CERTAIN IDENTITIES INVOLVING k-BALANCING AND k-LUCAS-BALANCING NUMBERS VIA MATRICES

PRASANTA KUMAR RAY

Abstract

Matrix methods are useful to derive several identities for balancing numbers and their related sequences. In this article, two matrices with arithmetic indexes, namely $$
X_{a}=\left(\begin{array}{cc} 2 C_{k, a} & -1 \\ 1 & 0 \end{array}\right) \quad \text { and } \quad Y_{a}=\left(\begin{array}{cc} C_{k, a} & C_{k, a}^{2}-1 \\ 1 & C_{k, a} \end{array}\right)
$$ are used to derive some identities including certain sum formulas involving k-balancing and k-Lucas-balancing numbers.

1. Introduction

Balancing numbers B and balancers R are solutions of a Diophantine equation $1+2+3+\cdots+(B-1)=(B+1)+(B+2)+\cdots+(B+R)$ and satisfy the linear recurrence $B_{n+1}=6 B_{n}-B_{n-1}, n \geq 2$ with initial conditions $B_{0}=0$ and $B_{1}=1$, where B_{n} denotes the $n^{t h}$ balancing number [1, 3]. They also satisfy the non linear recurrence $B_{n}^{2}-B_{n+1} B_{n-1}=1$ which we call Cassini formula for balancing numbers. A number sequence very closely associates with balancing numbers is the sequence of Lucas-balancing numbers [9]. For each balancing number B_{n}, a Lucas-balancing number C_{n} is defined by $C_{n}=\sqrt{8 B_{n}^{2}+1}$. The first few Lucas-balancing numbers are $\{1,3,17,99,577, \ldots\}$ and satisfy the recurrence relation same as that of balancing numbers but with different initials, i.e., $C_{n+1}=6 C_{n}-C_{n-1}$ with $C_{0}=1$ and $C_{1}=3$. Several interesting identities among balancing and Lucas-balancing numbers were developed in [7]. For instance, the identity resembles with trigonometric identity $\sin (x \pm y)=\sin x \cos y \pm \cos x \sin y$ is

$$
B_{m \pm n}=B_{m} C_{n} \pm C_{m} B_{n}
$$

[^0]and the identity resembles with D'Movier's theorem is $\left(C_{n}+\sqrt{8} B_{n}\right)^{m}=$ $C_{m n}+\sqrt{8} B_{m n}$. Another number sequence known as the sequence of cobalancing numbers was obtained by slightly modifying the original Diophantine equation. Cobalancing numbers b and the cobalancers r are solutions of a Diophantine equation $1+2+3+\cdots+b=(b+1)+(b+2)+\cdots+(b+r)$ [9]. An interesting observation found in [9] is that "Every balancer is a cobalancing number and every cobalancer is a balancing number".

Balancing numbers are generalized in many ways. One of the most general extension of balancing numbers was due to Liptai et al. [6]. He has replaced the original definition of balancing numbers by the following

$$
\begin{equation*}
1^{k}+2^{k}+\cdots+(x-1)^{k}=(x+1)^{l}+\cdots+(y-1)^{l} \tag{1}
\end{equation*}
$$

where the exponents k and l are given positive integers. In the work of Liptai et al. [6], effective and non-effective finiteness theorems on (1) are proved. A balancing problem of ordinary binomial coefficients was studied by Komatsu and Szalay [4]. Some more results on generalization of balancing numbers can be seen in $[2,5,8,11]$.

Recently, Ray has studied a one-parameter generalization of balancing numbers known as k-balancing numbers [12]. He defined the k-balancing sequence $\left\{B_{k, n}\right\}_{n} \in N,(k \geq 1)$ recursively by $B_{k, n+1}=6 B_{k, n}-B_{k, n-1}$ with $B_{k, 0}=0$, $B_{k, 1}=1$ and $n \geq 1$. First few k-balancing numbers are $\left\{0,1,6 k, 36 k^{2}-\right.$ $\left.1,216 k^{3}-12 k, \ldots,\right\}$. It is observed that for $k=1$ the usual balancing numbers are obtained. Similarly, the sequence of k-Lucas-balancing numbers $\left\{C_{k, n}\right\}_{n} \in N$ defined recursively by $C_{k, n+1}=6 C_{k, n}-C_{k, n-1}$ with $C_{k, 0}=1$, $C_{k, 1}=3 k$ and usual Lucas-balancing numbers are obtained for $k=1$. The Binet's formulas for both k-balancing and k-Lucas-balancing numbers are respectively given by $B_{k, n}=\frac{\lambda_{1}^{n}-\lambda_{2}^{n}}{\lambda 1-\lambda 2}$ and $C_{k, n}=\frac{\lambda_{1}^{n}+\lambda_{2}^{n}}{2}$, where $\lambda_{1}=3 k+\sqrt{9 k^{2}-1}$ and $\lambda_{2}=3 k-\sqrt{9 k^{2}-1}$. Notice that $\lambda_{1}+\lambda_{2}=6 k$ and $\lambda_{1} \lambda_{2}=1$. Several identities concerning k-balancing and k-Lucas-balancing numbers can be found in $[12,13]$. Few of them are summarized below which will be needed later.

$$
\begin{aligned}
B_{k, n+1}-B_{k, n-1} & =2 C_{k, n}, & B_{k,-n} & =-B_{k, n} \\
B_{k, n}^{2}-B_{k, n+1} B_{k, n-1} & =1, & B_{k, 2 n} & =2 B_{k, n} C_{k, n}
\end{aligned}
$$

Matrix methods are useful tools to derive identities for balancing numbers and their related number sequences [11]. In this article, some k-balancing and k-Lucas-balancing sums with arithmetic indexes, say $a n+r$ with fixed integers a and r with $0 \leq r \leq a-1$, are derived using the matrices

$$
X_{a}=\left(\begin{array}{cc}
2 C_{k, a}-1 \\
1 & 0
\end{array}\right) \quad \text { and } \quad Y_{a}=\left(\begin{array}{cc}
C_{k, a} & C_{k, a}^{2}-1 \\
1 & C_{k, a}
\end{array}\right) .
$$

2. Some identities of k-balancing numbers via matrices

In this section, some known and new identities concerning k-balancing numbers are obtained using matrices. Before doing this, we need the following result.

Theorem 1. Let M be a square matrix with $M^{2}=2 C_{k, a} M-I$ where a is a fixed positive integer and I denotes the identity matrix of order 2 . Then

$$
M^{n}=\frac{1}{B_{k, a}}\left[B_{k, a n} M-B_{k, a(n-1)} I\right]
$$

for all integers n.
Proof. Since n is any integer, the following three cases will arise. The first case for $n=0$ is obvious.

In order to prove the second case, i.e., for $n \geq 1$, we use principle of induction. The basis step is clear for $n=1$. Assume that, the result is true for all $m \leq n$. Then by inductive hypothesis,

$$
M^{m}=\frac{1}{B_{k, a}}\left[B_{k, a m} M-B_{k, a(m-1)} I\right]
$$

Now, in the inductive step,

$$
\begin{aligned}
M^{m+1} & =M^{m} M \\
& =\frac{1}{B_{k, a}}\left[B_{k, a m} M-B_{k, a(m-1)} I\right] M \\
& =\frac{1}{B_{k, a}}\left[B_{k, a m} M^{2}-B_{k, a(m-1)} M\right] \\
& =\frac{1}{B_{k, a}}\left[B_{k, a m}\left(2 C_{k, a} M-I\right)-B_{k, a(m-1)} M\right] \\
& =\frac{1}{B_{k, a}}\left[\left(2 C_{k, a} B_{k, a m}-B_{k, a(m-1)}\right) M-B_{k, a m} I M\right]
\end{aligned}
$$

The required result follows as $2 C_{k, a} B_{k, a m}-B_{k, a(m-1)}=B_{k, a(m+1)}$.
In case 3 , we need to show $M^{-n}=\frac{1}{B_{k, a}}\left[B_{k,-a n} M-B_{k, a(-n-1)} I\right]$. For that, let $A=2 C_{k, a} I-M=M^{-1}$. Then

$$
\begin{aligned}
A^{2} & =4 C_{k, a}^{2} I-4 C_{k, a} M+M^{2} \\
& =2 C_{k, a}\left(2 C_{k, a} I-M\right)+\left(M^{2}-2 C_{k, a} M\right) \\
& =2 C_{k, a} A-I .
\end{aligned}
$$

Therefore, by case $2, A^{n}=\frac{1}{B_{k, a}}\left[B_{k, a n} A-B_{k, a(n-1)} I\right]$. It follows that

$$
\begin{aligned}
B_{k, a} M^{-n} & =B_{k, a n}\left(2 C_{k, a} I-M\right)-B_{k, a(n-1)} I \\
& =-B_{k, a n} M+\left(2 C_{k, a} B_{k, a n}-B_{a(n-1)}\right) I \\
& =-B_{k, a n} M+B_{k, a(n+1)},
\end{aligned}
$$

IDENTITIES INVOLVING k-BALANCING AND k-LUCAS-BALANCING NUMBERS 123
and the proof completes as $B_{k,-n}=-B_{k, n}$.
Now let us introduce a second order matrix $X_{a}=\left(\begin{array}{cc}2 C_{k, a} & -1 \\ 1 & 0\end{array}\right)$ and using induction and the result of Theorem 1 , we observe that, for any integer $n \geq 1$,

$$
X_{a}^{n}=\frac{1}{B_{k, a}}\left(\begin{array}{cc}
B_{k, a(n+1)} & -B_{k, a n} \\
B_{k, a n} & -B_{k, a(n-1)}
\end{array}\right) .
$$

It is also noticed that the matrix X_{a}^{n} satisfies the recurrence relation $X_{a}^{n+1}=$ $2 C_{k, a} X_{a}^{n}-X_{a}^{n-1}$ for $n \geq 1$ and with initials $X_{a}^{0}=I$ and $X_{a}^{1}=X_{a}$. Furthermore, let us define another second order matrix $Y_{a}=\left(\begin{array}{cc}C_{k, a} & C_{k, a}^{2}-1 \\ 1 & C_{k, a}\end{array}\right)$ and we prove the following result.
Lemma 1. Let $Y_{a}=\left(\begin{array}{cc}C_{k, a} & C_{k, a}^{2}-1 \\ 1 & C_{k, a}\end{array}\right)$. Then, for $n \geq 1$,

$$
Y_{a}^{n}=\frac{1}{B_{k, a}}\left(\begin{array}{cc}
B_{k, a(n+1)}-C_{k, a} B_{k, a n} & \left(C_{k, a}^{2}-1\right) B_{k, a n} \\
B_{k, a n} & B_{k, a(n+1)}-C_{k, a} B_{k, a n}
\end{array}\right) .
$$

Proof. Method of induction is used to prove this result. The result is obvious for $n=1$. Assume that

$$
Y_{a}^{n-1}=\frac{1}{B_{k, a}}\left(\begin{array}{cc}
B_{k, a n}-C_{k, a} B_{k, a(n-1)} & \left(C_{k, a}^{2}-1\right) B_{k, a(n-1)} \\
B_{k, a(n-1)} & B_{k, a n}-C_{k, a} B_{k, a(n-1)}
\end{array}\right) .
$$

Now in the inductive step,

$$
\begin{aligned}
Y_{a}^{n} & =Y_{a}^{n-1} Y_{a} \\
& =\frac{1}{B_{k, a}}\left(\begin{array}{cc}
B_{k, a n}-C_{k, a} B_{k, a(n-1)} & \left(C_{k, a}^{2}-1\right) B_{k, a(n-1)} \\
B_{k, a(n-1)} & B_{k, a n}-C_{k, a} B_{k, a(n-1)}
\end{array}\right)\left(\begin{array}{cc}
C_{k, a} & C_{k, a}^{2}-1 \\
1 & C_{k, a}
\end{array}\right) .
\end{aligned}
$$

By usual matrix multiplication and after some algebraic manipulation, we obtain the desired result.

It is seen that $\operatorname{det} Y_{a}=1$ implies that $\operatorname{det} Y_{a}^{n}=1$. That is,

$$
\frac{1}{B_{k, a}^{2}}\left[\left(B_{k, a(n+1)}-C_{k, a} B_{k, a n}\right)^{2}-\left(C_{k, a}^{2}-1\right) B_{k, a n}^{2}\right]=1
$$

and the following result will obtain.
Lemma 2. For any integer $n \geq 1$,

$$
B_{k, a(n+1)}^{2}-2 C_{k, a} B_{k, a(n+1)} B_{k, a n}+B_{k, a n}^{2}=B_{k, a}^{2}
$$

The following are two fundamental identities concerning k-balancing and k-Lucas-balancing numbers that are obtained by using the matrix Y_{a}.

Theorem 2. For all natural numbers n and m,

$$
B_{k, a} B_{k, a(n+m)}=B_{k, a(n+1)} B_{k, a m}-2 C_{k, a} B_{k, a n} B_{k, a m}+B_{k, a(m+1)} B_{k, a n} .
$$

Proof. For any natural numbers n and m,

$$
Y_{a}^{n+m}=\frac{1}{B_{k, a}}\left(\begin{array}{cc}
B_{k, a(n+m+1)}-C_{k, a} B_{k, a(n+m)} & \left(C_{k, a}^{2}-1\right) B_{k, a(n+m)} \\
B_{k, a(n+m)} & B_{k, a(n+m+1)}-C_{k, a} B_{k, a(n+m)}
\end{array}\right) .
$$

On the other hand,

$$
\begin{aligned}
Y_{a}^{n} Y_{a}^{m}= & \frac{1}{B_{k, a}^{2}}\left(\begin{array}{cc}
B_{k, a(n+1)}-C_{k, a} B_{k, a n} & \left(C_{k, a}^{2}-1\right) B_{k, a n} \\
B_{k, a n} & B_{k, a(n+1)}-C_{k, a} B_{k, a n}
\end{array}\right) \\
& \left(\begin{array}{cc}
B_{k, a(m+1)}-C_{k, a} B_{k, a m} & \left(C_{k, a}^{2}-1\right) B_{k, a m} \\
B_{k, a m} & B_{k, a(m+1)}-C_{k, a} B_{k, a m}
\end{array}\right) .
\end{aligned}
$$

Since $Y_{a}^{n+m}=Y_{a}^{n} Y_{a}^{m}$ and comparing the $(2,1)$ entries from both sides of the matrices, the desired result is obtained.

The following is an immediate consequence of Theorem 2.
Corollary 1. For any natural numbers m and n, $B_{k, n+m}=B_{k, n+1} B_{k, m}-$ $B_{k, n} B_{k, m-1}$.
Proof. Putting $a=1$ in the result of Theorem 2 and using the identity $B_{k, m+1}-$ $2 C k, a B_{k, a m}=-B_{k, m-1}$, we obtain the desired result.

Theorem 3. For all natural numbers n and m,

$$
B_{k, a} B_{k, a(n-m)}=B_{k, a(m+1)} B_{k, a n}-B_{k, a(n+1)} B_{k, a m}
$$

Proof. Since $Y_{a}^{n-m}=Y_{a}^{n}\left[Y_{a}^{m}\right]^{-1}$, proceed similarly as in Theorem 2, we get the required identity.

In particular for $a=1$, we have the following corollary.
Corollary 2. For any natural numbers m and $n, B_{k, n-m}=B_{k, m+1} B_{k, n}-$ $B_{k, n+1} B_{k, m}$.

3. Sum formulas for k-balancing numbers with rational index

In this section, we derive certain sum formulas for k-balancing numbers with rational index, in particular of the kind $a n$, where a is a positive integer. We use the matrix Y_{a} to establish these results.

Theorem 4. Let n be any integer and a be any positive integer. Then

$$
\sum_{j=0}^{n} B_{k, a j}=\frac{B_{k, a(n+1)}-B_{k, a n}-B_{k, a}}{B_{k, a+1}-B_{k, a-1}-2}
$$

Proof. For any integer n and $a \geq 1, I-Y_{a}^{n+1}=\left(I-Y_{a}\right) \sum_{j=0}^{n} Y_{a}^{j}$, where I is the 2×2 identity matrix. It follows that

$$
\begin{equation*}
\sum_{j=0}^{n} Y_{a}^{j}=\left(I-Y_{a}\right)^{-1}\left(I-Y_{a}^{n+1}\right) \tag{2}
\end{equation*}
$$

IDENTITIES INVOLVING k-BALANCING AND k-LUCAS-BALANCING NUMBERS 125
In fact, $\left(I-Y_{a}\right)^{-1}$ exists since $\operatorname{det}\left(I-Y_{a}\right)=2-2 C_{k, a} \neq 0$. Equation (2) can be rewritten as

$$
\begin{aligned}
& \frac{1}{B_{k, a}}\left(\begin{array}{c}
\sum_{j=0}^{n} B_{k, a(j+1)}-C_{k, a} B_{k, a j} \\
\sum_{j=0}^{n} B_{k, a j}^{n}\left(C_{k, a}^{2}-1\right) B_{k, a j} \\
\sum_{j=0}^{n} B_{k, a(j+1)}-C_{k, a} B_{k, a j}
\end{array}\right) \\
& =\frac{1}{\left(2-2 C_{k, a}\right) B_{k, a}}\left(\begin{array}{rr}
1-C_{k, a} C_{k, a}^{2}-1 \\
1 & 1-C_{k, a}
\end{array}\right) \\
& \left(\begin{array}{rr}
B_{k, a}-B_{k, a(n+2)}-C_{k, a} B_{k, a(n+1)} & \left(C_{k, a}^{2}-1\right) B_{k, a(n+1)} \\
B_{k, a(n+1)} & B_{k, a}-B_{k, a(n+2)}-C_{k, a} B_{k, a(n+1)}
\end{array}\right) .
\end{aligned}
$$

Performing usual matrix multiplication on right hand side of the above identity, using the formulas $2 C_{k, a}-2=B_{k, a+1}-B_{k, a-1}-2, B_{k, m+n}+B_{k, m-n}=$ $2 B_{k, m} C k, n$ and some algebraic manipulation, we get the desired result.

Theorem 5. Let n be any integer and a be any positive integer. Then

$$
\sum_{j=0}^{n}(-1)^{j} B_{k, a j}=\frac{B_{k, a(n+1)}+B_{k, a n}-B_{k, a}}{B_{k, a+1}-B_{k, a-1}+2}
$$

Proof. For any even integer n and $a \geq 1, I+Y_{a}^{n+1}=\left(I+Y_{a}\right) \sum_{j=0}^{n}(-1)^{j} Y_{a}^{j}$, hence

$$
\begin{equation*}
\sum_{j=0}^{n}(-1)^{j} Y_{a}^{j}=\left(I+Y_{a}\right)^{-1}\left(I+Y_{a}^{n+1}\right) \tag{3}
\end{equation*}
$$

The inverse $\left(I+Y_{a}\right)^{-1}$ surely exists because $\operatorname{det}\left(I+Y_{a}\right)=2+2 C_{k, a} \neq 0$. We rewrite (3) as

$$
\begin{array}{r}
\frac{1}{B_{k, a}}\left(\begin{array}{cc}
\sum_{j=0}^{n}(-1)^{j}\left[B_{k, a(j+1)}-C_{k, a} B_{k, a j}\right] & \sum_{j=0}^{n}(-1)^{j}\left(C_{k, a}^{2}-1\right) B_{k, a j} \\
\sum_{j=0}^{n}(-1)^{j} B_{k, a j} & \sum_{j=0}^{n}(-1)^{j}\left[B_{k, a(j+1)}-C_{k, a} B_{k, a j}\right]
\end{array}\right) \\
=\frac{1}{\left(2+2 C_{k, a}\right) B_{k, a}}\left(\begin{array}{cc}
1+C_{k, a}-\left(C_{k, a}^{2}-1\right) \\
-1 & 1+C_{k, a}
\end{array}\right) \\
\left(\begin{array}{rr}
B_{k, a}+B_{k, a(n+2)}-C_{k, a} B_{k, a(n+1)} & \left(C_{k, a}^{2}-1\right) B_{k, a(n+1)} \\
B_{k, a(n+1)} & B_{k, a}+B_{k, a(n+2)}-C_{k, a} B_{k, a(n+1)}
\end{array}\right) .
\end{array}
$$

Performing usual matrix multiplication on right hand side of the above identity, using the formulas $2 C_{k, a}-2=B_{k, a+1}-B_{k, a-1}-2, B_{k, m+n}+B_{k, m-n}=$ $2 B_{k, m} C k, n$ and some algebraic manipulation, we get the desired result.

4. IDENTITIES INVOLVING k-BALANCING AND k-LUCAS-BALANCING NUMBERS USING MATRICES

In this section, some special relations between matrices and k-balancing and k-Lucas-balancing numbers are investigated. This investigation allows us to establish new and some known identities concerning k-balancing and k-Lucasbalancing numbers.

Theorem 6. If X is a square matrix with $X^{2}=6 k X-I$, where I is the identity matrix with the same order as X, then for all integers $n, X^{n}=B_{k, n} X-$ $B_{k, n-1} I$.

Proof. There are three possibilities for n, either $n=0$ or $n \in Z^{+}$or $n \in Z^{-}$. The result is clearly true for the first case, i.e., for $n=0$.

For positive integers n, we use the mathematical induction method to prove the result. Clearly, the result is true for $n=1$ as $X^{1}=B_{k, 1} X-B_{k, 0} I=X$. Assume that the result is true for all n. Then, by inductive hypothesis, $X^{n}=$ $B_{k, n} X-B_{k, n-1} I$. Proceeding to inductive step, using the recurrence relation for k-balancing numbers and the fact $X^{2}=6 k X-I$, we have

$$
\begin{aligned}
B_{k, n+1} X-B_{k, n} I & =\left(6 k X B_{k, n}-B_{k, n-1} X\right)-B_{k, n} I \\
& =(6 k X-I) B_{k, n}-B_{k, n-1} X \\
& =X^{2} B_{k, n}-B_{k, n-1} X \\
& =\left(B_{k, n} X-B_{k, n-1} I\right) X .
\end{aligned}
$$

Using the inductive hypothesis, we have $B_{k, n+1} X-B_{k, n} I=X^{n+1}$ and the result follows. Now to finish the proof, we need to show that, for all natural number $n, X^{-n}=B_{k,-n} X-B_{k,-n-1} I$. For that, let $Y=6 k I-X=X^{-1}$, then $Y^{2}=$ $36 k^{2} I-12 k I X+X^{2}$. Since $X^{2}=6 k X-I$, it follows that $Y^{2}=6 k(6 k I-X)-I$. Further simplification gives $Y^{2}=6 k Y-I$ and hence $Y^{n}=B_{k, n} Y-B_{k, n-1} I$. As $Y=6 k I-X=X^{-1}$, this identity reduces to $X^{-n}=\left(6 k_{k, n}-B_{k, n-1}\right) I-$ $B_{k, n} X=B_{k, n+1} I-B_{k, n} X$. The proof completes as $B_{k, n}=-B_{k,-n}$.

Corollary 3. If the k-balancing matrix is $M=\left(\begin{array}{cc}6 k & -1 \\ 1 & 0\end{array}\right)$, then

$$
M^{n}=\left(\begin{array}{cc}
B_{k, n+1} & -B_{k, n} \\
B_{k, n} & B_{k, n-1}
\end{array}\right)
$$

for every integer n.
Proof. Since $M^{2}=6 k M-I$,

$$
M^{n}=B_{k, n} M-B_{k, n-1} I=\left(\begin{array}{cc}
6 k B_{k, n}-B_{k, n} \\
B_{k, n} & 0
\end{array}\right)-\left(\begin{array}{cc}
B_{k, n-1} & 0 \\
0 & B_{k, n-1}
\end{array}\right)
$$

and the result follows.

Corollary 4. Let $T=\left(\begin{array}{cc}3 k & 9 k^{2}-1 \\ 1 & 3 k\end{array}\right)$, then $T^{n}=\left(\begin{array}{cc}C_{k, n}\left(9 k^{2}-1\right) B_{k, n} \\ B_{k, n} & C_{k, n}\end{array}\right)$, for every integer n.

Proof. The proof is similar to the proof of Corollary 3.
Lemma 3. For every integer $n, C_{k, n}^{2}-\left(9 k^{2}-1\right) B_{k, n}^{2}=1$.
Proof. It is observed that $\operatorname{det} T=1$. It follows that $\operatorname{det} T^{n}=1$. Consequently, $\operatorname{det}\left(\begin{array}{cc}C_{k, n} & \left(9 k^{2}-1\right) B_{k, n} \\ B_{k, n} & C_{k, n}\end{array}\right)=1$, and the result follows.

Lemma 4. For all integers m and $n, C_{k, m+n}=C_{k, m} C_{k, n}+\left(9 k^{2}-1\right) B_{k, m} B_{k, n}$ and $B_{k, m+n}=B_{k, m} C_{k, n}+C_{k, m} B_{k, n}$.
Proof. For all integers m and n,

$$
\begin{aligned}
T^{m+n} & =T^{m} T^{n} \\
& =\left(\begin{array}{cc}
C_{k, m} & \left(9 k^{2}-1\right) B_{k, m} \\
B_{k, m} & C_{k, m}
\end{array}\right)\left(\begin{array}{cc}
C_{k, n} & \left(9 k^{2}-1\right) B_{k, n} \\
B_{k, n} & C_{k, n}
\end{array}\right) \\
& =\left(\begin{array}{cc}
C_{k, m} C_{k, n}+\left(9 k^{2}-1\right) B_{k, m} B_{k, n} & \left(9 k^{2}-1\right)\left(B_{k, m} C_{k, n}+C_{k, m} B_{k, n}\right) \\
B_{k, m} C_{k, n}+C_{k, m} B_{k, n} & C_{k, m} C_{k, n}+\left(9 k^{2}-1\right) B_{k, m} B_{k, n}
\end{array}\right) .
\end{aligned}
$$

On the other hand,

$$
T^{m+n}=\left(\begin{array}{cc}
C_{k, m+n} & \left(9 k^{2}-1\right) B_{k, m+n} \\
B_{k, m+n} & C_{k, m+n}
\end{array}\right) .
$$

The desired results are obtained by equating the corresponding entries from both matrices.

Lemma 5. For all integers m and $n, C_{k, m-n}=C_{k, m} C_{k, n}-\left(9 k^{2}-1\right) B_{k, m} B_{k, n}$ and $B_{k, m-n}=B_{k, m} C_{k, n}-C_{k, m} B_{k, n}$.
Proof. The proof of this result is analogous to the previous proof.
The following results directly follow from Lemma 1 and Lemma 2.
Lemma 6. For all integers m and $n, C_{k, m+n}+C_{k, m-n}=2 C_{k, m} C_{k, n}$ and $B_{k, m+n}+B_{k, m-n}=2 B_{k, m} C_{k, n}$.

Lemma 7. For all integers x, y, and z,
$B_{k, x+y+z}=B_{k, x} C_{k, y} C_{k, z}+C_{k, x} B_{k, y} C_{k, z}+C_{k, x} C_{k, y} B_{k, z}+\left(9 k^{2}-1\right) B_{k, x} C_{k, y} B_{k, z}$, and
$C_{k, x+y+z}=C_{k, x} C_{k, y} C_{k, z}+\left(9 k^{2}-1\right)\left[B_{k, x} B_{k, y} C_{k, z}+B_{k, x} C_{k, y} B_{k, z}+C_{k, x} B_{k, y} B_{k, z}\right]$.
Proof. For all integers x, y, and z,

$$
T^{x+y+z}=\left(\begin{array}{cc}
C_{k, x+y+z} & \left(9 k^{2}-1\right) B_{k, x+y+z} \\
B_{k, x+y+z} & C_{k, x+y+z}
\end{array}\right) .
$$

On the other hand,

$$
\begin{aligned}
T^{x+y+z} & =T^{x+y} T^{z} \\
& =\left(\begin{array}{cc}
C_{k, x+y} & \left(9 k^{2}-1\right) B_{k, x+y} \\
B_{k, x+y} & C_{k, x+y}
\end{array}\right)\left(\begin{array}{cc}
C_{k, z} & \left(9 k^{2}-1\right) B_{k, z} \\
B_{k, z} & C_{k, z}
\end{array}\right) .
\end{aligned}
$$

Putting the values of $C_{k, x+y}$ and $B_{k, x+y}$ using Lemma 4, performing the matrix multiplication and equating the corresponding entries of the matrices, we obtain the desired results.

Lemma 8. For all integers x, y, and $z, C_{k, x+y}^{2}-2\left(9 k^{2}-1\right) C_{k, x+y} B_{k, y+z} B_{k, z-x}-$ $\left(9 k^{2}-1\right) B_{k, y+z}^{2}=C_{k, z-x}^{2}$.
Proof. Consider the following matrix multiplication:

$$
\left(\begin{array}{cc}
C_{k, x}\left(9 k^{2}-1\right) B_{k, x} \\
B_{k, z} & C_{k, z}
\end{array}\right)\binom{C_{k, y}}{B_{k, y}}=\binom{C_{k, x+y}}{C_{k, y+z}} .
$$

Using Lemma 5, $\operatorname{det}\left(\begin{array}{cc}C_{k, x} & \left(9 k^{2}-1\right) B_{k, x} \\ B_{k, z} & C_{k, z}\end{array}\right)=C_{k, z-x} \neq 0$ and therefore, we obtain

$$
\binom{C_{k, y}}{B_{k, y}}=\frac{1}{C_{k, z-x}}\left(\begin{array}{cc}
C_{k, z} & -\left(9 k^{2}-1\right) B_{k, x} \\
-B_{k, z} & C_{k, x}
\end{array}\right)\binom{C_{k, x+y}}{B_{k, y+z}} .
$$

It follows that

$$
C_{k, y}=\frac{C_{k, z} C_{k, x+y}-\left(9 k^{2}-1\right) B_{k, x} B_{k, y+z}}{C_{k, z-x}}
$$

and

$$
B_{k, y}=\frac{C_{k, x} B_{k, y+z}-C_{k, x+y} B_{k, z}}{C_{k, z-x}}
$$

By virtue of Lemma 3, $C_{k, y}^{2}-\left(9 k^{2}-1\right) B_{k, y}^{2}=1$. Putting the values of $C_{k, y}$ and $B_{k, y}$ in this identity and after some algebraic manipulation, we obtain

$$
\begin{array}{r}
C_{k, x+y}^{2}\left[C_{k, z}^{2}-\left(9 k^{2}-1\right) B_{k, z}^{2}\right]-2\left(9 k^{2}-1\right) C_{k, x+y} B_{k, y+z}\left[C_{k, x} B_{k, z}-B_{k, x} C_{k, z}\right] \\
-\left(9 k^{2}-1\right) B_{k, y+z}^{2}\left[C_{k, x}^{2}-\left(9 k^{2}-1\right) B_{k, x}^{2}\right]=C_{k, z-x}^{2} .
\end{array}
$$

Using Lemma 3 and Lemma 6, we obtain the desired result.
Lemma 9. For all integers x, y, and z

$$
C_{k, x+y}^{2}-C_{k, x+y} C_{k, y+z} C_{k, z-x}-C_{k, y+z}^{2}=\left(9 k^{2}-1\right) B_{k, z-x}^{2}
$$

where $x \neq z$.
Proof. Consider the following matrix multiplication:

$$
\binom{C_{k, x}\left(9 k^{2}-1\right) B_{k, x}}{C_{k, z}\left(9 k^{2}-1\right) B_{k, z}}\binom{C_{k, y}}{B_{k, y}}=\binom{C_{k, x+y}}{C_{k, y+z}} .
$$

Since $\operatorname{det}\binom{C_{k, x}\left(9 k^{2}-1\right) B_{k, x}}{C_{k, z}\left(9 k^{2}-1\right) B_{k, z}}=\left(9 k^{2}-1\right) B_{k, z-x} \neq 0$ for $x \neq z$, we have

$$
\binom{C_{k, y}}{B_{k, y}}=\frac{1}{\left(9 k^{2}-1\right) B_{k, z-x}}\left(\begin{array}{cc}
\left(9 k^{2}-1\right) B_{k, z}-\left(9 k^{2}-1\right) B_{k, x} \\
-C_{k, z} & C_{k, x}
\end{array}\right)\binom{C_{k, x+y}}{B_{k, y+z}} .
$$

It follows that

$$
C_{k, y}=\frac{B_{k, z} C_{k, x+y}-B_{k, x} C_{k, y+z}}{B_{k, z-x}}
$$

and

$$
B_{k, y}=\frac{C_{k, x} C_{k, y+z}-C_{k, x+y} C_{k, z}}{\left(9 k^{2}-1\right) B_{k, z-x}}
$$

Putting the values of $C_{k, y}$ and $B_{k, y}$ in the identity $C_{k, y}^{2}-\left(9 k^{2}-1\right) B_{k, y}^{2}=1$, after some algebraic manipulation and using Lemma 3 and Lemma 6, we get the desired result.

Similarly, considering the matrix product

$$
\left(\begin{array}{ll}
B_{k, x} & B_{k, x} \\
B_{k, z} & C_{k, z}
\end{array}\right)\binom{C_{k, y}}{B_{k, y}}=\binom{B_{k, x+y}}{B_{k, y+z}}
$$

and proceeding in the same way as in the previous lemma, we get the following result.

Lemma 10. For all integers x, y, and $z, B_{k, x+y}^{2}-B_{k, x+y} B_{k, y+z} C_{k, z-x}-B_{k, y+z}^{2}=$ $B_{k, z-x}^{2}$, where $x \neq z$.

References

[1] A. Behera, G. K. Panda, On the square roots of triangular numbers, Fibonacci Quart., 37 (1999), 98-105.
[2] A. Bérczes, K. Liptai, I. Pink., On generalized balancing sequences, Fibonacci Quart., 48(2) (2010), 121-128.
[3] R. Finkelstein, The house problem, Amer. Math. Monthly, 72 (1965), 1082-1088.
[4] T. Komatsu, L. Szalay, Balancing with binomial coefficients, Intern. J. Number Theory, 10 (2014), 1729-1742.
[5] K. Liptai, Fibonacci Balancing numbers, Fibonacci Quart., 42 (2004), 330-340.
[6] K. Liptai, F. Luca, Á. Pintér, L. Szalay, Generalized balancing numbers, Indag. Math. (N.S.), 20 (2009), 87-100.
[7] G. K. Panda, Some fascinating properties of balancing numbers, In Proc. of The Eleventh International Conference on Fibonacci Numbers and Their Applications, Cong. Numerantium, 194 (2009), 185-189.
[8] B. K. Patel, P. K. Ray, The period, rank and order of the sequence of balancing numbers modulo m, Math. Rep. (Bucur.), 18(3) (2016), No. 9.
[9] P. K. Ray, Balancing and cobalancing numbers [Ph.D. thesis], Department of Mathematics, National Institute of Technology, Rourkela, India, 2009.
[10] P. K. Ray, Some congruences for balancing and Lucas-balancing numbers and their applications, Integers, 14(\#A8) (2014), 1-8.
[11] P. K. Ray, Balancing and Lucas-balancing sums by matrix methods, Math. Reports, 17(2) (2015), 225-233.
[12] P. K. Ray, On the properties of k-balancing numbers, Ain Shams Eng. J. (2016), accepted.
[13] P. K. Ray, Balancing polynomials and their derivatives, Ukrainian Math. J., 69(4) (2017), 646-663.

Received June 03, 2017.
Prasanta Kumar Ray
Sambalpur University,
Jyoti-Vihar, Burla,
Sambalpur-768019, India
Email address: prasantamath@suniv.ac.in

[^0]: 2020 Mathematics Subject Classification. 11B37,11B39.
 Key words and phrases. balancing numbers, Lucas-balancing numbers, k-balancing numbers, k-balancing matrix.

