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PUTNAM’S INEQUALITY FOR QUASI-∗-CLASS A
OPERATORS

M. H. M. RASHID

Abstract. An operator T ∈ B(H ) is called quasi-∗-class (A, k) (abbre-
viation, T ∈ Q∗(A, k)) if T ∗k(|T 2| − |T ∗|2)T k ≥ 0 for a positive integer
k, which is a generalization of ∗-class A. In this paper, firstly we consider
some spectral properties of quasi-∗-class (A, k) operators; it is shown that
if T ∈ Q∗(A, k), then the nonzero points of its point spectrum and the
joint point spectrum are identical, the eigenspaces corresponding to dis-
tinct eigenvalues of T are mutually orthogonal and the nonzero points of
its approximate point spectrum and joint approximate point spectrum are
identical. Also, we consider the Putnam’s inequality for quasi-∗-class (A, k)
operators. Moreover, we prove that two quasisimilar quasi-∗-class (A, k)
operators have equal essential spectra.

1. Introduction

Let H and K be separable complex Hilbert spaces, and let B(H ,K )
denote the algebra of all bounded linear operators from H to K . When H =
K , we write B(H ) for B(H ,H ). An operator T ∈ B(H ) has a unique
polar decomposition T = U |T |, where |T | = (T ∗T )1/2 and U is partial isometry
satisfying ker(U) = ker(T ) = ker(|T |) and ker(U) = ker(T ∗). Recall [2, 4, 11]
that an operator T is p-hyponormal if |T |2p ≥ |T ∗|2p for p ∈ (0, 1], T is called
paranormal if ∥T 2x∥ ≥ ∥Tx∥2 for all unit vector x ∈ H , T is called normaloid
if ∥T∥ = r(T ), the spectral radius of T . Following [15], we say that T ∈ B(H )
belongs to class A if |T 2| ≥ |T |2. According to [12], we say that T ∈ B(H )
is a ∗-class A (abbreviation, T ∈ A∗ ) if |T 2| ≥ |T ∗|2 and T is said to be
∗-paranormal if ∥T ∗x∥2 ≤ ∥T 2x∥ for every unit vector x ∈ H . Following [18],
we say that T ∈ B(H ) is a quasi-class A if T ∗|T 2|T ≥ T ∗|T |2T . We introduce
a new class of operators:
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Definition 1. We say that an operator T ∈ B(H ) is a quasi-∗-class (A, k)
(abbreviate Q∗(A, k)) if

T ∗k|T 2|T k ≥ T ∗k|T ∗|2T k,

where k is a positive integer.

Throughout this paper, we shall denote the spectrum, the point spectrum
and the isolated points of the spectrum of T ∈ B(H ) by σ(T ), σp(T ) and
isoσ(T ), respectively. The range and the kernel of T ∈ B(H ) will be denoted
by ℜ(T ) and ker(T ), respectively. We shall denote the set of all complex
numbers and the complex conjugate of a complex number λ by C and λ, res-
pectively. The numerical range of an operator S will be denoted by W (S).
The closure of a set S will be denoted by S and we shall henceforth shorten
T − λI to T − λ.

In this paper, firstly we consider some spectral properties of quasi-∗-class
(A, k) operators; it is shown that if T is a quasi-∗-class (A, k) operator for a
positive integer k, then the nonzero points of its point spectrum and joint point
spectrum are identical; furthermore, the eigenspaces corresponding to distinct
eigenvalues of T are mutually orthogonal; the nonzero points of its approximate
point spectrum and joint approximate point spectrum are identical. Secondly,
we show that Putnam’s theorems hold for quasi-∗-class (A, k) operator.

2. Some properties of quasi-∗-class A operators

We recall the following result which summarizes some basic properties of
quasi-∗-class (A, k) operators.

Theorem 1. [34] Let T ∈ Q∗(A, k) such that T does not have a dense range.
Then

T =

(
T1 T2

0 T3

)
on H = ℜ(T k)⊕ ker(T ∗k),

where T1 = T |ℜ(Tk)
is the restriction of T to ℜ(T k), and T1 ∈ A∗. Moreover,

σ(T ) = σ(T1) ∪ {0}.

A complex number λ is said to be in the point spectrum σp(T ) of T if there is
a nonzero x ∈ H such that (T −λ)x = 0. If in addition, (T ∗− λ̄)x = 0, then λ
is said to be in the joint point spectrum σjp(T ) of T . Clearly, σp(T ) ⊆ σjp(T ).
In general, σp(T ) ̸= σjp(T ).

In [44], Xia showed that if T is a semi-hyponormal operator, then σp(T ) =
σjp(T ); Tanahashi extended this result to log-hyponormal operators in [39].
Aluthge [3] showed that if T is w-hyponormal, then the nonzero points of σp(T )
and σjp(T ) are identical; Uchiyama extended this result to class A operators
in [41]. In the following, we will point out that if T is a quasi-∗-class (A, k)
operator for a positive integer k, then the nonzero points of σjp(T ) and σp(T )
are also identical and the eigenspaces corresponding to distinct eigenvalues of
T are mutually orthogonal.
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Theorem 2. Let T ∈ B(H ) be a Q∗(A, k) operator and M be its invariant
subspace. Then the restriction T |M of T to M is also a Q∗(A, k) operator.

Proof. Decompose

T =

(
S A
0 B

)
on H = M ⊕ M⊥.

Let Q be the orthogonal projection of H onto M . Then

|S∗|2 ≤ (Q|T ∗|2Q)|M
and

|S2| = (Q|T 2|2Q)
1
2 |M ≥ (Q|T 2|Q)|M .

Let x ∈ M . Then〈
S∗k|S∗|2Skx, x

〉
≤

〈
S∗k(Q|T ∗|2Q)|MSkx, x

〉
=

〈
|T ∗|2T kx, T kx

〉
≤

〈
|T 2|T kx, T kx

〉
=

〈
S∗k(Q|T 2|Q)|MSkx, x

〉
≤

〈
S∗k|S2|Skx, x

〉
.

□

Lemma 1. Let T ∈ B(H ) be a ∗-class A. Let λ ∈ C. Assume that σ(T ) =
{λ}. Then T = λI.

Proof. We consider two cases:
Case I. (λ = 0): Since T is a ∗-class A, T is normaloid. Therefore T = 0.
Case II. (λ ̸= 0): Here T is invertible, and since T is a ∗-class A, we see

that T−1 is also a ∗-class A. Therefore T−1 is normaloid. On the other hand,
σ(T−1) = { 1

λ
}, so ∥T∥∥T−1∥ = |λ|| 1

λ
| = 1. It follows that T is convexoid, so

the numerical range W (T ) = {λ}. Therefore T = λ. □

Lemma 2. Let T ∈ Q∗(A, k) and σ(T ) = {λ} . Then T = λ if λ ̸= 0 and
T k+1 = 0 if λ = 0.

Proof. If T k has dense range, then T is a ∗-class A. So, the result follows from
Lemma 1. If the range of T k is not dense, then

T =

(
T1 T2

0 T3

)
on H = ℜ(T k)⊕ ker(T ∗k),

where T1 = T |ℜ(Tk)
is a ∗-class A, T k

3 = 0 and σ(T ) = σ(T1)∪{0} . In this case

λ = 0. Hence T1 = 0 by Lemma 1. Thus

T k+1 =

(
0 T2

0 T3

)k+1

=

(
0 T2T

k
3

0 T k+1
3

)
= 0.

□

Theorem 3. Let T ∈ Q∗(A, k). Then the following assertions hold.

(a) If M is an invariant subspace of T and T |M is an injective normal
operator, then M reduces T .
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(b) If (T − λ)x = 0 and λ ̸= 0, then (T − λ)∗x = 0.

Proof. (a) Decompose T into T =

(
S A
0 B

)
on H = M ⊕ M⊥ and let

S = T |M be an injective normal operator. Let Q be the orthogonal projection
of H onto M . Since ker(S) = ker(S∗) = {0} , we have

M = ℜ(S) = ℜ(Sk) ⊂ ℜ(T k).

Then (
|S∗|2 0
0 0

)
≤ Q|T ∗|2Q ≤ Q|T 2|Q ≤ (Q|T 2|2Q)

1
2 =

(
|S2| 0
0 0

)
by Hansen’s inequality. Since S is normal, we can write

|T 2| =
(

|S|2 C
C∗ D

)
.

Then (
|S|4 0
0 0

)
= QT ∗T ∗TTQ = Q|T 2||T 2|Q =

(
|S|4 + CC∗ 0

0 0

)
and hence C = 0. Thus(

|S|4 0
0 D

)
= |T 2|2 = T ∗T ∗TT

=

(
S∗S∗SS S∗S∗(SA+ AB)

(A∗S∗ +B∗A∗)SS (A∗S∗ +B∗A∗)(SA+ AB) +B∗B∗BB

)
.

Since S is an injective normal operator, SA+AB = 0 and D = |B2|. If k ≥ 1,
then

0 ≤ T ∗k(|T 2| − |T ∗|2)T k

=

(
−S∗k|A∗|2Sk Y

Y ∗ X +B∗k(|B2| − |B∗|2)Bk

)
.

Thus A = 0.
(b) Let M = span {x} . Then T |M = λ and T |M is an injective normal

operator. Hence M reduces T and T =

(
λ 0
0 B

)
on H = M ⊕ M⊥. Thus

(T − λ)∗x = 0. □

Theorem 4. Let T ∈ B(H ) be a quasi-∗-class (A, k) operator for a positive
integer k. Then the following assertions hold.

(a) σjp(T ) \ {0} = σp(T ) \ {0}.
(b) If Tx = λx, Ty = µy and λ ̸= µ, then ⟨x, y⟩ = 0.

Proof. (a) Clearly by Theorem 3.
(b) Without loss of generality, we assume µ ̸= 0. Then we have (T−µ)∗y = 0

by Theorem 3. Thus we get µ ⟨x, y⟩ = ⟨x, T ∗y⟩ = ⟨Tx, y⟩ = λ ⟨x, y⟩. Since
λ ̸= µ, we have ⟨x, y⟩ = 0. □
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A complex number λ is said to be in the approximate point spectrum σa(T )
of T if there is a sequence {xn} of unit vectors in H such that (T−λ)xn −→ 0.
If in addition, (T − λ)∗xn −→ 0, then λ is said to be in the joint approximate
point spectrum σja(T ) of T . Clearly, σja(T ) ⊆ σa(T ). In general, σja(T ) ̸=
σa(T ). In [44], Xia showed that if T is a semi-hyponormal operator, then
σja(T ) = σa(T ); Aluthge and Wang [3] showed that if T is w-hyponormal,
then the nonzero points of σja(T ) and σa(T ) are identical. In the following,
we will show that if T is a quasi-∗-class (A, k) operator for a positive integer
k, then the nonzero points of σja(T ) and σa(T ) are also identical.

Theorem 5. Let T ∈ B(H ) be a quasi-∗-class (A, k) operator for a positive
integer k. Then σja(T ) \ {0} = σa(T ) \ {0}.

To prove Theorem 5, we need the following auxiliary results.

Theorem 6. [6] Let H be a complex Hilbert space. Then there exists a Hilbert
space K such that H ⊂ K and a map ϕ : B(H ) → B(K ) such that

(a) ϕ is a faithful ∗-representation of the algebra B(H ) on K ;
(b) ϕ(A) ≥ 0 for any A ≥ 0 in B(H );
(c) σa(T ) = σa(ϕ(T )) = σp(ϕ(T )) for every T ∈ B(H ).

Lemma 3. [44] Let ϕ : B(H ) → B(K ) be Berberian’s faithful ∗-represen-
tation. Then σja(T ) = σjp(ϕ(T )).

Proof of Theorem 5. Let ϕ : B(H ) → B(K ) be Berberian’s faithful ∗-
representation of Theorem 6. In the following, we shall show that ϕ(T ) is
also a quasi-∗-class (A, k) operator for a positive integer k. In fact, since T is
a quasi-∗-class (A, k) operator, we have

(ϕ(T ))∗k(|(ϕ(T ))2|−|ϕ(T ∗)|2)(ϕ(T ))k = ϕ
(
T ∗k(|T 2| − |T ∗|2)T k

)
≥ 0.

Hence, we have

σa(T ) \ {0} = σa(ϕ(T )) \ {0} = σp(ϕ(T )) \ {0}
= σjp(ϕ(T )) \ {0} = σja(T ) \ {0}.

□

Theorem 7. Let T ∈ B(H ) be a quasi-∗-class (A, k) operator for a positive
integer k. Then

σ(T ) \ {0} = (σa(T
∗) \ {0})∗ = {λ : λ̄ ∈ σa(T

∗) \ {0}}.

Proof. It suffices to prove σ(T )\{0} ⊂ (σa(T
∗)\{0})∗ = {λ : λ̄ ∈ σa(T

∗)\{0}}
for every T ∈ B(H ). Hence we have

σa(T ) \ {0} = σja(T ) \ {0} ⊂ (σa(T
∗) \ {0})∗

by Theorem 5. This achieves the proof. □
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Putnam [29] proved some theorems concerning spectral properties of hy-
ponormal operators. These theorems were generalized to p-hyponormal oper-
ators by Chō et al. in [8, 9]. In the following, we extend these theorems to
quasi-∗-class (A, k) operators.
We show the first generalization concerning points in the approximate point

spectrum of a quasi-∗-class (A, k) operator for a positive integer k as follows.

Theorem 8. Let T ∈ B(H ) be a quasi-∗-class (A, k) for a positive integer
k. If λ ̸= 0 such that λ ∈ σa(T ), then |λ| ∈ σa(|T |) ∩ σa(|T ∗|).

To prove Theorem 8, we need the following auxiliary results.

Theorem 9. Let T = U |T | be the polar decomposition of T , λ ̸= 0, and {xn}
be a sequence of vectors. Then the following assertions are equivalent.

(a) (T − λ)xn → 0 and (T ∗ − λ̄)xn → 0,
(b) (|T | − |λ|)xn → 0 and (U − eiθ)xn → 0,
(c) (|T ∗| − |λ|)xn → 0 and (U∗ − e−iθ)xn → 0.

Proof of Theorem 8. If λ ̸= 0 and λ ∈ σa(T ), a sequence of unit vectors exists
such that (T −λ)xn → 0 and (T ∗ − λ̄)xn → 0 by Theorem 5. Hence the result
holds by Theorem 9. □

Corollary 1. Let T ∈ B(H ) be a quasi-∗-class A operator. If λ ̸= 0 such
that λ ∈ σa(T ), then |λ| ∈ σa(|T |) ∩ σa(|T ∗|).
Definition 2. [7] An operator T is said to have Bishop’s property (β) at
λ ∈ C if for every open neighborhood G of λ, the function fn ∈ Hol(G)
with (T − λ)fn(µ) → 0 uniformly on every compact subset of G implies that
fn(µ) → 0 uniformly on every compact subset of G, where Hol(G) means the
space of all analytic functions on G. When T has Bishop’s property (β) at
each λ ∈ C, simply say that T has property (β).

Lemma 4. [24] Let G be an open subset of the complex plane C and let fn ∈
Hol(G) be functions such that µfn(µ) → 0 uniformly on every compact subset
of G. Then fn(µ) → 0 uniformly on every compact subset of G.

Lemma 5. Let T ∈ Q∗(A, k). Then T has Bishop’s property (β).

Proof. If T k has a dense range, then T is a ∗-class A, so the result follows from
Proposition 2.4 of [12] (T is ∗-paranormal). Assume that T k does not have a
dense range. Then T has the matrix representation

T =

(
T1 T2

0 T3

)
on H = ℜ(T k)⊕ ker(T ∗k),

where T1 = T |ℜ(Tk)
is a ∗-class A, T k

3 = 0 and σ(T ) = σ(T1) ∪ {0}.
Let fn(z) be analytic onD. Let (T−z)fn(z) → 0 uniformly on each compact

subset of D. Then(
T1 − z T2

0 T3 − z

)(
fn1(z)
fn2(z)

)
=

(
(T1 − z)fn1(z) + T2fn2(z)

(T3 − z)fn2(z)

)
→ 0
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since T k
3 = 0, T3 has Bishop’s property (β) and fn2(z) → 0. If an operator T1

is a ∗-class A, then T1 has Bishop’s property (β). Thus fn1(z) → 0. □

The quasinilpotent part of T − λ is defined as

H0(T − λ) =
{
x ∈ H : lim

n→∞
∥(T − λ)n∥1/n = 0

}
.

In general, ker(T − λ) ⊂ H0(T − λ) and H0(T − λ) is not closed. Let F ⊂ C
be a closed set. Then the global spectral subspace is defined by

χT (F ) = {x ∈ H | ∃ analytic f(z) : (T − λ)f(z) = x onC \ F} .

Theorem 10. Let T ∈ Q∗(A, k). Then

H0(T − λ) =

{
ker(T − λ), if λ ̸= 0;
ker(Tm+1), if λ = 0.

Moreover, if 0 ̸= λ, then H0(T − λ) = ker(T − λ) ⊂ ker(T − λ)∗.

Proof. Since T has Bishop’s property (β) by Lemma 5 and H0(T − λ) =
χT ({λ}) by Theorem 2.20 of [1], H0(T−λ) is closed and σ(T |H0(T−λ)) ⊂ {λ} by
Proposition 1.2.19 of [26]. Let S = T |H0(T−λ). Then S is a Q∗(A, k) operator
by Theorem 2. Hence, we divide the proof into 3 cases:
Case I. If σ(S) = σ(T |H0(T−λ)) = ∅, then H0(T−λ) = {0} , and so ker(T−λ) =
{0} .
Case II. If σ(S) = {λ} and λ ̸= 0, then S = λ by Lemma 2, and H0(T − λ) =
ker(S − λ) ⊂ ker(T − λ).
Case III. If σ(S) = {0} , then Sm+1 = 0 by Lemma 2, andH0(T ) = ker(Sm+1) ⊂
ker(Tm+1).

Moreover, let λ ̸= 0. In this case, S = λ. Hence S is normal and invertible,
so H0(T − λ) reduces T by Theorem 3. Thus H0(T − λ) = ker(T − λ) ⊂
ker(T − λ)∗. □

Theorem 11. The eigenvalues of a ∗-class A operator are normal (i.e., the
corresponding eigenspaces are reducing).

Proof. If T ∈ B(H ) is ∗-class A, λ ∈ σp(T ) and Tx = λx for some nontrivial
x ∈ H , ∥x∥ = 1, then∥∥(T ∗ − λ̄)x

∥∥2
= ∥T ∗x∥2 − λ ⟨T ∗x, x⟩ − λ̄ ⟨x, T ∗x⟩+ ∥λ∥2

≤
∥∥T 2x

∥∥ ∥x∥ − λ ⟨x, Tx⟩ − λ̄ ⟨Tx, x⟩+ ∥λ∥2 = 0.

□

3. Putnam’s inequality of quasi-∗-class A operators

In general, by the condition S−1TS = T ∗ and 0 /∈ W (S) we cannot get
that T is normal. For instance, [35], if T = SB, where S is positive and
invertible, B is self-adjoint, and S and B do not commute, then S−1TS = T ∗

and 0 /∈ W (S), but T is not normal.
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I. H. Sheth showed that if T is a hyponormal operator and S−1TS = T ∗

satisfying 0 /∈ W (S), then T is self-adjoint. I. H. Kim [22] extended the result
of Sheth to the class of p-hyponormal operators. In the following, we shall
show that if T or T ∗ is ∗-class A operator, the result of Sheth also holds.

Theorem 12. Let T or T ∗ be a ∗-class A and S be an operator satisfying
0 /∈ W (S) such that ST = T ∗S. Then T is self-adjoint.

To prove Theorem 12 the following lemmas are needed.

Lemma 6. [35] Let T ∈ B(H ) be an operator such that S−1TS = T ∗, where

S is an operator satisfying 0 /∈ W (S). Then σ(T ) ⊂ R.
Lemma 7. [33] Let T ∈ B(H ) be a ∗-class A operator, then the following
inequality holds∥∥|T 2| − |T ∗|2

∥∥ ≤
∥∥∥|T̃1,1| − |T̃ ∗

1,1|
∥∥∥ ≤ 1

π
measσ(T ),

where T = U |T | is the polar decomposition of T , T̃1,1 = |T |U |T | and measσ(T )
is the planar Lebesgue measure of the spectrum of T . Moreover, if measσ(T ) =
0, then T is normal.

Proof of Theorem 12. Assume that T or T ∗ is a ∗-class A operator. Since
0 /∈ W (S) and σ(T ) ⊂ W (S), we have S is invertible and 0 /∈ W (S−1).
Hence (S−1)−1TS−1 = T ∗ holds by ST = T ∗S. Hence we have σ(T ) ⊂ R by

applying Lemma 6. Thus σ(T ∗) = σ(T ) ⊂ R. So we have that meas σ(T ) =
meas σ(T ∗) = 0 for the planar Lebesgue measure, whence we get that T or T ∗

is normal by Lemma 7. Hence T is self-adjoint since σ(T ) = σ(T ∗) ⊂ R. □

It is well known that a class A operator with real spectrum is self-adjoint.
More generally, from the proof of Theorem 12 we have the following.

Corollary 2. Let T ∈ B(H ) be a ∗-class A operator, and σ(T ) ⊂ R, then T
is self-adjoint.

The following theorem is about Putnam’s inequality for Q∗(A, k) operators.

Theorem 13. Let T ∈ Q∗(A, k) be an operator for a positive integer k. Then∥∥P (|T 2| − |T ∗|2|)P
∥∥ ≤ 1

π
meas σ(T ),

where P is the orthogonal projection of H onto ℜ(T k) and meas σ(T ) is the
planar Lebesgue mesure of the spectrum of T .

Proof. Consider the matrix representation of T with respect to the decompo-

sition H = ℜ(T k) ⊕ ker(T ∗k), T =

(
T1 T2

0 T3

)
. Let P be the orthogonal

projection of H onto ℜ(T k). Then T1 = TP = PTP . Since T ∈ Q∗(A, k), we
have

P (|T 2| − |T ∗|2)P ≥ 0.
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Then

|T 2
1 | = (PT ∗PT ∗TPTP )

1
2 = (PT ∗T ∗TTP )

1
2 = (P |T 2|2P )

1
2 ≥ P |T 2|P

by Hansen’s inequality [28]. On the other hand

|T ∗
1 |2 = T1T

∗
1 = PTPP ∗T ∗P ∗ = P |T ∗|2P ≤ P |T 2|P.

So we have

|T ∗
1 |2 = P |T ∗

1 |2P ≤ P |T 2|P ≤ |T 2
1 |.

Hence

0 ≤ P (|T 2| − |T ∗|2)P ≤ |T 2
1 | − |T ∗

1 |2.
Since T1 is a ∗-class A operator by Theorem 1, we have∥∥P (|T 2| − |T ∗|2)P

∥∥ ≤
∥∥|T 2

1 | − |T ∗
1 |2

∥∥ ≤ 1

π
meas σ(T1) =

1

π
meas σ(T ),

by Lemma 7 and Theorem 1. This achieves the proof. □

Theorem 14. Let T ∈ B(H ) be an injective quasi-∗-class (A, k) operator for

a positive integer k and S be a positive operator satisfying 0 /∈ W (S) such that
ST = T ∗S. Then T is a direct sum of a self-adjoint and a nilpotent operator.

Proof. Since T ∈ Q∗(A, k), we have the following matrix representation by
Theorem 1

T =

(
T1 T2

0 T3

)
on H = ℜ(T k)⊕ ker(T ∗k),

where T1 is a ∗-class A operator on ℜ(T k) and T k
3 = 0. Since ST = T ∗S

and 0 /∈ W (S), we have σ(T ) ⊂ R by Lemma 6. Hence σ(T1) ⊂ R because
σ(T ) = σ(T1)∪{0}. So, we have that T1 is self-adjoint by Corollary 2 since T1

is a ∗-class A operator on ℜ(T k). Let P be the orthogonal projection of H

onto ℜ(T k). By Hansen’s inequality [28], we have(
|T 2

1 | 0
0 0

)
= (P |T 2|2P )

1
2 ≥ P |T 2|P ≥ P |T ∗|2P = PTT ∗P =

(
|T ∗

1 |2 0
0 0

)
.

Since T1 is self-adjoint, hence we can write

|T 2| =
(

T 2
1 A

A∗ B

)
.

So, we have(
T 4
1 0
0 0

)
= P |T 2||T 2|P

=

(
1 0
0 0

)(
T 2
1 A

A∗ B

)(
T 2
1 A

A∗ B

)(
1 0
0 0

)
=

(
T 4
1 + AA∗ 0

0 0

)
.
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This implies that A = 0 and |T 2|2 =
(

T 4
1 0
0 B2

)
. On the other hand,

|T 2|2 = T ∗T ∗TT

=

(
T1 0
T ∗
2 T ∗

3

)(
T1 0
T ∗
2 T ∗

3

)(
T1 T2

0 T3

)(
T1 T2

0 T3

)
=

(
T 4
1 T 2

1 (T1T2 + T2T3)
(T1T2 + T2T3)

∗T 2
1 |T1T2 + T2T3|2 + |T 2

3 |2
)
.

Since T is injective and ker(T1) ⊆ ker(T ), we have that T1 is injective. Hence
T1T2 + T2T3 = 0 and B = |T 2

3 |. Since T ∈ Q∗(A, k), by simple calculation, we
have

0 ≤ T ∗k(|T 2| − |T ∗|2)T k

=

(
−T k

1 |T ∗
2 |2T k

1 Y
Y ∗ X + T ∗k

3 (|T 2
3 | − |T ∗

3 |2)T k
3

)
.

Recall that

(
A B
B∗ Z

)
≥ 0 if and only if A,Z ≥ 0 and Y = A

1
2WZ

1
2 for some

contraction W . Thus we have T2 = 0. This achieves the proof. □

4. Quasisimilarity

For two bounded linear operators S and T on the Hilbert spaces, S and
T are said to be quasisimilar if there are two injective operators with dense
ranges, X and Y such that XS = TX and SY = Y T . Though quasi-similarity
is a weaker equivalence relation for operators, it is an interesting equivalence
relation for the seminormal operators since quasi-similarity preserves spectrum
and essential spectrum [27] as well as some other properties for ∗-class A
operators.

Recall that a subspace M of H is called spectral maximal space for T if
M contains every invariant subspace C of T for which σ(T |C) ⊂ σ(T |M ).

Definition 3. [1] An operator T ∈ B(H ) is said to be decomposable if for
any finite open covering {U1, U2, . . . , Un} of spectrum of T , there exist spectral
maximal subspaces M1,M2, . . . ,Mn of T such that

(i) H = M1 + M2 + · · ·+ Mn and
(ii) σ(T |Mi

) ⊂ Ui, for i = 1, 2, . . . , n.

We say that an operator T is subdecomposable operator if it is the restriction
of a decomposable operator to its invariant space (see [1]). It is well known
that T is decomposable if and only if T has Bishop property (β). The following
result of Yang is crucial to our purpose.

Proposition 1. [45] Let T ∈ B(H ) and S ∈ B(K ) be two quasisimilar
subdecomposable operators. Then σ(T ) = σ(S).
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Theorem 15. If quasi-∗-class (A, k) operators T, S ∈ B(H ) are quasisimilar,
then they have equal spectrum.

Proof. Let T, S ∈ B(H ) be quasi-∗-class (A, k) operators. From Theorem 5,
T and S satisfy Bishop property (β) and hence T and S are subdecomposable
operators. Then by Proposition 1, it follows that the spectrum of T and S are
equal. □

Two operators T ∈ B(H ) and S ∈ B(K ) are densely similar if there exist
X ∈ B(H ,K ) and Y ∈ B(K ,H ) such that they have dense ranges and
XT = SX and Y S = TY .

Theorem 16. If quasi-∗-class (A, k) operators T, S ∈ B(H ) are densely
similar, then they have equal essential spectrum.

Proof. Since T and S are quasi-∗-class (A, k) operators, both T and S satisfies
Bishop property (β). Then by applying [26, Theorem 3.7.13], it follows that
they have equal essential spectrum. □

Proposition 2. [33] Let T ∈ B(H ) and S ∈ B(K ) be two quasisimilar
∗-class A operators. Then they have the same essential spectrum.

Let MQ =

(
S Q
0 T

)
be an 2 × 2 upper-triangular operator matrix acting

on the Hilbert space H ⊕ K and let σe(T ) denote the essential spectrum of
T ∈ B(H ).

Proposition 3. [20] Assume that σe(T )∩σe(S) has no interior points. Then,
for every Q ∈ B(K ,H ),

σe(MQ) = σe(T ) ∪ σe(S).

Now we prove that two quasisimilar quasi-∗-class (A, k) operators have equal
essential spectrum.

Theorem 17. If quasi-∗-class (A, k) operators T, S ∈ B(H ) are quasisimilar,
then they have equal essential spectrum.

Proof. Let T, S ∈ B(H ) be quasisimilar quasi-∗-class (A, k) operators. Then
there exist quasi-affinities X and Y such that XT = SX and Y S = TY . By
Theorem 1, decompose T and S a as follows:

T =

(
T1 T2

0 T3

)
on H = R(T k)⊕ ker(T ∗k),

S =

(
S1 S2

0 S3

)
on K = R(Sk)⊕ ker(S∗k),

where T1 = T |R(Tk)
, S1 = S|R(Sk)

are ∗-class A operators, σ(T ) = σ(T1) ∪ {0}
and σ(S) = σ(S1)∪ {0}. Since quasisimilar ∗-class A operators have the same
essential spectrum by Proposition 2, in view of Theorem 1 and Proposition 3,
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it is enough to show that the domain of T3 is {0} if and only if the domain of
S3 is {0}. Since XT = SX, XT k = SkX. Let 0 ̸= x ∈ H such that T ∗kx = 0.
Then by the equality XT k = SkX, we have S∗kY ∗ = 0. Since Y ∗ is one to one,
we have that the domain of S3 is {0} implies that the domain of T3 is {0}. By
a similar argument as above using the equality Y S = TY we obtain that the
domain of T3 is {0} and hence the domain of S3 is {0}. □
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