ON $N(k)$ MIXED QUASI EINSTEIN WARPED PRODUCTS

DIPANKAR DEBNATH

Abstract

In this paper we have studied $N(k)$-mixed quasi Einstein warped product manifolds for arbitrary dimension $n \geq 3$.

1. Introduction

The notion of quasi Einstein manifold was introduced in a paper [8] by M. C. Chaki and R. K. Maity. According to them a non-flat Riemannian manifold $\left(M^{n}, g\right),(n \geq 3)$ is defined to be a quasi Einstein manifold if its Ricci tensor S of type (0,2) satisfies the condition

$$
S(X, Y)=\alpha g(X, Y)+\beta A(X) A(Y)
$$

and is not identically zero, where α, β are scalars, $\beta \neq 0$ and A is a non-zero 1 -form such that

$$
g\left(X, \rho_{1}\right)=A(X), \quad \forall X \in T M,
$$

where ρ_{1} is a unit vector field.
In such a case α, β are called the associated scalars. A is called the associated 1 -form and ρ_{1} is called the generator of the manifold. Such an n-dimensional manifold is denoted by the symbol $(Q E)_{n}$.

Again, in [14], U. C. De and G. C. Ghosh defined generalized quasi Einstein manifold. A non-flat Riemannian manifold is called a generalized quasi Einstein manifold if its Ricci-tensor S of type $(0,2)$ is non-zero and satisfies the condition

$$
S(X, Y)=\alpha g(X, Y)+\beta A(X) A(Y)+\gamma B(X) B(Y)
$$

where α, β, γ are non-zero scalars and A, B are two 1 -forms such that

$$
\begin{equation*}
g\left(X, \rho_{1}\right)=A(X) \quad \text { and } \quad g\left(X, \rho_{2}\right)=B(X) \tag{1}
\end{equation*}
$$

where ρ_{1}, ρ_{2} are unit vectors which are orthogonal, i.e,

$$
g\left(\rho_{1}, \rho_{2}\right)=0 .
$$

[^0]The vector fields ρ_{1} and ρ_{2} are called the generators of the manifold. This type of manifold are denoted by $G(Q E)_{n}$.

Again in [9], Chaki introduced super quasi Einstein manifold, denoted by $S(Q E)_{n}$, where the Ricci-tensor S of type $(0,2)$ which is not identically zero satisfies the condition
$S(X, Y)=\alpha g(X, Y)+\beta A(X) A(Y)+\gamma[A(X) B(Y)+A(Y) B(X)]+\delta D(X, Y)$,
where $\alpha, \beta, \gamma, \delta$ are scalars with $\beta \neq 0, \gamma \neq 0, \delta \neq 0$ and A, B are two non-zero 1 -forms defined as (1) and ρ_{1}, ρ_{2} being mutually orthogonal unit vector fields, D is a symmetric $(0,2)$ tensor with zero trace which satisfies the condition

$$
D\left(X, \rho_{1}\right)=0, \quad \forall X
$$

In such case $\alpha, \beta, \gamma, \delta$ are called the associated scalars, A, B are called the associated main and auxiliary 1-forms, ρ_{1}, ρ_{2} are called the main and the auxiliary generators and D is called the associated tensor of the manifold.Such an n-dimensional manifold shall be denoted by the symbol $S(Q E)_{n}$.

In the papers [2], [4] A. Bhattacharyya and T. De introduced the notion of mixed generalized quasi Einstein manifold. A non-flat Riemannian manifold is called a mixed generalized quasi-Einstein manifold if its Ricci tensor S of type $(0,2)$ is non-zero and satisfies the condition
$S(X, Y)=\alpha g(X, Y)+\beta A(X) A(Y)+\gamma B(X) B(Y)+\delta[A(X) B(Y)+B(X) A(Y)]$,
where $\alpha, \beta, \gamma, \delta$ are non-zero scalars,

$$
g\left(X, \rho_{1}\right)=A(X), \quad g\left(X, \rho_{2}\right)=B(X)
$$

and

$$
g\left(\rho_{1}, \rho_{2}\right)=0
$$

A, B are two non-zero 1 -forms, ρ_{1} and ρ_{2} are unit vector fields corresponding to the 1 -forms A and B, respectively.

If $\delta=0$, then the manifold reduces to a $G(Q E)_{n}$. This type of manifold is denoted by $M G(Q E)_{n}$.

Again a Riemannian manifold is said to be a manifold of generalized quasiconstant curvature [3], [6], [13] if the curvature tensor ' R of type (0,4) satisfies the condition

$$
\begin{aligned}
R(X, Y, & Z, W)=p[g(Y, Z) g(X, W)-g(X, Z) g(Y, W)]+q_{1}[g(X, W) A(Y) A(Z) \\
& -g(X, Z) A(Y) A(W)+g(Y, Z) A(X) A(W)-g(Y, W) A(X) A(Z)] \\
& +s[g(X, W) B(Y) B(Z)-g(X, Z) B(Y) B(W) \\
& +g(Y, Z) B(X) B(W)-g(Y, W) B(X) B(Z)]
\end{aligned}
$$

where p, q_{1}, s are scalars, A and B are non-zero 1-forms, ρ_{1} and ρ_{2} are unit orthogonal vector fields, such that

$$
\begin{equation*}
g\left(X, \rho_{1}\right)=A(X) \quad \text { and } \quad g\left(X, \rho_{2}\right)=B(X) \tag{2}
\end{equation*}
$$

and

$$
\begin{equation*}
g\left(\rho_{1}, \rho_{2}\right)=0 \tag{3}
\end{equation*}
$$

Again a Riemannian manifold is said to be a manifold of mixed generalized quasi-constant curvature [2], [4], [15] if the curvature tensor ' R of type (0,4) satisfies the condition

$$
\begin{aligned}
\prime R(X, Y, & Z, W)=p[g(Y, Z) g(X, W)-g(X, Z) g(Y, W)]+q_{1}[g(X, W) A(Y) A(Z) \\
& -g(Y, W) A(X) A(Z)+g(Y, Z) A(X) A(W)-g(X, Z) A(Y) A(W)] \\
& +s[g(X, W) B(Y) B(Z)-g(Y, W) B(X) B(Z)+g(Y, Z) B(X) B(W) \\
& -g(X, Z) B(Y) B(W)+t[\{A(Y) B(Z)+B(Y) A(Z)\} g(X, W) \\
& -\{A(X) B(Z)+B(X) A(Z)\} g(Y, W)+\{A(X) B(W) \\
& +B(X) A(W)\} g(Y, Z)-\{A(Y) B(W)+B(Y) A(W)\} g(X, Z)]
\end{aligned}
$$

where p, q_{1}, s, t are scalars, A, B are non-zero 1 -forms, ρ_{1} and ρ_{2} are orthonormal unit vector fields corresponding to A and B which are defined as (2) and (3) and

$$
g(R(X, Y) Z, W)={ }^{\prime} R(X, Y, Z, W)
$$

In [5] A. Bhattacharyya, M. Tarafdar, and D. Debnath introduced the notion of mixed super quasi Einstein manifold. A non-flat Riemannian manifold $\left(M^{n}, g\right),(n \geq 3)$ is called mixed super quasi Einstein manifold if its Ricci-tensor S of type $(0,2)$ is not identically zero and satisfies the condition

$$
\begin{aligned}
S(X, Y)= & \alpha g(X, Y)+\beta A(X) A(Y)+\gamma B(X) B(Y) \\
& +\delta[A(X) B(Y)+B(X) A(Y)]+\epsilon D(X, Y)
\end{aligned}
$$

where $\alpha, \beta, \gamma, \delta, \epsilon$ are scalars with $\beta \neq 0, \gamma \neq 0, \delta \neq 0, \epsilon \neq 0$ and A, B are two non-zero 1 -forms such that

$$
\begin{equation*}
g\left(X, \rho_{1}\right)=A(X) \quad \text { and } \quad g\left(X, \rho_{2}\right)=B(X), \quad \forall X, \tag{4}
\end{equation*}
$$

ρ_{1}, ρ_{2} are mutually orthogonal unit vector fields, D is a symmetric $(0,2)$ tensor with zero trace which satisfies the condition

$$
\begin{equation*}
D\left(X, \rho_{1}\right)=0, \quad \forall X \tag{5}
\end{equation*}
$$

In such case $\alpha, \beta, \gamma, \delta, \epsilon$ are called the associated scalars, A, B are called the associated main and auxiliary 1-forms, ρ_{1}, ρ_{2} are called the main and the auxiliary generators and D is called the associated tensor of the manifold. Such an n-dimensional manifold shall be denoted by the symbol $M S(Q E)_{n}$.

Again a Riemannian manifold is said to be a manifold of mixed super quasiconstant curvature [5] if the curvature tensor ${ }^{\prime} R$ of type $(0,4)$ satisfies the
condition

$$
\begin{aligned}
& { }^{\prime} R(X, Y, Z, W)=p[g(Y, Z) g(X, W)-g(X, Z) g(Y, W)]+q_{1}[g(X, W) A(Y) A(Z) \\
& -g(Y, W) A(X) A(Z)+g(Y, Z) A(X) A(W)-g(X, Z) A(Y) A(W)] \\
& +s[g(X, W) B(Y) B(Z)-g(Y, W) B(X) B(Z)+g(Y, Z) B(X) B(W) \\
& -g(X, Z) B(Y) B(W)+t[\{A(Y) B(Z)+B(Y) A(Z)\} g(X, W) \\
& -\{A(X) B(Z)+B(X) A(Z)\} g(Y, W)+\{A(X) B(W) \\
& +B(X) A(W)\} g(Y, Z)-\{A(Y) B(W)+B(Y) A(W)\} g(X, Z)] \\
& +m_{1}[g(Y, Z) D(X, W)-g(X, Z) D(Y, W) \\
& +g(X, W) D(Y, Z)-g(Y, W) D(X, Z)],
\end{aligned}
$$

where p, q_{1}, s, t, m_{1} are scalars, A, B are non-zero 1 -forms defined as (4) and ρ_{1}, ρ_{2} are mutually orthogonal unit vector fields, D is a symmetric $(0,2)$ tensor defined as (5).

The k-nullity distribution [12], [17], [22] of a Riemannian manifold M is defined by

$$
N(k): \zeta \rightarrow N_{\zeta}(k)=\left\{Z \in T_{\zeta} M \backslash R(X, Y) Z=k(g(Y, Z) X-g(X, Z) Y)\right\}
$$

for all $X, Y \in T M$ and smooth function k. M. M. Tripathi and J. J. Kim [22] introduced the notion of $N(k)$-quasi Einstein manifold which defined as follows: if the generator ρ_{1} belongs to the k-nullity distribution $N(k)$, then a quasi Einstein manifold $\left(M^{n}, g\right)$ is called $N(k)$-quasi Einstein manifold.

In [17], H. G. Nagaraja introduced the concept of $N(k)$-mixed quasi Einstein manifold and mixed quasi constant curvature. A non-flat Riemannian manifold $\left(M^{n}, g\right)$ is called an $N(k)$-mixed quasi Einstein manifold if its Ricci-tensor of type $(0,2)$ is non-zero and satisfies the condition

$$
\begin{equation*}
S(X, Y)=\alpha g(X, Y)+\beta A(X) B(Y)+\gamma B(X) A(Y) \tag{6}
\end{equation*}
$$

where α, β, γ are smooth functions and A, B are non-zero 1-forms such that

$$
g\left(X, \rho_{1}\right)=A(X) \quad \text { and } \quad g\left(X, \rho_{2}\right)=B(X), \quad \forall X,
$$

where ρ_{1}, ρ_{2} are the orthogonal unit vector fields called generators of the manifold belonging to $N(k)$. Such a manifold is denoted by the symbol $N(k)-(M Q E)_{n}$.

Again a Riemannian manifold $\left(M^{n}, g\right)$ is called of $N(k)$-mixed quasi constant curvature if it is conformally flat and its curvature tensor ' R of type $(0,4)$ satisfies the condition

$$
\begin{align*}
\prime R(X, Y, Z, W)= & p[g(Y, Z) g(X, W)-g(X, Z) g(Y, W)] \\
& +q_{1}[g(X, W) A(Y) B(Z)-g(X, Z) A(Y) B(W) \\
& +g(X, W) A(Z) B(Y)-g(X, Z) A(W) B(Y)] \tag{7}\\
& +s[g(Y, Z) A(W) B(X)-g(Y, W) A(Z) B(X) \\
& +g(Y, Z) A(X) B(W)-g(Y, W) A(X) B(Z)]
\end{align*}
$$

where p, q_{1}, s, are scalars, A, B are non-zero 1 -forms defined as (17) and ρ_{1}, ρ_{2} are mutually orthogonal unit vector fields.

Let M be an m-dimensional, $m \geq 3$, Riemannian manifold and $\zeta \in M$. Denote by $K(\omega)$ or $K(u \wedge v)$ the sectional curvature of M associated with a plane section $\omega \subset T_{\zeta} M$, where $\{u, v\}$ is an orthonormal basis of ω. For any n-dimensional subspace $L \subseteq T_{\zeta} M, 2 \leq n \leq m$, its scalar curvature $\sigma(L)$ is denoted by $\sigma(L)=2 \sum_{1 \leq i<j \leq n} K\left(e_{i} \wedge e_{j}\right)$, where $\left\{e_{1}, e_{2}, \ldots, e_{n}\right\}$ is an orthonormal basis of L. When $L=T_{\zeta} M$, the scalar curvature $\sigma(L)$ is just the scalar curvature $\sigma(\zeta)$ of M at ζ.

2. Warped product manifolds

The notion of warped product generalizes that of a surface of revolution. It was introduced in [19] for studying manifolds of negative curvature. Let (C, g_{C}) and $\left(J, g_{J}\right)$ be two Riemannian manifolds and f is a positive, differentiable function on C. Consider the product manifold $C \times J$ with its projections $\omega: C \times J \longrightarrow C$ and $\theta: C \times J \longrightarrow J$. The warped product $C \times_{f} J$ is the manifold $C \times J$ with the Riemannian structure such that $\|X\|^{2}=\left\|\omega^{*}(X)\right\|^{2}+$ $f^{2}(\omega(\zeta))\left\|\theta^{*}(X)\right\|^{2}$, for any vector field X on M. Thus

$$
\begin{equation*}
g=g_{C}+f^{2} g_{J} \tag{8}
\end{equation*}
$$

holds on M. The function f is called the warping function of the warped product [20].

Since $C \times_{f} J$ is a warped product, then we have $\nabla_{X} Z=\nabla_{Z} X=(X \ln f) Z$ for unit vector fields X, Z on C and J, respectively. Hence, we find $K(X \wedge$ $Z)=g\left(\nabla_{Z} \nabla_{X} X-\nabla_{X} \nabla_{Z} X, Z\right)=\frac{1}{f}\left\{\left(\nabla_{X} X_{f}-X^{2} f\right\}\right.$. If we chose a local orthonormal frame $\left\{e_{1}, e_{2}, \ldots, e_{n}\right\}$ such that $\left\{e_{1}, e_{2}, \ldots, e_{n_{1}}\right\}$ are tangent to C and $\left.e_{n_{1}+1}, \ldots, e_{n}\right\}$ are tangent to J, then we have

$$
\begin{equation*}
\frac{\triangle f}{f}=\sum_{i=1}^{n} K\left(e_{i} \wedge e_{j}\right) \tag{9}
\end{equation*}
$$

for each $s=n_{1}+1, \ldots, n[20]$.
We need the following two lemmas from [20], for later use:
Lemma 1. Let $M=C \times_{f} J$ be a warped product with Riemannian curvature tensor R_{M}. Given fields X, Y, Z on C and U, V, W on J. Then
(i) $R_{M}(X, Y) Z=R_{C}(X, Y) Z$,
(ii) $R_{M}(V, X) Y=-\left(H^{f}(X, Y) / f\right) V$, where H^{f} is the Hessian of f,
(iii) $R_{M}(X, Y) V=R_{M}(V, W) X=0$,
(iv) $R_{M}(X, V) W=-(g(V, W) / f) \nabla_{X}(\operatorname{grad} f)$,
(v) $R_{M}(V, W) U=R_{J}(V, W) U+\left(\|\operatorname{grad} f\|^{2} / f^{2}\right)\{g(V, U) W-g(W, U) V\}$.

Lemma 2. Let $M=C \times_{f} J$ be a warped product with Ricci-tensor S_{M}. Given fields X, Y on C and V, W on J. Then
(i) $S_{M}(X, Y)=S_{C}(X, Y)-\frac{d}{f} H^{f}(X, Y)$, where $d=\operatorname{dim} J$,
(ii) $S_{M}(X, V)=0$,
(iii) $S_{M}(V, W)=S_{J}(V, W)-g(V, W) f^{\star}, f^{\star}=\frac{\Delta f}{f}+\frac{d-1}{f^{2}} \|$ grad $f \|^{2}$, where $\triangle f$ is the Laplacian of f on C.
Moreover, the scalar curvature σ_{M} of the manifold M satisfies the condition

$$
\sigma_{M}=\sigma_{C}+\frac{\sigma_{J}}{f^{2}}-2 d \frac{\triangle f}{f}-d(d-1) \frac{|\nabla f|^{2}}{f^{2}}
$$

where σ_{C} and σ_{J} are the scalar curvatures of C and J, respectively.
In [16], Gebarowski studied Einstein warped product manifolds and proved the following three theorems:

Theorem 1. Let (M, g) be a warped product $I \times_{f} J, \operatorname{dim} I=1, \operatorname{dim} J=$ $(n-1),(n \geq 3)$. Then (M, g) is an Einstein manifold if and only if J is Einstein with constant scalar curvature σ_{J} in the case $n=3$ and f is given by one of the following formulae, for any real number b,

$$
f^{2}(t)=\left\{\begin{array}{cc}
\frac{4}{a} K \sinh ^{2} \frac{\sqrt{a}(t+b)}{2^{2}} & \text { for } a>0 \\
K(t+b)^{2} & \text { for } a=0 \\
-\frac{4}{a} K \sin ^{2} \frac{\sqrt{-a}(t+b)}{2} & \text { for } a<0
\end{array}\right.
$$

for $K>0, f^{2}(t)=b \exp (a t),(a \neq 0)$ for $K=0, f^{2}(t)=-\frac{4}{a} K \cosh ^{2} \frac{\sqrt{a}(t+b)}{2}$, $(a>0)$ for $K<0$, where a is the constant appearing after the first integration of the equation $q^{\prime \prime} \mathrm{e}^{q}+2 K=0$ and $K=\frac{\sigma_{J}}{(n-1)(n-2)}$.

Theorem 2. Let (M, g) be a warped product $C \times_{f} J$ of a complete connected r-dimensional $(1<r<n)$ Riemannian manifold C and $(n-r)$-dimensional Riemannian manifold J. If (M, g) is a space of constant sectional curvature $K>0$, then C is a sphere of radius $\frac{1}{\sqrt{K}}$.

Theorem 3. Let (M, g) be a warped product $C \times_{f} J$ of a complete connected ($n-1$)-dimensional Riemannian manifold C and one-dimensional Riemannian manifold I. If (M, g) is an Einstein manifold with scalar curvature $\sigma_{M}>0$ and the Hessian of f is proportional to the metric tensor g_{C}, then
(i) $\left(C, g_{C}\right)$ is an $(n-1)$-dimensional sphere of radius $\rho=\left(\frac{\sigma_{C}}{(n-1)(n-2)}\right)^{-\frac{1}{2}}$.
(ii) (M, g) is a space of constant sectional curvature $K=\frac{\sigma_{M}}{n(n-1)}$.

Motivated by the above study by Gebarowski and the paper by S. Sular and C. Ozgur [21], in the present paper my aim is to study the above theorems for $N(k)$-mixed quasi-Einstein manifolds.

3. $N(k)$-MIXED QUASI-EINSTEIN WARPED PRODUCTS

In this section, we consider $N(k)$-mixed quasi-Einstein warped product manifolds and prove some results concerning these type of manifolds.

Theorem 4. Let (M, g) be a warped product manifold $I \times_{f} J$, where $\operatorname{dim} I=1$ and $\operatorname{dim} J=n-1,(n \geq 3)$. If (M, g) is an $N(k)$-mixed quasi-Einstein manifold with associated scalars α, β, γ, then J is also an $N(k)$-mixed quasi-Einstein manifold.
Proof. Suppose that $(d t)^{2}$ is the metric on I. Taking $f=\exp \left\{\frac{q}{2}\right\}$ and making use of Lemma 2, we can write

$$
\begin{equation*}
S_{M}\left(\frac{\partial}{\partial t}, \frac{\partial}{\partial t}\right)=-\frac{n-1}{4}\left[2 q^{\prime \prime}+\left(q^{\prime}\right)^{2}\right] \tag{10}
\end{equation*}
$$

and

$$
\begin{equation*}
S_{M}(V, W)=S_{J}(V, W)-\frac{1}{4} e^{q}\left[2 q^{\prime \prime}+(n-1)\left(q^{\prime}\right)^{2}\right] g_{J}(V, W), \tag{11}
\end{equation*}
$$

for all vector fields V, W on J. Since M is $N(k)$-mixed quasi-Einstein, from (6) we have

$$
\begin{equation*}
S_{M}\left(\frac{\partial}{\partial t}, \frac{\partial}{\partial t}\right)=\alpha g\left(\frac{\partial}{\partial t}, \frac{\partial}{\partial t}\right)+\beta A\left(\frac{\partial}{\partial t}\right) B\left(\frac{\partial}{\partial t}\right)+\gamma B\left(\frac{\partial}{\partial t}\right) A\left(\frac{\partial}{\partial t}\right) \tag{12}
\end{equation*}
$$

and

$$
\begin{equation*}
S_{M}(V, W)=\alpha g(V, W)+\beta A(V) B(W)+\gamma B(V) A(W) \tag{13}
\end{equation*}
$$

Now let $U, U^{\prime} \in \chi(M)$. Decomposing the vector fields U and U^{\prime} uniquely into its components U_{I}, U_{J}, and $U_{I}^{\prime}, U_{J}^{\prime}$ on I and J, respectively, we can write $U=U_{I}+U_{J}$ and $U^{\prime}=U_{I}^{\prime}+U_{J}^{\prime}$. Since $\operatorname{dim} I=1$, we can take $U_{I}=\xi_{1} \frac{\partial}{\partial t}$ which gives us $U=\xi_{1} \frac{\partial}{\partial t}+U_{J}$ and $U_{I}^{\prime}=\xi_{2} \frac{\partial}{\partial t}$ which yields $U^{\prime}=\xi_{2} \frac{\partial}{\partial t}+U_{J}^{\prime}$, where ξ_{1} and ξ_{2} are functions on M. Then we can write

$$
\begin{equation*}
A\left(\frac{\partial}{\partial t}\right)=g\left(\frac{\partial}{\partial t}, U\right)=\xi_{1}, B\left(\frac{\partial}{\partial t}\right)=g\left(\frac{\partial}{\partial t}, U^{\prime}\right)=\xi_{2} \tag{14}
\end{equation*}
$$

On the other hand, by the use of (8) and (14), the equations (12) and (13) reduce to

$$
\begin{equation*}
S_{M}\left(\frac{\partial}{\partial t}, \frac{\partial}{\partial t}\right)=\alpha+\beta \xi_{1} \xi_{2}+\gamma \xi_{1} \xi_{2} \tag{15}
\end{equation*}
$$

and

$$
\begin{equation*}
S_{M}(V, W)=\alpha e^{q} g_{J}(V, W)+\beta A(V) B(W)+\gamma B(V) A(W) \tag{16}
\end{equation*}
$$

Comparing the right hand side of the equations (10) and (15) we get

$$
\alpha+\beta \xi_{1} \xi_{2}+\gamma \xi_{1} \xi_{2}=-\frac{n-1}{4}\left[2 q^{\prime \prime}+\left(q^{\prime}\right)^{2}\right] .
$$

Similarly, comparing the right hand sides of (11) and (16) we obtain
$S_{J}(V, W)=\frac{1}{4} e^{q}\left[2 q^{\prime \prime}+(n-1)\left(q^{\prime}\right)^{2}+4 \alpha\right] g_{J}(V, W)+\beta A(V) B(W)+\gamma B(V) A(W)$, which implies that J is an $N(k)$-mixed quasi-Einstein manifold. This completes the proof of the theorem.

Theorem 5. Let (M, g) be a warped product $C \times_{f} J$ of a complete connected r-dimensional $(1<r<n)$ Riemannian manifold C and an $(n-r)$-dimensional Riemannian manifold J.
(i) If (M, g) is a space of $N(k)$-mixed quasi-constant sectional curvature, the Hessian of f is proportional to the metric tensor g_{C} and the associated vector fields E and E^{\prime} are the general vector field on M or $E, E^{\prime} \in \chi(C)$, then C is isometric to the sphere of radius $\frac{1}{\sqrt{k}}$ in the $(r+1)$ dimensional Euclidean space. For $r=2, C$ is a 2-dimensional Einstein manifold.
(ii) If (M, g) is a space of $N(k)$-mixed quasi-constant sectional curvature and the associated vector fields $E, E^{\prime} \in \chi(J)$, then C is an Einstein manifold.

Proof. Assume that M is a space of $N(k)$-mixed quasi-constant sectional curvature. Then from equation (7), we can write

$$
\begin{align*}
\prime R(X, Y, Z, W)= & p[g(Y, Z) g(X, W)-g(X, Z) g(Y, W)] \\
& +q_{1}[g(X, W) A(Y) B(Z)-g(X, Z) A(Y) B(W) \\
& +g(X, W) A(Z) B(Y)-g(X, Z) A(W) B(Y)] \tag{17}\\
& +s[g(Y, Z) A(W) B(X)-g(Y, W) A(Z) B(X) \\
& +g(Y, Z) A(X) B(W)-g(Y, W) A(X) B(Z)]
\end{align*}
$$

for all vector fields X, Y, Z, W on C.
Decomposing the vector fields E and E^{\prime} uniquely into its components E_{C}, E_{J}, and $E_{C}^{\prime}, E_{J}^{\prime}$ on C and J, respectively, we can write $E=E_{C}+E_{J}$ and $E^{\prime}=E_{C}^{\prime}+E_{J}^{\prime}$. Then we can write

$$
\begin{align*}
& A(X)=g(X, E)=g\left(X, E_{C}\right)=g_{C}\left(X, E_{C}\right) \\
& B(X)=g\left(X, E^{\prime}\right)=g\left(X, E_{C}^{\prime}\right)=g_{C}\left(X, E_{C}^{\prime}\right) \tag{18}
\end{align*}
$$

In view of Lemma 1 and by using (8) and (18) in equation (17) and then after a contraction over X and W (we put $X=W=e_{i}$), we get
(19) $S_{C}(Y, Z)=p(r-1) g_{C}(Y, Z)+\left[q_{1}(r-1)-s\right][A(Y) B(Z)+B(Y) A(Z)]$,
which shows us that C is a mixed quasi-Einstein manifold. Contracting from (19) over Y and Z, we can write

$$
\begin{equation*}
\sigma_{C}=p(r-1) r \tag{20}
\end{equation*}
$$

Since M is a space of constant sectional curvature, in view of (9) and (17) we get

$$
\begin{equation*}
\frac{\Delta f}{f}=\frac{p r}{2} \tag{21}
\end{equation*}
$$

On the other hand, since the Hessian of f is proportional to the metric tensor g_{C}, it can be written as follows

$$
\begin{equation*}
H^{f}(X, Y)=\frac{\triangle f}{r} g_{C}(X, Y) \tag{22}
\end{equation*}
$$

Then by the use of (20) and (21) in (22) we obtain that

$$
H^{f}(X, Y)+K f g_{C}(X, Y)=0
$$

holds on C, where $K=-\frac{\sigma_{C}}{2 r(r-1)}$.
So by Obata's theorem [18], C is isometric to the sphere of radius $\frac{1}{\sqrt{K}}$ in the $(r+1)$-dimensional Euclidean space. When $r=2$ then since $\beta \neq 0$ and $\gamma \neq 0$, C becomes a 2-dimensional Einstein manifold.

Assume that the associated vector fields $E, E^{\prime} \in \chi(C)$. Then in view of Lemma 1 and by making use of (8) and (17) and after a contraction over X and W we obtain

$$
S_{C}(Y, Z)=p(r-1) g_{C}(Y, Z)+\left[q_{1}(r-1)-s\right][A(Y) B(Z)+B(Y) A(Z)]
$$

which gives us that C is an $N(k)$-mixed quasi-Einstein manifold. By a contraction from the above equation over Y and Z, we get

$$
\sigma_{C}=p(r-1) r .
$$

Since M is a space of constant sectional curvature, in view of (9) and (17) (for the case of $E, E^{\prime} \in \chi(C)$), we obtain

$$
\frac{\Delta f}{f}=\frac{p r}{2}
$$

On the other hand, since the Hessian of f is proportional to the metric tensor g_{C}, it can be written as follows

$$
H^{f}(X, Y)=\frac{\triangle f}{r} g_{C}(X, Y)
$$

Then by the use of above three equations we get

$$
H^{f}(X, Y)+K f g_{C}(X, Y)=0, \quad \text { where } \quad K=-\frac{\sigma_{C}}{2 r(r-1)}
$$

holds on C. So by Obata's theorem [18], C is isometric to the sphere of radius $\frac{1}{\sqrt{K}}$ in the $(r+1)$-dimensional Euclidean space. For $r=2$ and as $\beta \neq 0, \gamma \neq 0$, C is a 2 -dimensional Einstein manifold.

Assume that the associated vector fields $E, E^{\prime} \in \chi(J)$, then equation (17) reduces to

$$
R(X, Y, Z, W)=p[g(Y, Z) g(X, W)-g(X, Z) g(Y, W)]
$$

In view of Lemma 1 and by making use of (8), the above equation can be written as

$$
R(X, Y, Z, W)=p\left[g_{C}(Y, Z) g_{C}(X, W)-g_{C}(X, Z) g_{C}(Y, W)\right]
$$

Again we use a contraction of the above equation over X and W, we get

$$
S_{C}(Y, Z)=p(r-1) g_{C}(Y, Z)
$$

which implies that C ia an Einstein manifold with scalar curvature $\sigma_{C}=$ $\operatorname{pr}(r-1)$. Hence the proof of the theorem is completed.

Theorem 6. Let (M, g) be a warped product $C \times{ }_{f} I$ of a complete connected ($n-1$)-dimensional Riemannian manifold C and a one-dimensional Riemannian manifold I. If (M, g) is an $N(k)$-mixed quasi-Einstein manifold with constant associated scalars α, β, and γ and the Hessian of f is proportional to the metric tensor g_{C}, then $\left(C, g_{C}\right)$ is an $(n-1)$-dimensional sphere of radius $\frac{n-1}{\sqrt{\sigma_{C}+\alpha}}$.
Proof. Assume that M is a warped product manifold. Then by using Lemma 2 we can write

$$
S_{C}(X, Y)=S_{M}(X, Y)+\frac{1}{f} H^{f}(X, Y)
$$

for any vector fields X, Y on C. On the other hand, since M is an $N(k)$-mixed quasi-Einstein manifold we have

$$
\begin{equation*}
S_{M}(X, Y)=\alpha g(X, Y)+\beta A(X) B(Y)+\gamma B(X) A(Y) \tag{23}
\end{equation*}
$$

When $U, U^{\prime} \in \chi(M)$, decomposing the vector fields U and U^{\prime} uniquely into its components U_{I}, U_{J}, and $U_{I}^{\prime}, U_{J}^{\prime}$ on B and I, respectively, we can write

$$
U=U_{B}+U_{I} \quad \text { and } \quad U^{\prime}=U_{B}^{\prime}+U_{I}^{\prime}
$$

In view of (8) and the above three equations,

$$
\begin{aligned}
S_{C}(X, Y)= & \left.\alpha g_{C}(X, Y)+\beta g_{C}\left(X, U_{C}\right) g_{(} Y, U_{C}^{\prime}\right) \\
& +\gamma g_{C}\left(X, U_{C}^{\prime}\right) g_{C}\left(Y, U_{C}\right)+\frac{1}{f} H^{f}(X, Y)
\end{aligned}
$$

By contraction from the above equation over X, Y, we get

$$
\begin{equation*}
\sigma_{C}=\alpha(n-1)+\frac{\triangle f}{f} \tag{24}
\end{equation*}
$$

On the other hand, we know from equation (23) that

$$
\begin{equation*}
\sigma_{M}=\alpha n \tag{25}
\end{equation*}
$$

By using (25) in (24) we get $\sigma_{C}=\sigma_{M}-\alpha+\frac{\Delta f}{f}$.
In view of Lemma 2 we also know that

$$
\begin{equation*}
-\frac{\sigma_{M}}{n}=\frac{\triangle f}{f} \tag{26}
\end{equation*}
$$

The last two equations give us $\sigma_{C}=\frac{n-1}{n} \sigma_{M}-\alpha$. On the other hand, since the Hessian of f is proportional to the metric tensor g_{C}, it can be written as follows

$$
H^{f}(X, Y)=\frac{\triangle f}{n-1} g_{C}(X, Y)
$$

As the consequence of equation (26) we have $\frac{\Delta f}{n-1}=-\frac{1}{n(n-1)} \sigma_{M} f$, which implies that

$$
H^{f}(X, Y)+\frac{\sigma_{C}+\alpha}{(n-1)^{2}} f g_{C}(X, Y)=0
$$

So, by Obata's theorem C is isometric to the $(n-1)$-dimensional sphere of radius $\frac{n-1}{\sqrt{\sigma_{C}+\alpha}}$.

References

[1] D. E. Blair, Contact manifolds in Riemannian geometry, Lect. Notes Math., 509, Springer-Verlag, Heidelberg, 1976.
[2] A. Bhattacharyya, T. De, On mixed generalized quasi-Einstein manifold, Differ. Geom. Dyn. Syst., 9 (2007), 40-46.
[3] A. Bhattacharyya, D. Debnath, On some types of quasi Einstein manifolds and generalized quasi Einstein manifolds, Ganita, 57(2) (2006), 185-191.
[4] A. Bhattacharyya, T. De, D. Debnath, On mixed generalized quasi-Einstein manifold and some properties, An. Sţiinţ. Univ. Al. I. Cuza Iaşi. Mat. (N.S.), 53(1) (2007), 137148.
[5] A. Bhattacharyya, M. Tarafdar, D. Debnath, On mixed super quasi-Einstein manifold, Differ. Geom. Dyn. Syst., 10 (2008), 44-57.
[6] A. Bhattacharyya, D. Debnath, Some types of generalized quasi Einstein, pseudo Riccisymmetric and weakly symmetric manifold, An. Sţiinţ. Univ. Al. I. Cuza Iaşi. Mat. (N.S.), 55(1) (2009), 1145-1151.
[7] M. C. Chaki, M. L. Ghosh, On quasi conformally flat and quasiconformally conservative Riemannian manifolds, , An. Sţiinţ. Univ. Al. I. Cuza Iaşi. Mat. (N.S.), 38 (1997), 375381.
[8] M. C. Chaki, R. K. Maity, On quasi Einstein manifold, Publ. Math. Debrecen, 57 (2000), 297-306.
[9] M. C. Chaki, On super quasi Einstein manifolds, Publ. Math. Debrecen, 64(3-4) (2004), 481-488.
[10] D. Debnath, A. Bhattacharyya, Some global properties of mixed super quasi-Einstein manifold, Differ. Geom. Dyn. Syst., 11 (2009), 105-111.
[11] U. C. De, G. C. Ghosh, On quasi Einstein manifolds, Period. Math. Hungar., 48(1-2) (2004), 223-231.
[12] D. Debnath, On $N(k)$ mixed quasi Einstein manifolds and some global properties, Acta Math. Acad. Paedag. Nyíregyh., 33 (2017), 305-313.
[13] D. Debnath, A. Bhattacharyya, On some types of quasi Eiestein, generalized quasi Einstein and super quasi Einstein manifolds, J. Rajasthan Acad. Phys. Sci, 10(1) (2011), 33-40.
[14] U. C. De, G. C. Ghosh, On generalized quasi-Einstein manifolds, Kyungpook Math. J., 44 (2004), 607-615.
[15] D. Debnath, Some properties of mixed generalized and mixed super quasi Einstein manifolds, J. Math., 2(2) (2009), 147-158.
[16] A. Gebarowski, On Einstein warped products, Tensor (N.S.), 52 (1993), 204-207.
[17] H. G. Nagaraja On $N(k)$-mixed quasi Einstein manifolds, Eur. J. Pure Appl. Math., 3(1) (2010), 16-25.
[18] M. Obata, Certain conditions for a Riemannian manifold to be isometric with a sphere, J. Math. Soc. Japan., 14 (1962), 333-340.
[19] B. O'Neill, R. L. Bishop, Manifolds of negative curvature, Trans. Amer. Math. Soc., 145 (1969), 1-49.
[20] B. O'Neill, Semi-Riemannian geometry with applications to relativity pure and applied mathematics, Academic Press. Inc., New York, 1983.
[21] S. Sular, C. Ozgur, On quasi-Einstein warped products, An. Sţiinţ. Univ. Al. I. Cuza Iaşi. Mat. (N.S.), 58 (2012), 353-362.
[22] M. M. Tripathi, J. S. Kim, On $N(k)$-quasi Einstein manifolds, Commun. Korean Math. Soc., 22(3) (2007), 411-417.
[23] S. Tanno, Ricci curvatures of contact Riemannian manifolds, Tohoku Math. J., 40 (1988), 441-448.

Received June 10, 2017.
Dipankar Debnath
Department of Mathematics, Bamanpukur High School,
Bamanpukur, PO-Sree Mayapur, West Bengal, India, PIN-741313
Email address: dipankardebnath123@gmail.com

[^0]: 2020 Mathematics Subject Classification. 53C25, 53C15, 53B30.
 Key words and phrases. $N(k)$-mixed quasi Einstein manifold $(M Q E)_{n}$, warped product manifold, $N(k)$-mixed quasi constant curvature, warping function of the warped product.

