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HERMITE-HADAMARD TYPE INEQUALITIES FOR TWICE
DIFFERENTIABLE GENERALIZED BETA-PREINVEX
FUNCTIONS VIA k-FRACTIONAL INTEGRALS

ROZANA LIKO AND ARTION KASHURI

ABSTRACT. In the present paper, a new class of generalized beta-preinvex
function is introduced and some new integral inequalities for the left hand
side of the Gauss—Jacobi type quadrature formula involving generalized
beta-preinvex functions are given. Moreover, some Hermite-Hadamard type
inequalities for generalized beta-preinvex functions that are twice differen-
tiable via k-fractional integrals are established. At the end, some applica-
tions to special means are given. These general inequalities give us some
new estimates for Hermite-Hadamard type k-fractional integral inequali-
ties.

1. INTRODUCTION

The following notation is used throughout this paper. We use I to denote
an interval on the real line R = (—o0, +00) and I° to denote the interior of I.
For any subset K C R"™, K° is used to denote the interior of K. The symbol
R™ is used to denote a generic n-dimensional vector space. The nonnegative
real numbers are denoted by R, = [0, 400). The set of integrable functions on
the interval [a, b] is denoted by Li[a, b].

The following inequality, named Hermite-Hadamard inequality, is one of the
most famous inequalities in the literature for convex functions.

Theorem 1. Let f : I C R — R be a convex function on an interval I of
real numbers and a,b € I with a < b. Then the following inequality holds:

(252 < [ e 22338

The following definition will be used in the sequel.
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Definition 1. The hypergeometric function oF}(a, b; ¢; z) is defined by
1 g b—1

—_— Tl =) (1 — 2t) Tt

B(b,c—b) /0 1=9) ( )

for ¢ > b > 0 and |z| < 1, where B(z,y) is the Euler beta function for all
x,y > 0.

2F1(aa b; c; Z) =

In recent years, various generalizations, extensions and variants of such in-
equalities have been obtained, see [1, 2]. For other recent results concerning
Hermite-Hadamard type inequalities through various classes of convex func-
tions, see [3, 4, 5] and the references cited therein.

Fractional calculus, see [4] and the references cited therein, was introduced
at the end of the nineteenth century by Liouville and Riemann, the subject of
which has become a rapidly growing area and has found applications in diverse
fields ranging from physical sciences and engineering to biological sciences and
economics.

Definition 2. Let f € Li[a,b]. The Riemann-Liouville integrals J¢, f and
Jgt f of order a > 0 with @ > 0 are defined by

S @) = e [ @0 @ v

and

b
B f@) = g [ =00 b

+oo
where I'(a) = / e “u*du.
0

Here J2, f(x) = J)_f(x) = f(z). In the case of @ = 1, the fractional integral
reduces to the classical integral.

Due to the wide application of fractional integrals, some authors extended to
study fractional Hermite-Hadamard type inequalities for functions of different
classes, see [4, 6] and the references cited therein.

Definition 3. ([7]) If £ > 0, then k-Gamma function Iy is defined as

o onlkn(nk)E Tt

If Re(ar) > 0 then k-Gamma function in integral form is defined as

oo tk
Fe(a) = / t* e wdt
0
with the following property
Ce(a+ k) = al'g(«a).
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Definition 4. ([8]) Let f € Li[a, b]. Then k-fractional integrals of order o, k >
0 with a > 0 are defined as

1" o,
@) = ey [ @ 0E 0 2>

and

ak _ 1 ’ -1
L f(x) = ka(a)/x (t —x)e " f(t)dt, b>x.

For k =1, k-fractional integrals give Riemann-Liouville integrals.
Now, let us recall some definitions of various convex functions.

Definition 5. ([9]) A non-negative function f : I C R — R, is said to be
P-function (or P-convex), if

flz+ (1 =t)y) < f(z)+ fy)
for all z,y € I, t € [0,1].

Definition 6. ([10]) A function f : R, — R is said to be s-convex in the
second sense, if

fltr+ (1 =t)y) <t°f(x) + (1 —1)°f(y)
for all z,y € R,, t € [0,1] and s € (0, 1].

It is clear that a l-convex function must be convex on R, as usual. The
s-convex functions in the second sense have been investigated in [10].

Definition 7. ([11]) A set K C R™ is said to be invex with respect to the
mapping o : K x K — R" if x + to(y,z) € K for every z,y € K and
t € 10,1].

Notice that every convex set is invex with respect to the mapping o(y,z) =
y — x, but the converse is not necessarily true. For more details, see [11, 12]
and the references therein.

Definition 8. ([13]) The function f defined on the invex set K C R™ is said
to be preinvex with respect to o, if for every z,y € K and ¢ € [0, 1], we have
that

[z +to(y, ) < (1 =0)f(x) +1f(y).

The concept of preinvexity is more general than convexity since every convex
function is preinvex with respect to the mapping o(y,z) = y — x, but the
converse is not true.

The Gauss—Jacobi type quadrature formula has the following

“+o00

b
1) [ @ ar =0t @de = Y Buaf(u) + Rl

for certain By, x, v, and rest RF | f]|.
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Recently, Liu in [14] obtained several integral inequalities for the left hand
side of (1) under the definition of P-function (Definition 5). Also in [15],
Ozdemir et al. established several integral inequalities concerning the left-
hand side of (1) via some kinds of convexity.

Motivated by these results, in Section 2, the notion of generalized beta-
preinvex function is introduced and some new integral inequalities for the
left hand side of (1) involving generalized beta-preinvex functions are given.
In Section 3, some Hermite-Hadamard type inequalities for generalized beta-
preinvex functions that are twice differentiable via k-fractional integrals are
established. In Section 4, some applications to special means are obtained. In
Section 5, some conclusions and future research are given. These general in-
equalities give us some new estimates for Hermite-Hadamard type k-fractional
integral inequalities.

2. NEW INTEGRAL INEQUALITIES

Definition 9. ([16]) A set K C R" is said to be m-invex with respect to
the mapping o : K x K x (0,1] — R for some fixed m € (0, 1], if mz +
to(y,x,m) € K holds for each x,y € K and any ¢ € [0, 1].

Remark 1. In Definition 9, under certain conditions, the mapping o(y, z,m)
could reduce to o(y,x).

Definition 10. ([17]) Let K C R™ be an open m-invex set with respect to
o: K x K x (0,1 — R" and a continuous function ¢ : I — K. For
f: K — R and any fixed s,m € (0, 1], if

f(mo(z) + Aa(e(y), p(x),m)) <m(L—X)°f(p(x)) + X f(o(y))

is valid for all z,y € I,A € [0,1], then we say that f(x) is a generalized
(s, m, ¢)-preinvex function with respect to o.

Next we give a new definition, to be referred as generalized beta-preinvex
function.

Definition 11. Let K C R" be an open m-invex set with respect to o :
K x K x(0,1] — R™ and a continuous function ¢ : I — K. For f : K — R
and some fixed m € (0, 1], if

f(me(x) +1to(o(y), p(x),m)) < mt?(1 — )7 f(o(x)) + 191 — 1) f(d(y))
is valid for all z,y € I,t € [0,1] where p,q > —1, then we say that f(x) is a
generalized beta-preinvex function with respect to o.

Remark 2. In Definition 11, it is worthwhile to note that the class of generalized
beta-preinvex functions is a generalization of the class of P-convex functions
given in Definition 5, s-convex in the second sense functions given in Defini-
tion 6 and generalized (s, m, ¢)-preinvex functions given in Definition 10, for
(p.9) = 1(0,0), (5,0), (0, )}, where m = 1, o(6(y), 6(x), m) = () — md(x)
and ¢(z) =z, Vo € I.
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In this section, in order to prove our main results regarding some new in-

tegral inequalities involving generalized beta-preinvex functions, we need the
following lemma.

Lemma 1. Let ¢ : I — K be a continuous function. Assume that f :

K = [m¢(a), mo(a) + o(o(b), p(a),m)] — R is a continuous function on the
interval of real numbers K° with respect to 0 : K x K x (0,1] — R, for

a(p(b),p(a),m) > 0. Then for some fired m € (0,1] and any fixed p,q > 0, we
have

meo(a)+o(p(b),o(a),m)
/ (z — md(a)P(mdla) + o($(b), $(a),m) — 2)f(x)dz

mae(a)
=P 60).ofa)m) [ (1= 07 (mofa) + t0(60). o(a). m))i.

Proof. 1t is easy to observe that

mé(@)+0($(b),6(a).m)
/ (x —mo(a))’(me(a) + a(6(b), ¢(a), m) — x)* f(x)dx

mao(a)

— o (6(b), $(a), m) / (mé(a) + to(6(5), 6(a), m) — mo(a))?

x (mo(a) +o(6(b), p(a),m) —me(a) — to(d(b), (a),m))!
x f(me(a) + to(p(b), p(a), m))dt

= (B 0(a).m) [ (1= 0 Fmo(a) +t(6(0), o), m)d.

So, the proof of this lemma is completed. O

Theorem 2. Let ¢ : I — K be a continuous function. Assume that f :
K = [mo(a),mo(a) + o(é(b), p(a),m)] — R is a continuous function on the
interval of real numbers K° with o(p(b), ¢p(a),m) > 0. If k > 1 and ]f]% is
a generalized beta-preinvex function on an open m-invex set K with respect to
o: K x K x(0,1] — R for some fized m € (0,1], where r,s > —1, then for
any fixed p,q > 0,

me(a)+o(p(b),o(a),m)
/ ) (z — md(a)P(mla) + o($(b), $(a), m) — 2)f(z)dz
< oPH(p(b), p(a), m) [5(7“ + 1,5+ 1)] w [ﬂ(/{;p + 1, kq + 1)] %

k-1

X |ml(@(@)IFT + | (e@)IFT] © .
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Proof. Since |f |% is a generalized beta-preinvex function on K, combining
Lemma 1, Holder inequality and properties of the modulus, we get

mae(a)+o(p(b),o(a),m)
/ (z — md(a)P(mla) + o($(b), $(a),m) — 2)f(x)dz

mao(a)

Sl

< |0 (¢(b), p(a), m)[PH ! [/O (1 - t)kth]

k—1

k

x [ | 1rmota +w<¢(b),¢<a>,m>>|k’%dt]

el

< o7 (6(b), d(a), m) [ Bkp + 1, kg +1)]

. [/ (e (L= 716|521 — 67 F (0| 7*) ‘”]
= Pt (p(b), P(a), m) [6(7“ +1,5+ 1)] g [ﬁ(kp + 1, kq+ 1)}}@
< [mlF(o@)|=T +17@)I=T] ©
So, the proof of this theorem is completed. U

Corollary 1. Under the conditions of Theorem 2 for r = 0, we get ([17],
Theorem 2.2).

Theorem 3. Let ¢ : I — K be a continuous function. Assume that f :
K = [mo(a),mo(a) + a(é(b), p(a),m)] — R is a continuous function on the
interval of real numbers K° with o(p(b), ¢(a),m) > 0. If I > 1 and |f|' is a
generalized beta-preinvex function on an open m-invex set K with respect to
o: K x K x (0,1 — R for some fized m € (0,1] where r,s > —1, then for
any fixed p,q > 0,

me(a)+o(¢(b).¢(a),m)
/¢( | (z —me(a))’(m¢(a) + o (p(b), ¢(a), m) — x)" f(x)dx
< 0" (@(b), d(a),m) [B(p+ L g+ 1)]

x[mB(p+r+1g+s+1)[f(6a)'+8p+s+1Lq+r+1)|f(e®)]"

-1
l
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Proof. Since |f|' is a generalized beta-preinvex function on K, using Lemma 1,
the well-known power mean inequality and properties of the modulus, we get

mae(a)+o(p(b),p(a),m)
/M) (z — mé(a)P(mdla) + o($(b), 6(a), m) — @) f (x)da

= o717 (9(b), 6(a). m)
<[ ra—or) Tlea 1) fmot) + to(o(). ota),m)ar

1—

< |o(¢(b), p(a), m)[F+e [ /0 (1 —t)th]

-

o~

X [/0 tr(1 —t)q\f(mcb(a)+t0(¢(b),¢(a),m))|ldt]

-1

l

< 0" (G(), 6(a), m) | B(p+L.q + 1)

xLAwu_gqmml_wuwmmhwﬂr%ruwwW%ﬂ

= o (6(0). ofa). m) [Bp+ Lg+ 1] T

1
[

X|mB (o +7+1,q+s+ 1) [f@@)'+B(p+s+1La+r+1) feO)] "

So, the proof of this theorem is completed. [l

Corollary 2. Under the conditions of Theorem 3 for r = 0, we get ([17],
Theorem 2.3).

3. NOVEL HERMITE-HADAMARD-TYPE INEQUALITIES

In this section, in order to prove our main results regarding some general-
izations of Hermite-Hadamard type inequalities for generalized beta-preinvex
functions via k-fractional integrals, we need the following new integral identity.

Lemma 2. Let ¢ : [ — K be a continuous function. Suppose K = [m¢(a),

me(a) + o(p(b),p(a),m)] € R be an open m-inver subset with respect to
o: K x K x (0,1 — R for some fired m € (0,1] where r € [0,1] and
let o(p(b), p(a),m) > 0. Assume that f : K — R be a twice differentiable
function on K° and f" € Ly(K). Then for a,k > 0, the following identity for
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k-fractional Riemann—Liouville integrals holds:
o1 (9(x), 6(a), m) ' (mip(a) + TEDEDI )~ E 4 (9(a), 6(0). m) [ (1))
(r+1) (% +1) o(6(b), 9(a), m)
0% (9(x), dla), m) f (m(a) + LA 4 % (6(), 6(b), m) f(mo(b))
o (p(b), d(a), m)

(r+1)5Tk(a + k)
a(¢(b), 6(a),m)

|t (o) FHRLEI ) o fmota))

rtl (m(a)+ Hegem)

_ oFP(g().6(a). m)
(r+ 17 (3 + 1) 0(6(b). 6(a).m)

< [ e (o) + —otota), olam) ) d

(ol o). m) ) dr

We denote
Ay p(xi0,0,w,m,a,b)
_ oR M), ola)m)
(w+1)% (§ +1) a((b), 6(a), m)

o <¢<x>,¢<a>,m>> i

< [ =i (mo) + —otot. o). m) e

Proof. A simple proof of the equality can be done by performing two integra-
tion by parts in the integrals from the right side of relation (2) and changing
the variables. The details are left to the interested reader. 0

Using relation (2), the following results can be obtained for the correspond-
ing version for power of the absolute value of the second derivative.

Theorem 4. Let ¢ : I — A be a continuous function. Suppose that A =
me¢(a), mo(a) + o(p(b), p(a),m)] C R is an open m-invex subset with respect
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too: Ax Ax (0,1 — R for some fized m € (0,1] and Yw € [0, 1], where
r,s > —1 and let o(¢p(b),p(a),m) > 0. Assume that f : A — R is a twice
differentiable function on A°. If |f"|? is a generalized beta-preinvex function
on A, q > 1, pt+q ! =1, then for a,k > 0, the following inequality for
k-fractional Riemann—Liouville integrals holds:

(3)

| A (0,0, w,m, a,b)|

<

(L) 2+ Tks 1 P Lk
“\w+1 p(¢+1)+1) (k+a)a(e(b), ¢(a), m)

X{Ia(aﬁ(w),cb(a),m)!z“ mw+ 1) Fl(rj_:“ 7+ 2 )

/" (¢(a))]*

Q=

(w+1)" o Fy (=1, s+ 155 + 2
_|_
s+1

) | (¢(1’))|q]

m(w+1)* - Fy (=s, 7+ 1;7 +2

’w+1) q
— 1)

+o(p(x), d(b), m)|F+2

(w+1)" o Fy (=r,s+1;5+2

’w+1) q %
— 7 <¢<x>>|] }

Proof. Suppose that ¢ > 1. Using generalized beta-preinvexity of |f”|?, Holder
inequality and taking the modulus, we have

_|_

‘Aa,k($; g, ¢7 w,m, a, b)|

0 (¢(x), p(a), m)|F+2
T (w12 (g + 1) [o(6(b), ¢a), m)]

< [t (o) + oo, olar.m)

o (d(x), $(b), m) |+
(w+1)2 (§ +1) lo(6(b), ¢(a), m)|

< [ =y (mo +

0 (6(x), 6 <>m>|%+2 L))
= w17 (2 + 1) 000, o), m) ([ i)

dt

dt

a<¢<x>,¢<b>,m>)

w+ 1
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¢ \3
dt>

S fea ) oo |:;+2a)7m) (/01(1 —t)p(%ﬂ)dt);

7 (mota) + - a(6te). ol m) )

+
7~ N\
g
+H~
—_
N———

»
/N

—_

|
g
+<\4~
—_
N———

<
=
<

—

-

)
N——

IS
ILI

Q=

X{|a<¢<x>,¢<a> e T
e rf”<¢<x>>!q] é

oot o) | 2 E R BT g
PR e i) rf"<¢<x>>rq] ;}

The proof of Theorem 4 is completed. 0
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Corollary 3. Under the conditions of Theorem 4, if we choose w = 0, m =
k=1ando(p(y),d(x),m) = ¢(y)—mae(x), Yo,y € I, then we get the following

generalized Hermite—Hadamard type inequality for fractional integrals:

(6(x) — ¢(a)* 1 f" (9(x)) — (6(b) — $(x))* "1 f'(6(D))
(a+1) (¢(b) — ¢(a))

_ (¢(x) = ¢(a)*f (0(x)) + (6(b) — d(x))*f(#(D))
¢(b) — ¢(a)
MNa+1) N N
+'Z&¥55Tf25253 X [J¢@gf(¢(a))+‘J¢@)+f(¢($)ﬂ‘

1 1 % a+2
guw4xwm—¢m»(Ma+w+1>‘&M”‘¢w”

Ly (—s, 7+ 17 +2; 1)

x| RS () o+

+ (6(b) — (x))**?

Q=

|q 2F1( T, S—|—1 S—|—2 1)

. |ﬂwu»4

_2F1(—s r+1;r+2;1)

(T e

|q 2F1( T, S—_’l—_ll 5+2; 1)|f”((,75(l‘))|q] 4}'

Theorem 5. Let ¢ : I — A be a continuous function. Suppose that A =
m¢(a), mp(a) + o(P(b), d(a),m)] C R is an open m-inver subset with respect
too: Ax Ax(0,1] — R for some fixed m € (0,1] and Yw € [0, 1], where
r,s > —1 and let o(o(b), p(a),m) > 0. Assume that f : A — R is a twice
differentiable function on A°. If | f”|? is a generalized beta-preinvez function on
A, q > 1, then for o,k > 0, the following inequality for k-fractional Riemann—
Liouwille integrals holds:

|Aa,k’(x; g, ¢a w,m, a, b)}
1 K
<

24+
- (w—+1) (k + )(2k + a) T (6(b), (a), m)
X {|0(¢($),¢(a)7m)|%+2

m(w+1)% 9 Fy (=5, % +7+2;2 47 +3;
k+r+2

1) " (¢(a))|*

X

1
q

+(w+1)”-2F1( e+ s+2;% 4543

S 1), )
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+ |o((x), p(b), m)| * +2

mw+178 (r+1,5+2) 2 Ry (— 1T T+ ﬁ) @)

% 3 3

+ (w+ 1)7"5(3 + 1, % + 2) -9 (—r,s—i—l; %—1—3—1—3; w—) |fu(¢(x))|q] q }

Proof. Suppose that ¢ > 1. Using the generalized beta-preinvexity of |f”|?,
the well-known power mean inequality and taking the modulus, we have

|Aa,k(x; g, ¢7 w,m, a, b)‘

o (o), éla) m)[F+?
= w12 (3 + 1) [0(6(0), ola), m)]

< [ (moto) + oot o@,m)

n o (¢(x), p(b), m)|F+?
(w+1)2 (2 +1) |o(6(b), (a), m)|

x / e (m¢<b> -

dt

a<¢<x>,¢<b>,m>) i

w4+ 1
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0(6(z), 6(b), m)|F+? ( - )
Tt 12 (2 1) 0(6(b), ola).m) /o< i

| [a-n <m () (1-5) remr

1—-1
q

mlw 1" Py (20§ b k2T Bg)

X
THr+2
1
MO i ’“”ZZHMw+1>\f<¢<x>>lq]q
+s+2
k

+o(e(x), d(b), m)|+*2

X

m(w + 1)°8 (r +1, % n 2) " (—s,r—i—l T —) " (6())]*

Fw+1) 8 <3+1,%+2> -2 Fl(—r,erl st _) 6@ r}

The proof of Theorem 5 is completed. OJ

Corollary 4. Under the conditions of Theorem 5, if we choose w = 0, m =
k=1ando(p(y),p(x),m) = ¢p(y)—mae(x), Yo,y € I, then we get the following

generalized Hermite—Hadamard type inequality for fractional integrals:

(6(x) — ¢(a)* 1 f" (6(x)) — (6(b) — $(x))* "1 '($(b))
(a4 1) (¢(b) — ¢(a))
_ (0(2) = ¢(a)* [ (¢(x)) + (¢(b) — &(x))"f(H(b))
¢(b) — ¢(a)

I(a+1)

+ om) =) e F@@) + Jg(bﬁf(qs(x))} ‘



HERMITE-HADAMARD TYPE INEQUALITIES 91
1

(@ +1)(a+2) "5 (5(b) — d(a))
oF  (—s,a+r+2,a+1r+3;1)

IN

X{wuﬁ—www“ atre ()"
oFy (—ra+s+2;a+s+3;1), ,, , ‘
+ P |fw@m]

T (9(0) = 9(2)™ 2 |B(r + 1,0 +2) 2 Fu(=s,7 + Lo+ 7+ 3:1) | (6(0))
O+ Lat2) s Fi(=rs+Lhats+3l) If”(cb(x))qu}'

Remark 3. For M > 0, if |f”] < M, then by Theorem 4 and 5, we can
get some special kinds of Hermite-Hadamard-type inequalities via k-fractional
Riemann—Liouville integrals. For k& = 1, we obtain special kinds of Hermite—
Hadamard-type inequalities via Riemann—Liouville integrals. Also, for differ-
ent choices of w, for example w = —, 3’ 1, by Theorem 4 and 5 we can get

some interesting integral inequalities of these types.

4. APPLICATIONS TO SPECIAL MEANS

Definition 12. ([18]) A function M : R? — Ry, is called a Mean function
if it has the following properties:

1) Homogeneity: M (azx,ay) = aM(z,y), for all a > 0,

2) Symmetry: M(z,y) = M(y,x),

3) Reflexivity: M(z,z) = x,

4) Monotonicity: If x <z’ and y < ¢/, then M(z,y) < M(2',y'),

5) Internality: min{x,y} < M(z,y) < max{z,y}.

(
(
(
(
(

We consider some means for arbitrary positive real numbers «, 5 (a # ).

(1) The arithmetic mean:

A= Afap) = 220

(2) The geometric mean:
G = G(a, B) = v/ap.

(3) The harmonic mean:
H:=H(a,p) = lj_l'
a B
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(4) The power mean:

P.:=P.(a,p) = (aT;LBT)T, r>1.

(5) The identic mean:

e .
I::Hmﬂ):{%<5>’a%ﬁ’
aQ, a=/[
(6) The logarithmic mean:
L= LaB) = i

(7) The generalized log-mean:

L,:=L,(«,pB)=

; peR\{-1,0}.

5p+1 _ aptl P
(p+1)(8— )

(8) The weighted p-power mean:

1
n P
aq, Qg, ... ,Qp
M Y 9 Y — 3 p
p(u1,u2,--- 7un) <Zazuz> )
=1
where 0 < o; <1,u; >0 (i=1,2,...,n) with > o = 1.

It is well known that L, is nondecreasing over p € Rwith L_; := L and Ly := 1.
In particular, we have the following inequality H < G < L < I < A. Now, let
a and b be positive real numbers such that a < b. Consider the function M :=
M(6(a), 6(8)) : [6(a), 6(a) + o(6(b), 6(a))] X [6(a), Bla) + o (6(b), B(a))] —>
R, which is one of the above mentioned means and let ¢ : I — A be a
continuous function, therefore one can obtain various inequalities using the
results of Section 3 for these means as follows. Replacing o(¢(y), ¢(x), m)

with o (6(y), 8(x)) and setting o(6(a), 6(z)) = M(B(a), 6(x)), o(6(0), d(x)) =
M(p(b), ¢(x)), Vo € I, for value m = 1 in (3) and (4), one can obtain the
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following interesting inequalities involving means:

(5)
|Aa,k('r; M(? ')’ ¢a w, 1, a, b)}

MEF((a), 6(2)) f" ((a) + AL ) — AEH (6(0), 6(2) £ (6(8))
(1) (3 + 1) M(é(a), 6(0))
(6(a), §(@))f ($la) + LD ) 4 ME (6(5), 6(x)) f(6(0))
M(6(a), 6(0))

=R

M

(r+1)%Cx(a + k)
M(o(a), ¢(b))

X [Ig({:)+f ((b(b) +

M(9(b), ¢(fﬂ))> ak

+1 ooy -1 (@)
r+1 <¢(a)+M(¢(Tﬁ,1¢( )))

-

<<_L)”? L) i
“\w+1 p(%—i—l) +1 (k + a)M(¢(a), ¢(b))
(w+ 1) o Fy (—s,7 + 1,7+ 2 L)

X {M(cb(a)ﬁ(ﬂ?))z“ ) L (9(a)) |
(w+1)r-2F1(—r,s+1;s+2;wLH) ., . i
v . 7(6(a)
Q49 (w+1)8 2 1] (_S’T+1;T+2;%ﬂ) 1"
+ M(6(b). 6(@))’ = TECOE

(w—i—l)r-gFl(—r,s—l—l;s—i—Z;wLH) , q%
+ - @] T

and

(6)
|Aa7k(a:; M(-, ), 0,w,1,a, b)|

< () e
“\w+1 (k+ a)(2k + )" M(¢(a), 9(b))

7t+2 . : L
X {M (¢(a),o(x)) S 1

" (6(a))]*




94 ROZANA LIKO AND ARTION KASHURI

q

(w+ 1) 2 Fy (= ¢ +5+2% +s+3;215)
T+s+2

+ ME((b), 6(2))

_I_

|/ (fb(fv))lq]

1
(w+ 1)86<7“+ 1 k’ —|—2) F1 (-S,?”—l- 1 ]{j +7”+3 ?) |f//((b(b>>|q

+(w+1)7~5(5+1,%+2>-2 F1<—7“,s+1 Lot _> N r}

Letting M(¢(x), ¢(y)) == A,G,H,P.,I,L,L,, M,, Yx,y € I, in (5) and (6),
we get the inequalities involving means for a particular choices of a twice
differentiable generalized beta-preinvex function f. The details are left to the
interested reader.

5. CONCLUSIONS

We have considered and investigated the class of generalized beta-preinvex
functions. Some new integral inequalities for the left hand side of the Gauss-
Jacobi type quadrature formula involving generalized beta-preinvex functions
are proved. Moreover, using new integral identity, some Hermite-Hadamard
type inequalities for generalized beta-preinvex functions that are twice differ-
entiable via k-fractional integrals are established. At the end, some appli-
cations to special means are given. These general inequalities give us some
new estimates for Hermite-Hadamard type k-fractional integral inequalities.
We conclude that our methods considered here may be a stimulant for fur-
ther investigations concerning Hermite-Hadamard type integral inequalities
for various kinds of convex and preinvex functions. We believe that our results
can be treated using quantum calculus as well.

REFERENCES

[1] Y. M. Chu, M. A. Khan, T. U. Khan, T. Ali, Generalizations of Hermite—Hadamard type
inequalities for MT-convex functions, J. Nonlinear Sci. Appl., 9(5) (2016), 4305-4316.

[2] Y. M. Chu, G. D. Wang, X. H. Zhang, Schur convezity and Hadamard’s inequality,
Math. Inequal. Appl., 13(4) (2010), 725-731.

[3] H. Kavurmaci, M. Avci, M. E. Ozdemir, New inequalities of Hermite—Hadamard type
for convex functions with applications, arXiv:1006.1593v1 [math. CA], (2010), 1-10.

[4] W. Liu, W. Wen, J. Park, Hermite-Hadamard type inequalities for M'T -convez functions
via classical integrals and fractional integrals, J. Nonlinear Sci. Appl., 9 (2016), 766-777.

[5] X. M. Zhang, Y. M. Chu, X. H. Zhang, The Hermite-Hadamard type inequality of
G A-convez functions and its applications, J. Inequal. Appl., No. 507560 (2010), pp. 11.

[6] F.Qi, B. Y. Xi., Some integral inequalities of Simpson type for GA—e-convex functions,
Georgian Math. J., 20(5) (2013), 775-788.

[7] R. Diaz, E. Pariguan, On hypergeometric functions and pochhammer k-symbol, Divulg.
Mat., 15(2) (2007), 179-192.



8]

HERMITE-HADAMARD TYPE INEQUALITIES 95

S. Mubeen, G. M. Habibullah, k-Fractional integrals and applications, Int. J. Contemp.
Math. Sci., 7 (2012), 89-94.

S. S. Dragomir, J. Pecari¢, L. E. Persson, Some inequalities of Hadamard type, Soochow
J. Math., 21 (1995), 335-341.

H. Hudzik, L. Maligranda., Some remarks on s-convex functions, Aequationes Math.,
48 (1994), 100-111.

T. Antczak., Mean value in invexity analysis, Nonlinear Anal., 60 (2005), 1473-1484.
X. M. Yang, X. Q. Yang, K. L. Teo., Generalized invezity and generalized invariant
monotonicity, J. Optim. Theory Appl., 117 (2003), 607-625.

3] R. Pini., Invexity and generalized convezity, Optimization, 22 (1991), 513-525.

W. Liu., New integral inequalities involving beta function via P-convexity, Miskolc
Math. Notes, 15(2) (2014), 585-591.

M. E. Ozdemir, E. Set, M. Alomari, Integral inequalities via several kinds of convezity,
Creat. Math. Inform., 20(1) (2011), 62-73.

T. S. Du, J. G. Liao, Y. J. Li., Properties and integral inequalities of Hadamard—
Simpson type for the generalized (s, m)-preinvex functions, J. Nonlinear Sci. Appl., 9
(2016), 3112-3126.

A. Kashuri, R. Liko, Ostrowski type fractional integral inequalities for generalized
(s, m, p)-preinvex functions, Aust. J. Math. Anal. Appl., 13(1) (2016), 1-11.

P. S. Bullen, Handbook of Means and Their Inequalities, Kluwer Academic Publishers,
Dordrecht, 2003.

Received April 05, 2017.

RozANA Liko

DEPARTMENT OF MATHEMATICS,

FAcuLTy OF TECHNICAL AND NATURAL SCIENCES,
UNIVERSITY “ISMAIL QEMALI",

9400 VLORA, ALBANIA

Email address: rozana.liko@univlora.edu.al

ARTION KASHURI

DEPARTMENT OF MATHEMATICS,

FAcuLTY OF TECHNICAL AND NATURAL SCIENCES,
UNIVERSITY “ISMAIL QEMALI”,

9400 VLORA, ALBANIA

Email address: artion.kashuri@univlora.edu.al



