [
∑
l∈Sn

λl
h]δg

and so
∑

l∈Sn
λl
h = 0. The general case now follows by simply spanning. □

Proposition 1.

(i) If g, h ∈ Sn then F g
h = δgδh and F g

h =
∑

i∈[h−1g] δ
i.

(ii) There is a semigroup isomorphism n̂ : Sn → Sn so that n̂ = n̂−1 and

(6) F g
h (δf ) = F

n̂(g)
n̂(h) (δn̂(f))

for all f, g, h ∈ Sn.
(iii) There is an anti-monomorphism F : l1 (Sn) ↪→ Mnn (C).

Proof. (i): Let m ∈ l1 (Sn), l ∈ Sn. By using (1) we have

m ∗ δl =
∑
k∈Snl

 ∑
f∈[kl−1]

mf

 δk =
∑
k∈Sn

[∑
f∈Sn

mfF k
f (δl)

]
δk.

If k /∈ Snl then
∑

f∈Sn
mfF k

f (δl) = 0 and we deduce that F k
f (δl) = 0 for

f ∈ Sn. If k ∈ Snl then ∑
f∈[kl−1]

mf =
∑
f∈Sn

mfF k
f (δl) ,
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and since m is arbitrary we see that F k
f (δl) = 1 if fl = k. Therefore,

F g
h (m) =

∑
f∈Sn

mfF g
h (δf )

=
∑
hf=g

mf

=
∑

f∈[h−1g]

mf

=
∑
f∈Sn

mf ⟨δhf , δg⟩

= ⟨δh ∗m, δg⟩
= ⟨m, δgδh⟩ .

(ii): Let n̂ (f) (i) = f (n− i+ 1), f ∈ Sn and i ∈ {1, ..., n}. It is readily
seen that n̂ is a semigroup isomorphism of Sn and n̂−1 = n̂. Moreover, if
m ∈ l1 (Sn), we can write

F
n̂(g)
n̂(h) (m) =

∑
f∈Sn

mn̂(f)
〈
δn̂(h)n̂(f), δ

n̂(g)
〉

(7)

=
∑
f∈Sn

mn̂(f)
〈
δn̂(hf), δ

n̂(g)
〉

=
∑
f∈Sn

mn̂(f) ⟨δhf , δg⟩

= F g
h (

∨
n (m)),

with
∨
n (m) =

∑
f∈Sn

mn̂(f)δf . If f ∈ Sn we can see that
∨
n (δf ) = δn̂(f) and with

this fact combined with (7) we get (6).
(iii): Let F : l1 (Sn) → Mnn (C) so that F (p) = [F g

h (p)]g,h∈Sn
if p ∈ l1 (Sn) ,

where the upper and lower indexes denote rows and columns, respectively.
Then F is clearly linear. If m, p ∈ l1 (Sn) and g, h ∈ Sn, by (1), we have
δh ∗m =

∑
k∈Sn

F k
h (m) δk. Further,

δh ∗m ∗ p =
∑
k∈Sn

F k
h (m) δk ∗ p =

∑
k∈Sn

F k
h (m)

∑
l∈Sn

F l
k (p) δl.

Consequently,

F g
h (m ∗ p) = ⟨m ∗ p, δgδh⟩

= ⟨δh ∗m ∗ p, δg⟩
=

∑
k∈Sn

F k
h (m)F g

k (p)

= [F (p)F (m)]gh .

Since F (p) = [⟨δh ∗ p, δg⟩]g,h∈Sn
, the injectivity of F is immediate. □
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Remark 1. The anti-monomorphism F of Proposition 1 provides a non trivial
re-presentation of l1(Sn) into Cnn

. Therefore, it suffices to consider

ϱ : l1 (Sn) → L
(
Cnn)

, ϱ (m) (x) = x · F (m) .

For matrix representations of finite dimensional convolution algebras the reader
can see [6].

Theorem 2. Let F = Im (F ) and Dn = {λ ∈ Mnn (C) : adλ (F) ⊆ F}. There
is a bijection between Z (l1 (Sn)) and the quotient linear space Dn/ (Dn ∩ Fc).

Proof. By Theorem 1 (iii) and Proposition 1, if D ∈ Z (l1 (Sn)) then there is
λ ∈ Mnn (C) so that F (D (p)) = adλ (F (p)). Hence λ ∈ Dn. As adλ (F) = (0)
if and only if λ ∈ Fc, we get an injection Ψ : Z (l1 (Sn)) ↪→ Dn/ (Dn ∩ Fc).
Now, if λ ∈ Dn let us write Dλ = F−1 ◦ adλ ◦ F in L (l1 (Sn)). Then Dλ is
a derivation and the linear mapping λ → Dλ is zero on Dn ∩ Fc. Finally it
is readily seen that the induced mapping Dn/ (Dn ∩ Fc) → Z (l1 (Sn)) equals
Ψ−1. □

Proposition 2.

(i) The space Z (l1 (S2)) is two dimensional.

(ii) If D ∈ Z (l1 (S2))− (0) then Im (D) is a non-zero ideal and Im (D)[2] =
(0).

(iii) If D ∈ Z (l1 (S2)) then Im (D) ⊆ J (l1 (S2)).
(iv) Every non-zero derivation within l1 (S2) maps onto the radical.

Proof. (i): By applying Theorem 1 (i) or (iii) it is seen that if m ∈ l1 (S2) and
D is a derivation on l1 (S2) then

(8) D (m) =
[
αm(1,1) + (α + β)m(2,1) + βm(2,2)

]
q0, α, β ∈ C,

where q0 = δ(1,1) − δ(2,2). In this case we have

F
(1,1)
(1,1) = F

(2,2)
(2,2) : m → m(1,1) +m(1,2) +m(2,1) +m(2,2),

F
(1,2)
(1,1) = F

(2,1)
(1,1) = F

(2,2)
(1,1) = F

(1,1)
(2,2) = F

(1,2)
(2,2) = F

(2,1)
(2,2) = 0,

F
(1,1)
(1,2) = F

(2,2)
(2,1) : m → m(1,1),

F
(1,2)
(1,2) = F

(2,1)
(2,1) : m → m(1,2),

F
(1,2)
(2,1) = F

(2,1)
(1,2) : m → m(2,1),

F
(1,1)
(2,1) = F

(2,2)
(1,2) : m → m(2,2).

(ii): Given m, p ∈ l1 (S2) it is sufficient to observe that

D (m) ∗ p = D (m) [p(1,1) + p(1,2) + p(2,1) + p(2,2)],

p ∗D (m) = [p(1,2) − p(2,1)]D (m) .

(iii): An element m ∈ l1 (S2) is singular if and only if
(
m(1,2)

)2
=

(
m(2,1)

)2
or m(1,1) + m(1,2) + m(2,1) + m(2,2) = 0. Besides q0 ∈ J (l1 (S2)) if and only if
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δ(1,2) − p ∗ q0 is regular for any p ∈ l1 (S2) (cf. [3], p. 69). If for a fixed p we

write p̂ = δ(1,2) − p ∗ q0 then p̂ = δ(1,2) −
(
p(1,2) − p(2,1)

)
q0. Hence p̂(1,2) = 1,

p̂(2,1) = 0 and p̂(1,1) + p̂(1,2) + p̂(2,1) + p̂(2,2) = 1, i.e., p̂ becomes regular. Thus
q0 ∈ J (l1 (S2)) and the claim follows by (8).

(iv): We observe that

J
(
l1 (S2)

)
=

{
m ∈ l1 (S2) : m

(1,1) +m(2,2) = m(1,2) = m(2,1) = 0
}

and by a dimensionality argument the claim follows. □

Example 3. The following is the list of non-zero complex homomorphisms on
l1 (S3) induced by homomorphisms h : (S3, ◦) → ({−1, 0, 1} , ·) :

h0 (m) =
∑
g∈S3

mg,(9)

h1 (m) = m(1,2,3) +m(1,3,2) +m(2,1,3) +m(2,3,1) +m(3,1,2) +m(3,2,1),

h2 (m) = m(1,2,3) −m(1,3,2) +m(2,1,3) −m(2,3,1) −m(3,1,2) −m(3,2,1),

h3 (m) = m(1,2,3) −m(1,3,2) −m(2,1,3) +m(2,3,1) +m(3,1,2) −m(3,2,1),

h4 (m) = m(1,2,3) +m(1,3,2) −m(2,1,3) −m(2,3,1) −m(3,1,2) +m(3,2,1).

If D ∈ Z1 (l1 (S3)) the matrix M =
[〈
D (δg) , δ

h
〉]

g,h∈Inv(S3)
has the form

M =


0 0 0 0 0 0
0 0 c1 c2 −c2 −c1
c3 −c1 − c4 c5 −c2 − c6 c2 − c7 c1 − c8
c8 c2 − c3 c7 − c2 −c5 c4 c6
c8 −c2 − c3 c2 + c6 c4 −c5 c7
c3 c1 − c4 −c1 − c8 −c7 −c6 c5

 .

By (9) the Jacobson radical of l1 (S3) is contained in the subspace S of l1 (S3)
defined as

S : m(1,2,3) = m(2,1,3) = m(1,3,2) +m(3,2,1) = m(2,3,1) +m(3,1,2) = 0.

Therefore, if Im (D) ⊆ J (l1 (S3)) the following identities must hold

c1 = c3 = c4 = c5 = c8 = 0 and c2 = −c6 = c7.

References

[1] S. Bowling, J. Duncan, First order cohomology of Banach semigroup algebras, Semi-
group Forum, 56(1) (1998), 130-145.

[2] Y. Choi, M. J. Heath, Characterizing derivations from the disk algebra to its dual, Proc.
Amer. Math. Soc., 139(3) (2011), 1073-1080.

[3] H. G. Dales, Banach algebras and automatic continuity, Lond. Math. Soc. Monogr., 24,
Clarendon Press, New York, 2000.

[4] J. Duncan, I. Namioka, Amenability of inverse semigroups and their semigroup algebras,
Proc. Roy. Soc. Edinburgh Sect. A, 80(3-4) (1978), 309-321.

[5] J. Duncan, L. T. Paterson, Amenability for discrete convolution semigroup algebras,
Math. Scand., 66(1) (1990), 141-146.
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