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ON N(k) MIXED QUASI EINSTEIN WARPED PRODUCTS

DIPANKAR DEBNATH

Abstract. In this paper we have studiedN(k)-mixed quasi Einstein warped
product manifolds for arbitrary dimension n ≥ 3.

1. Introduction

The notion of quasi Einstein manifold was introduced in a paper [8] by M.
C. Chaki and R. K. Maity. According to them a non-flat Riemannian manifold
(Mn, g), (n ≥ 3) is defined to be a quasi Einstein manifold if its Ricci tensor
S of type (0, 2) satisfies the condition

S(X, Y ) = αg(X, Y ) + βA(X)A(Y )

and is not identically zero, where α, β are scalars, β ̸= 0 and A is a non-zero
1-form such that

g(X, ρ1) = A(X), ∀X ∈ TM,

where ρ1 is a unit vector field.
In such a case α, β are called the associated scalars. A is called the associated

1-form and ρ1 is called the generator of the manifold. Such an n-dimensional
manifold is denoted by the symbol (QE)n.

Again, in [14], U. C. De and G. C. Ghosh defined generalized quasi Einstein
manifold. A non-flat Riemannian manifold is called a generalized quasi Ein-
stein manifold if its Ricci-tensor S of type (0, 2) is non-zero and satisfies the
condition

S(X, Y ) = αg(X, Y ) + βA(X)A(Y ) + γB(X)B(Y ),

where α, β, γ are non-zero scalars and A,B are two 1-forms such that

(1) g(X, ρ1) = A(X) and g(X, ρ2) = B(X),

where ρ1, ρ2 are unit vectors which are orthogonal, i.e,

g(ρ1, ρ2) = 0.
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The vector fields ρ1 and ρ2 are called the generators of the manifold. This
type of manifold are denoted by G(QE)n.
Again in [9], Chaki introduced super quasi Einstein manifold, denoted by

S(QE)n, where the Ricci-tensor S of type (0, 2) which is not identically zero
satisfies the condition

S(X, Y ) = αg(X, Y )+βA(X)A(Y )+γ[A(X)B(Y )+A(Y )B(X)]+ δD(X, Y ),

where α, β, γ, δ are scalars with β ̸= 0, γ ̸= 0, δ ̸= 0 and A,B are two non-zero
1-forms defined as (1) and ρ1, ρ2 being mutually orthogonal unit vector fields,
D is a symmetric (0, 2) tensor with zero trace which satisfies the condition

D(X, ρ1) = 0, ∀X.

In such case α, β, γ, δ are called the associated scalars, A,B are called the
associated main and auxiliary 1-forms, ρ1, ρ2 are called the main and the aux-
iliary generators and D is called the associated tensor of the manifold.Such an
n-dimensional manifold shall be denoted by the symbol S(QE)n.
In the papers [2], [4] A. Bhattacharyya and T. De introduced the notion of

mixed generalized quasi Einstein manifold. A non-flat Riemannian manifold
is called a mixed generalized quasi-Einstein manifold if its Ricci tensor S of
type (0, 2) is non-zero and satisfies the condition

S(X, Y ) = αg(X, Y )+βA(X)A(Y )+γB(X)B(Y )+δ[A(X)B(Y )+B(X)A(Y )],

where α, β, γ, δ are non-zero scalars,

g(X, ρ1) = A(X), g(X, ρ2) = B(X),

and
g(ρ1, ρ2) = 0,

A,B are two non-zero 1-forms, ρ1 and ρ2 are unit vector fields corresponding
to the 1-forms A and B, respectively.

If δ = 0, then the manifold reduces to a G(QE)n. This type of manifold is
denoted by MG(QE)n.

Again a Riemannian manifold is said to be a manifold of generalized quasi-
constant curvature [3], [6], [13] if the curvature tensor Ŕ of type (0, 4) satisfies
the condition

R(X, Y , Z,W ) = p[g(Y, Z)g(X,W )− g(X,Z)g(Y,W )] + q1[g(X,W )A(Y )A(Z)

− g(X,Z)A(Y )A(W ) + g(Y, Z)A(X)A(W )− g(Y,W )A(X)A(Z)]

+ s[g(X,W )B(Y )B(Z)− g(X,Z)B(Y )B(W )

+ g(Y, Z)B(X)B(W )− g(Y,W )B(X)B(Z)],

where p, q1, s are scalars, A and B are non-zero 1-forms, ρ1 and ρ2 are unit
orthogonal vector fields, such that

(2) g(X, ρ1) = A(X) and g(X, ρ2) = B(X)



140 DIPANKAR DEBNATH

and

(3) g(ρ1, ρ2) = 0.

Again a Riemannian manifold is said to be a manifold of mixed generalized
quasi-constant curvature [2], [4], [15] if the curvature tensor Ŕ of type (0, 4)
satisfies the condition

Ŕ(X, Y , Z,W ) = p[g(Y, Z)g(X,W )− g(X,Z)g(Y,W )] + q1[g(X,W )A(Y )A(Z)

− g(Y,W )A(X)A(Z) + g(Y, Z)A(X)A(W )− g(X,Z)A(Y )A(W )]

+ s[g(X,W )B(Y )B(Z)− g(Y,W )B(X)B(Z) + g(Y, Z)B(X)B(W )

− g(X,Z)B(Y )B(W ) + t[{A(Y )B(Z) +B(Y )A(Z)}g(X,W )

− {A(X)B(Z) +B(X)A(Z)}g(Y,W ) + {A(X)B(W )

+B(X)A(W )}g(Y, Z)− {A(Y )B(W ) +B(Y )A(W )}g(X,Z)],

where p, q1, s, t are scalars, A,B are non-zero 1-forms, ρ1 and ρ2 are orthonor-
mal unit vector fields corresponding to A and B which are defined as (2) and
(3) and

g(R(X, Y )Z,W ) = Ŕ(X, Y, Z,W ).

In [5] A. Bhattacharyya, M. Tarafdar, and D. Debnath introduced the no-
tion of mixed super quasi Einstein manifold. A non-flat Riemannian manifold
(Mn, g),(n ≥ 3) is called mixed super quasi Einstein manifold if its Ricci-tensor
S of type (0, 2) is not identically zero and satisfies the condition

S(X, Y ) = αg(X, Y ) + βA(X)A(Y ) + γB(X)B(Y )

+ δ[A(X)B(Y ) +B(X)A(Y )] + ϵD(X, Y ),

where α, β, γ, δ, ϵ are scalars with β ̸= 0 ,γ ̸= 0, δ ̸= 0, ϵ ̸= 0 and A,B are two
non-zero 1-forms such that

(4) g(X, ρ1) = A(X) and g(X, ρ2) = B(X), ∀X,

ρ1, ρ2 are mutually orthogonal unit vector fields, D is a symmetric (0, 2) tensor
with zero trace which satisfies the condition

(5) D(X, ρ1) = 0, ∀X.

In such case α, β, γ, δ, ϵ are called the associated scalars, A,B are called
the associated main and auxiliary 1-forms, ρ1, ρ2 are called the main and the
auxiliary generators and D is called the associated tensor of the manifold.
Such an n-dimensional manifold shall be denoted by the symbol MS(QE)n.

Again a Riemannian manifold is said to be a manifold of mixed super quasi-
constant curvature [5] if the curvature tensor Ŕ of type (0, 4) satisfies the
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condition

Ŕ(X, Y,Z,W ) = p[g(Y, Z)g(X,W )− g(X,Z)g(Y,W )] + q1[g(X,W )A(Y )A(Z)

− g(Y,W )A(X)A(Z) + g(Y, Z)A(X)A(W )− g(X,Z)A(Y )A(W )]

+ s[g(X,W )B(Y )B(Z)− g(Y,W )B(X)B(Z) + g(Y, Z)B(X)B(W )

− g(X,Z)B(Y )B(W ) + t[{A(Y )B(Z) +B(Y )A(Z)}g(X,W )

− {A(X)B(Z) +B(X)A(Z)}g(Y,W ) + {A(X)B(W )

+B(X)A(W )}g(Y, Z)− {A(Y )B(W ) +B(Y )A(W )}g(X,Z)]

+m1[g(Y, Z)D(X,W )− g(X,Z)D(Y,W )

+ g(X,W )D(Y, Z)− g(Y,W )D(X,Z)],

where p, q1, s, t,m1 are scalars, A,B are non-zero 1-forms defined as (4) and
ρ1, ρ2 are mutually orthogonal unit vector fields, D is a symmetric (0, 2) tensor
defined as (5).

The k-nullity distribution [12], [17], [22] of a Riemannian manifold M is de-
fined by

N(k) : ζ → Nζ(k) = {Z ∈ TζM \R(X, Y )Z = k(g(Y, Z)X − g(X,Z)Y )}
for all X, Y ∈ TM and smooth function k. M. M. Tripathi and J. J. Kim
[22] introduced the notion of N(k)-quasi Einstein manifold which defined as
follows: if the generator ρ1 belongs to the k-nullity distribution N(k), then a
quasi Einstein manifold (Mn, g) is called N(k)-quasi Einstein manifold.

In [17], H. G. Nagaraja introduced the concept of N(k)-mixed quasi Einstein
manifold and mixed quasi constant curvature. A non-flat Riemannian manifold
(Mn, g) is called an N(k)-mixed quasi Einstein manifold if its Ricci-tensor of
type (0, 2) is non-zero and satisfies the condition

(6) S(X, Y ) = αg(X, Y ) + βA(X)B(Y ) + γB(X)A(Y ),

where α, β, γ are smooth functions and A,B are non-zero 1-forms such that

g(X, ρ1) = A(X) and g(X, ρ2) = B(X), ∀X,

where ρ1, ρ2 are the orthogonal unit vector fields called generators of the
manifold belonging to N(k). Such a manifold is denoted by the symbol
N(k)− (MQE)n.
Again a Riemannian manifold (Mn, g) is called ofN(k)-mixed quasi constant

curvature if it is conformally flat and its curvature tensor Ŕ of type (0, 4)
satisfies the condition

Ŕ(X, Y, Z,W ) = p[g(Y, Z)g(X,W )− g(X,Z)g(Y,W )]

+ q1[g(X,W )A(Y )B(Z)− g(X,Z)A(Y )B(W )

+ g(X,W )A(Z)B(Y )− g(X,Z)A(W )B(Y )]

+ s[g(Y, Z)A(W )B(X)− g(Y,W )A(Z)B(X)

+ g(Y, Z)A(X)B(W )− g(Y,W )A(X)B(Z)],

(7)
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where p, q1, s, are scalars, A,B are non-zero 1-forms defined as (17) and ρ1, ρ2
are mutually orthogonal unit vector fields.

Let M be an m-dimensional, m ≥ 3, Riemannian manifold and ζ ∈ M .
Denote by K(ω) or K(u ∧ v) the sectional curvature of M associated with
a plane section ω ⊂ TζM, where {u, v} is an orthonormal basis of ω. For
any n-dimensional subspace L ⊆ TζM, 2 ≤ n ≤ m, its scalar curvature σ(L)
is denoted by σ(L) = 2

∑
1≤i<j≤nK(ei ∧ ej), where {e1, e2, . . . , en} is an or-

thonormal basis of L. When L = TζM, the scalar curvature σ(L) is just the
scalar curvature σ(ζ) of M at ζ.

2. Warped product manifolds

The notion of warped product generalizes that of a surface of revolution. It
was introduced in [19] for studying manifolds of negative curvature. Let (C, gC)
and (J, gJ) be two Riemannian manifolds and f is a positive, differentiable
function on C. Consider the product manifold C × J with its projections
ω : C × J −→ C and θ : C × J −→ J . The warped product C ×f J is the
manifold C × J with the Riemannian structure such that ∥X∥2 = ∥ω∗(X)∥2+
f 2(ω(ζ))∥θ∗(X)∥2, for any vector field X on M . Thus

(8) g = gC + f 2gJ

holds on M . The function f is called the warping function of the warped
product [20].

Since C ×f J is a warped product, then we have ∇XZ = ∇ZX = (Xlnf)Z
for unit vector fields X,Z on C and J , respectively. Hence, we find K(X ∧
Z) = g(∇Z∇XX − ∇X∇ZX,Z) = 1

f
{(∇XXf − X2f}. If we chose a local

orthonormal frame {e1, e2, . . . , en} such that {e1, e2, . . . , en1} are tangent to C
and en1+1, . . . , en} are tangent to J , then we have

(9)
△f

f
=

n∑
i=1

K(ei ∧ ej)

for each s = n1 + 1, . . . , n [20].
We need the following two lemmas from [20], for later use:

Lemma 1. Let M = C ×f J be a warped product with Riemannian curvature
tensor RM . Given fields X, Y, Z on C and U, V,W on J . Then

(i) RM(X, Y )Z = RC(X, Y )Z,
(ii) RM(V,X)Y = −(Hf (X, Y )/f)V, where Hf is the Hessian of f ,
(iii) RM(X, Y )V = RM(V,W )X = 0,
(iv) RM(X, V )W = −(g(V,W )/f)∇X(grad f),
(v) RM(V,W )U = RJ(V,W )U + (∥grad f∥2/f 2){g(V, U)W − g(W,U)V }.

Lemma 2. Let M = C×f J be a warped product with Ricci-tensor SM . Given
fields X, Y on C and V,W on J . Then

(i) SM(X, Y ) = SC(X, Y )− d
f
Hf (X, Y ), where d = dim J,
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(ii) SM(X, V ) = 0,
(iii) SM(V,W ) = SJ(V,W )− g(V,W )f ⋆, f ⋆ = △f

f
+ d−1

f2 ∥grad f∥2, where △f

is the Laplacian of f on C.

Moreover, the scalar curvature σM of the manifold M satisfies the condition

σM = σC +
σJ

f 2
− 2d

△f

f
− d(d− 1)

|∇f |2

f 2
,

where σC and σJ are the scalar curvatures of C and J , respectively.

In [16], Gebarowski studied Einstein warped product manifolds and proved
the following three theorems:

Theorem 1. Let (M, g) be a warped product I ×f J, dim I = 1, dim J =
(n − 1), (n ≥ 3). Then (M, g) is an Einstein manifold if and only if J is
Einstein with constant scalar curvature σJ in the case n = 3 and f is given by
one of the following formulae, for any real number b,

f 2(t) =


4
a
K sinh2

√
a(t+b)
2

for a > 0,
K(t+ b)2 for a = 0,

− 4
a
K sin2

√
−a(t+b)

2
for a < 0

for K > 0, f 2(t) = b exp(at), (a ̸= 0) for K = 0, f 2(t) = − 4
a
K cosh2

√
a(t+b)
2

,
(a > 0) for K < 0, where a is the constant appearing after the first integration
of the equation q′′eq + 2K = 0 and K = σJ

(n−1)(n−2)
.

Theorem 2. Let (M, g) be a warped product C ×f J of a complete connected
r-dimensional (1 < r < n) Riemannian manifold C and (n − r)-dimensional
Riemannian manifold J . If (M, g) is a space of constant sectional curvature
K > 0, then C is a sphere of radius 1√

K
.

Theorem 3. Let (M, g) be a warped product C ×f J of a complete connected
(n−1)-dimensional Riemannian manifold C and one-dimensional Riemannian
manifold I. If (M, g) is an Einstein manifold with scalar curvature σM > 0
and the Hessian of f is proportional to the metric tensor gC, then

(i) (C, gC) is an (n− 1)-dimensional sphere of radius ρ =
(

σC

(n−1)(n−2)

)− 1
2
.

(ii) (M, g) is a space of constant sectional curvature K = σM

n(n−1)
.

Motivated by the above study by Gebarowski and the paper by S. Sular and
C. Ozgur [21], in the present paper my aim is to study the above theorems for
N(k)-mixed quasi-Einstein manifolds.

3. N(k)-mixed quasi-Einstein warped products

In this section, we considerN(k)-mixed quasi-Einstein warped product man-
ifolds and prove some results concerning these type of manifolds.
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Theorem 4. Let (M, g) be a warped product manifold I×f J , where dim I = 1
and dim J = n−1, (n ≥ 3). If (M, g) is an N(k)-mixed quasi-Einstein manifold
with associated scalars α, β, γ, then J is also an N(k)-mixed quasi-Einstein
manifold.

Proof. Suppose that (dt)2 is the metric on I. Taking f = exp{ q
2
} and making

use of Lemma 2, we can write

(10) SM

(
∂

∂t
,
∂

∂t

)
= −n− 1

4
[2q′′ + (q′)2]

and

(11) SM(V,W ) = SJ(V,W )− 1

4
eq[2q′′ + (n− 1)(q′)2]gJ(V,W ),

for all vector fields V,W on J . Since M is N(k)-mixed quasi-Einstein, from
(6) we have

(12) SM

(
∂

∂t
,
∂

∂t

)
= αg

(
∂

∂t
,
∂

∂t

)
+ βA

(
∂

∂t

)
B

(
∂

∂t

)
+ γB

(
∂

∂t

)
A

(
∂

∂t

)
and

(13) SM(V,W ) = αg(V,W ) + βA(V )B(W ) + γB(V )A(W ).

Now let U,U ′ ∈ χ(M). Decomposing the vector fields U and U ′ uniquely
into its components UI , UJ , and U ′

I , U
′
J on I and J , respectively, we can write

U = UI +UJ and U ′ = U ′
I +U ′

J . Since dim I = 1, we can take UI = ξ1
∂
∂t

which

gives us U = ξ1
∂
∂t

+ UJ and U ′
I = ξ2

∂
∂t

which yields U ′ = ξ2
∂
∂t

+ U ′
J , where ξ1

and ξ2 are functions on M . Then we can write

(14) A

(
∂

∂t

)
= g

(
∂

∂t
, U

)
= ξ1, B

(
∂

∂t

)
= g

(
∂

∂t
, U ′

)
= ξ2.

On the other hand, by the use of (8) and (14), the equations (12) and (13)
reduce to

(15) SM

(
∂

∂t
,
∂

∂t

)
= α + βξ1ξ2 + γξ1ξ2

and

(16) SM(V,W ) = αeqgJ(V,W ) + βA(V )B(W ) + γB(V )A(W ).

Comparing the right hand side of the equations (10) and (15) we get

α + βξ1ξ2 + γξ1ξ2 = −n− 1

4
[2q′′ + (q′)2].

Similarly, comparing the right hand sides of (11) and (16) we obtain

SJ(V,W ) =
1

4
eq[2q′′+(n−1)(q′)2+4α]gJ(V,W )+βA(V )B(W )+γB(V )A(W ),

which implies that J is anN(k)-mixed quasi-Einstein manifold. This completes
the proof of the theorem. □
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Theorem 5. Let (M, g) be a warped product C ×f J of a complete connected
r-dimensional (1 < r < n) Riemannian manifold C and an (n−r)-dimensional
Riemannian manifold J .

(i) If (M, g) is a space of N(k)-mixed quasi-constant sectional curvature, the
Hessian of f is proportional to the metric tensor gC and the associated
vector fields E and E ′ are the general vector field on M or E, E ′ ∈ χ(C),
then C is isometric to the sphere of radius 1√

k
in the (r+1) dimensional

Euclidean space. For r = 2, C is a 2-dimensional Einstein manifold.
(ii) If (M, g) is a space of N(k)-mixed quasi-constant sectional curvature and

the associated vector fields E, E ′ ∈ χ(J), then C is an Einstein manifold.

Proof. Assume that M is a space of N(k)-mixed quasi-constant sectional cur-
vature. Then from equation (7), we can write

Ŕ(X, Y, Z,W ) = p[g(Y, Z)g(X,W )− g(X,Z)g(Y,W )]

+ q1[g(X,W )A(Y )B(Z)− g(X,Z)A(Y )B(W )

+ g(X,W )A(Z)B(Y )− g(X,Z)A(W )B(Y )]

+ s[g(Y, Z)A(W )B(X)− g(Y,W )A(Z)B(X)

+ g(Y, Z)A(X)B(W )− g(Y,W )A(X)B(Z)]

(17)

for all vector fields X, Y, Z,W on C.
Decomposing the vector fields E and E ′ uniquely into its components EC ,

EJ , and E ′
C , E

′
J on C and J , respectively, we can write E = EC + EJ and

E ′ = E ′
C + E ′

J . Then we can write

A(X) = g(X,E) = g(X,EC) = gC(X,EC),

B(X) = g(X,E ′) = g(X,E ′
C) = gC(X,E ′

C).
(18)

In view of Lemma 1 and by using (8) and (18) in equation (17) and then
after a contraction over X and W (we put X = W = ei), we get

(19) SC(Y, Z) = p(r − 1)gC(Y, Z) + [q1(r − 1)− s][A(Y )B(Z) +B(Y )A(Z)],

which shows us that C is a mixed quasi-Einstein manifold. Contracting from
(19) over Y and Z, we can write

(20) σC = p(r − 1)r.

Since M is a space of constant sectional curvature, in view of (9) and (17) we
get

(21)
△f

f
=

pr

2
.

On the other hand, since the Hessian of f is proportional to the metric
tensor gC , it can be written as follows

(22) Hf (X, Y ) =
△f

r
gC(X, Y ).
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Then by the use of (20) and (21) in (22) we obtain that

Hf (X, Y ) +KfgC(X, Y ) = 0

holds on C, where K = − σC

2r(r−1)
.

So by Obata’s theorem [18], C is isometric to the sphere of radius 1√
K

in the

(r+1)-dimensional Euclidean space. When r = 2 then since β ̸= 0 and γ ̸= 0,
C becomes a 2-dimensional Einstein manifold.

Assume that the associated vector fields E,E ′ ∈ χ(C). Then in view of
Lemma 1 and by making use of (8) and (17) and after a contraction over X
and W we obtain

SC(Y, Z) = p(r − 1)gC(Y, Z) + [q1(r − 1)− s][A(Y )B(Z) +B(Y )A(Z)],

which gives us that C is an N(k)-mixed quasi-Einstein manifold. By a con-
traction from the above equation over Y and Z, we get

σC = p(r − 1)r.

Since M is a space of constant sectional curvature, in view of (9) and (17)
(for the case of E,E ′ ∈ χ(C)), we obtain

△f

f
=

pr

2
.

On the other hand, since the Hessian of f is proportional to the metric
tensor gC , it can be written as follows

Hf (X, Y ) =
△f

r
gC(X, Y ).

Then by the use of above three equations we get

Hf (X, Y ) +KfgC(X, Y ) = 0, where K = − σC

2r(r − 1)

holds on C. So by Obata’s theorem [18], C is isometric to the sphere of radius
1√
K

in the (r+1)-dimensional Euclidean space. For r = 2 and as β ̸= 0, γ ̸= 0,

C is a 2-dimensional Einstein manifold.
Assume that the associated vector fields E,E ′ ∈ χ(J), then equation (17)

reduces to

R(X, Y, Z,W ) = p[g(Y, Z)g(X,W )− g(X,Z)g(Y,W )].

In view of Lemma 1 and by making use of (8), the above equation can be
written as

R(X, Y, Z,W ) = p[gC(Y, Z)gC(X,W )− gC(X,Z)gC(Y,W )].

Again we use a contraction of the above equation over X and W , we get

SC(Y, Z) = p(r − 1)gC(Y, Z),

which implies that C ia an Einstein manifold with scalar curvature σC =
pr(r − 1). Hence the proof of the theorem is completed. □
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Theorem 6. Let (M, g) be a warped product C ×f I of a complete connected
(n−1)-dimensional Riemannian manifold C and a one-dimensional Riemann-
ian manifold I. If (M, g) is an N(k)-mixed quasi-Einstein manifold with con-
stant associated scalars α, β, and γ and the Hessian of f is proportional to
the metric tensor gC, then (C, gC) is an (n − 1)-dimensional sphere of radius

n−1√
σC+α

.

Proof. Assume that M is a warped product manifold. Then by using Lemma
2 we can write

SC(X, Y ) = SM(X, Y ) +
1

f
Hf (X, Y )

for any vector fields X, Y on C. On the other hand, since M is an N(k)-mixed
quasi-Einstein manifold we have

(23) SM(X, Y ) = αg(X, Y ) + βA(X)B(Y ) + γB(X)A(Y ).

When U,U ′ ∈ χ(M), decomposing the vector fields U and U ′ uniquely into its
components UI , UJ , and U ′

I , U
′
J on B and I, respectively, we can write

U = UB + UI and U ′ = U ′
B + U ′

I .

In view of (8) and the above three equations,

SC(X, Y ) = αgC(X, Y ) + βgC(X,UC)g(Y, U
′
C)

+ γgC(X,U ′
C)gC(Y, UC) +

1

f
Hf (X, Y ).

By contraction from the above equation over X, Y , we get

(24) σC = α(n− 1) +
△f

f
.

On the other hand, we know from equation (23) that

(25) σM = αn.

By using (25) in (24) we get σC = σM − α + △f
f
.

In view of Lemma 2 we also know that

(26) −σM

n
=

△f

f
.

The last two equations give us σC = n−1
n
σM − α. On the other hand, since

the Hessian of f is proportional to the metric tensor gC , it can be written as
follows

Hf (X, Y ) =
△f

n− 1
gC(X, Y ).

As the consequence of equation (26) we have △f
n−1

= − 1
n(n−1)

σMf , which implies

that

Hf (X, Y ) +
σC + α

(n− 1)2
fgC(X, Y ) = 0.
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So, by Obata’s theorem C is isometric to the (n− 1)-dimensional sphere of
radius n−1√

σC+α
. □
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148.

[5] A. Bhattacharyya, M. Tarafdar, D. Debnath, On mixed super quasi-Einstein manifold,
Differ. Geom. Dyn. Syst., 10 (2008), 44-57.

[6] A. Bhattacharyya, D. Debnath, Some types of generalized quasi Einstein, pseudo Ricci-
symmetric and weakly symmetric manifold, An. Sţiinţ. Univ. Al. I. Cuza Iaşi. Mat.
(N.S.), 55(1) (2009), 1145-1151.

[7] M. C. Chaki, M. L. Ghosh, On quasi conformally flat and quasiconformally conservative
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