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ON N(k) MIXED QUASI EINSTEIN WARPED PRODUCTS

DIPANKAR DEBNATH

ABSTRACT. In this paper we have studied N (k)-mixed quasi Einstein warped
product manifolds for arbitrary dimension n > 3.

1. INTRODUCTION

The notion of quasi Einstein manifold was introduced in a paper [8] by M.
C. Chaki and R. K. Maity. According to them a non-flat Riemannian manifold
(M™, g), (n > 3) is defined to be a quasi Einstein manifold if its Ricci tensor
S of type (0, 2) satisfies the condition

S(X,Y) = ag(X,Y) + BACX)A(Y)
and is not identically zero, where «, 8 are scalars, § # 0 and A is a non-zero
1-form such that
9<X7p1):A(X)7 VX e TM,
where p; is a unit vector field.

In such a case a, 3 are called the associated scalars. A is called the associated
1-form and p; is called the generator of the manifold. Such an n-dimensional
manifold is denoted by the symbol (QE),.

Again, in [14], U. C. De and G. C. Ghosh defined generalized quasi Einstein
manifold. A non-flat Riemannian manifold is called a generalized quasi Ein-
stein manifold if its Ricci-tensor S of type (0,2) is non-zero and satisfies the
condition

S(X,Y) = ag(X,Y) + BAX)A(Y) +7B(X)B(Y),

where «, 3,7 are non-zero scalars and A, B are two 1-forms such that

(1) g(Xapl):A(X> and g(XapQ):B(X)7
where p1, po are unit vectors which are orthogonal, i.e,
g(ph p2) = 0.
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The vector fields p; and py are called the generators of the manifold. This
type of manifold are denoted by G(QE),,.

Again in [9], Chaki introduced super quasi Einstein manifold, denoted by
S(QFE),, where the Ricci-tensor S of type (0,2) which is not identically zero
satisfies the condition

S(X,Y)=ag(X,Y)+BAX)AY)+~v[AX)B(Y)+ AY)B(X)|+6D(X,Y),

where «, 3,7, d are scalars with 8 # 0, v # 0, 0 # 0 and A, B are two non-zero
1-forms defined as (1) and pq, po being mutually orthogonal unit vector fields,
D is a symmetric (0,2) tensor with zero trace which satisfies the condition

D(X,p1) =0, VX.

In such case a, 5,7,0 are called the associated scalars, A, B are called the
associated main and auxiliary 1-forms, p;, p2 are called the main and the aux-
iliary generators and D is called the associated tensor of the manifold.Such an
n-dimensional manifold shall be denoted by the symbol S(QFE),.

In the papers [2], [4] A. Bhattacharyya and T. De introduced the notion of
mixed generalized quasi Einstein manifold. A non-flat Riemannian manifold
is called a mixed generalized quasi-Einstein manifold if its Ricci tensor S of
type (0,2) is non-zero and satisfies the condition

S(X,Y) =ag(X,Y)+LAX)AY)+yB(X)B(Y)+S[A(X)B(Y)+B(X)A(Y)],

where «, 3,7, are non-zero scalars,

9(X,p) = AX),  9(X,p) = B(X),
and
g(pla 02) = Oa

A, B are two non-zero 1-forms, p; and p, are unit vector fields corresponding
to the 1-forms A and B, respectively.

If 6 = 0, then the manifold reduces to a G(QF),. This type of manifold is
denoted by MG(QE),.

Again a Riemannian manifold is said to be a manifold of generalized quasi-
constant curvature [3], [6], [13] if the curvature tensor R of type (0,4) satisfies
the condition

R(X,Y, 2,W) = plg(Y, Z)g(X, W) — g(X, Z)g(Y, W) + ¢ [9(X, W) A(Y) A(Z)
—9(X, 2)AY)AW) + g(V, Z2)A(X)A(W) — g(Y, W) A(X) A(Z)]
+slg(X, W)B(Y)B(2) — g(X, Z)B(Y)B(W)
+9(Y, Z)B(X)B(W) — g(Y,W)B(X)B(Z)],

where p, g1, s are scalars, A and B are non-zero 1-forms, p; and ps are unit
orthogonal vector fields, such that

(2) 9(X,p) = A(X) and g(X,p2) = B(X)
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and

(3) 9(p1,p2) = 0.

Again a Riemannian manifold is said to be a manifold of mixed generalized
quasi-constant curvature [2], [4],[15] if the curvature tensor R of type (0,4)
satisfies the condition

R(X,Y, 2,W) = plg(Y, 2)g(X, W) — g(X, Z)g(Y, W) + ¢ [9(X, W) A(Y) A(Z)
— 9V, WAX)A(Z) + g(Y, Z)A(X)AW) = g(X, Z)A(Y ) A(W)]
+slg(X,W)B(Y)B(Z) — g(Y,W)B(X)B(Z) + g(Y, Z) B(X) B(W)
—9(X, 2)B(Y)B(W) + t[{A(Y)B(2) + B(Y)A(Z)}g(X, W)
—{AX)B(Z) + B(X)A(2)}g(Y, W) + {A(X)B(W)
+BX)AW)}g(Y, 2) = {AY)B(W) + BY)A(W)}g(X, Z)],

/‘\\_/

where p, q1, s,t are scalars, A, B are non-zero 1-forms, p; and py are orthonor-
mal unit vector fields corresponding to A and B which are defined as (2) and
(3) and

J(R(X.Y)Z,W) =R(X,Y, Z,W).
n [5] A. Bhattacharyya, M. Tarafdar, and D. Debnath introduced the no-
tion of mixed super quasi Einstein manifold. A non-flat Riemannian manifold

(M"™, g),(n > 3) is called mixed super quasi Einstein manifold if its Ricci-tensor
S of type (0,2) is not identically zero and satisfies the condition

S(X,Y) = ag(X,Y) + BAX)A(Y) + yB(X)B(Y)
+ 0[A(X)B(Y) + B(X)A(Y)] + eD(X,Y),

where «, (8,7, 0, € are scalars with 8 # 0 v #0, 0 #0, ¢ # 0 and A, B are two
non-zero 1-forms such that

(4) 9(X,p1) = A(X) and g(X,p)=B(X), VX,

p1, p2 are mutually orthogonal unit vector fields, D is a symmetric (0, 2) tensor
with zero trace which satisfies the condition

(5) D(X,p) =0, VX.

In such case «, 3,7, 9,¢ are called the associated scalars, A, B are called
the associated main and auxiliary 1-forms, pi, po are called the main and the
auxiliary generators and D is called the associated tensor of the manifold.
Such an n-dimensional manifold shall be denoted by the symbol MS(QFE),.

Again a Riemannian manifold is said to be a manifold of mixed super quasi-
constant curvature [5] if the curvature tensor R of type (0,4) satisfies the
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condition

R(X,Y,Z,W) =plg(Y, Z2)g(X, W) — g(X, Z)g(Y, W)] + a1 [g(X, W)A(Y) A(Z)
— g(Y,W)A(X)A(Z) + g(Y, Z)A(X)A(W) — g(X, Z)A(Y ) A(W)]
+s[g(X,W)B(Y)B(Z) — g(Y,W)B(X)B(Z) + g(Y, Z) B(X)B(W)
—9(X, Z)B(Y)B(W) +t[{A(Y)B(Z) + B(Y)A(Z)}9(X, W)
—{A(X)B(2) + B(X)A(Z)}g(Y, W) + {A(X)B(W)
+ B(X)AW)}tg(Y, Z2) — {AY)B(W) + B(Y)A(W)}g(X, Z)]
+malg(Y, Z)D(X, W) — g(X, Z)D(Y, W)
+9(X,W)D(Y, Z) — g(Y,W)D(X, Z)],

where p, qi, s,t,m; are scalars, A, B are non-zero 1-forms defined as (4) and
p1, p2 are mutually orthogonal unit vector fields, D is a symmetric (0,2) tensor
defined as (5).

The k-nullity distribution [12],[17],[22] of a Riemannian manifold M is de-
fined by

N(k): ¢ = Ne(k) = {Z € .M\ R(X,Y)Z = k(g(Y, Z)X — g(X, Z)Y)}

for all XY € TM and smooth function k. M. M. Tripathi and J. J. Kim
[22] introduced the notion of N(k)-quasi Einstein manifold which defined as
follows: if the generator p; belongs to the k-nullity distribution N(k), then a
quasi Einstein manifold (M", g) is called N(k)-quasi Einstein manifold.

In [17], H. G. Nagaraja introduced the concept of N (k)-mixed quasi Einstein
manifold and mixed quasi constant curvature. A non-flat Riemannian manifold
(M™, g) is called an N(k)-mixed quasi Einstein manifold if its Ricci-tensor of
type (0,2) is non-zero and satisfies the condition

(6) S(X,Y) =ag(X,Y) + BAX)B(Y) + vB(X)A(Y),
where «, 3,7 are smooth functions and A, B are non-zero 1-forms such that
g(Xapl):A<X> and g<X7p2):B(X>7 VX,

where p1, py are the orthogonal unit vector fields called generators of the
manifold belonging to N(k). Such a manifold is denoted by the symbol

Again a Riemannian manifold (M", g) is called of N (k)-mixed quasi constant
curvature if it is conformally flat and its curvature tensor R of type (0,4)
satisfies the condition

R(X,Y,Z,W) =plg(Y, Z)g(X, W) — g(X, Z)g(Y, W)]
+qlg(X, W)AY)B(Z) — g(X, 2)A(Y)B(W)
(7) +g(X, W)A(Z)B(Y) — 9(X, Z)A(W)B(Y)]
+s[g(Y, 2)AW)B(X) — g(Y,W)A(Z) B(X)
+9(Y, 2)A(X)B(W) — g(Y, W)A(X)B(Z)],
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where p, q1, s, are scalars, A, B are non-zero 1-forms defined as (17) and py, ps
are mutually orthogonal unit vector fields.

Let M be an m-dimensional, m > 3, Riemannian manifold and ¢ € M.
Denote by K(w) or K(u A v) the sectional curvature of M associated with
a plane section w C T¢M, where {u,v} is an orthonormal basis of w. For
any n-dimensional subspace L C Ty M, 2 < n < m, its scalar curvature o(L)
is denoted by o(L) = 237,.,_;c, K(e; A ¢j), where {e1,ez,...,€,} is an or-
thonormal basis of L. When L = T;M, the scalar curvature (L) is just the
scalar curvature o(¢) of M at (.

2. WARPED PRODUCT MANIFOLDS

The notion of warped product generalizes that of a surface of revolution. It
was introduced in [19] for studying manifolds of negative curvature. Let (C, g¢)
and (J,¢s) be two Riemannian manifolds and f is a positive, differentiable
function on C. Consider the product manifold C' x J with its projections
w:CxJ —Cand@:CxJ — J. The warped product C' x; J is the
manifold C' x J with the Riemannian structure such that | X||> = [|w*(X)||* +
F2w(O)]|0*(X)|?, for any vector field X on M. Thus

(8) 9=gc+ g
holds on M. The function f is called the warping function of the warped
product [20].

Since C' X J is a warped product, then we have VxZ = VX = (Xinf)Z
for unit vector fields X, Z on C and J, respectively. Hence, we find K(X A
7Z) = g(VzVxX —VxV2X,7Z) = %{(VXXf — X?f}. If we chose a local

orthonormal frame {ey, es,...,e,} such that {ej,es,...,e,, } are tangent to C
and e, 11,...,e,} are tangent to J, then we have
Af

(9) > K(eiAey)
L
for each s =ny +1,...,n [20].
We need the following two lemmas from [20], for later use:

Lemma 1. Let M = C x ¢ J be a warped product with Riemannian curvature
tensor Ry;. Given fields X,Y,Z on C and U,V,W on J. Then
(i) Ru(X,Y)Z = Ro(X,Y)Z,
(i1) Ry (V, X)Y = —(H(X,Y)/f)V, where H' is the Hessian of f,
(i1i) Ry (X, Y)V = Ry (VW)X =0,
(iv) Ry (X, V)W = —(g(V.W)/f)Vx(grad f),
(v) Ru(V.W)U = Ry (V, W)U + (||grad fII*/ ) {g(V. U)W — g(W,U)V}.

Lemma 2. Let M = C xJ be a warped product with Ricci-tensor Syr. Given
fields X, Y on C and V,W on J. Then

(i) Su(X,Y)=Sc(X,Y) — %Hf(X, Y), where d = dim J,
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(ii) Su(X,V) =0,
(iii) Su(V,W) = S,(V,W) = g(V, W) f*, f* = S5 + St grad f|?, where Af
is the Laplacian of f on C.

Moreover, the scalar curvature oy of the manifold M satisfies the condition

UM:aC—i-%—M%—d(d—l)Nfé'z,

where ¢ and oy are the scalar curvatures of C and J, respectively.

In [16], Gebarowski studied Einstein warped product manifolds and proved
the following three theorems:

Theorem 1. Let (M,g) be a warped product I x; J, diml = 1, dimJ =
(n—1),(n > 3). Then (M,g) is an Einstein manifold if and only if J is
Finstein with constant scalar curvature oy in the case n = 3 and f is given by
one of the following formulae, for any real number b,

%K sinh? @ fora >0,

() = K(t+b)* fora =0,

—%K sin? @ fora<0
for K >0, f2(t) = bexp(at), (a # 0) for K =0, f(t) = —gK cosh? \/a(fb),
(a > 0) for K <0, where a is the constant appearing after the first integration

of the equation ¢"e? + 2K =0 and K = m

Theorem 2. Let (M, g) be a warped product C x ¢ J of a complete connected
r-dimensional (1 < r < n) Riemannian manifold C and (n — r)-dimensional
Riemannian manifold J. If (M,g) is a space of constant sectional curvature
K >0, then C is a sphere of radius \/—%

Theorem 3. Let (M, g) be a warped product C X ¢ J of a complete connected
(n—1)-dimensional Riemannian manifold C" and one-dimensional Riemannian
manifold 1. If (M,g) is an Einstein manifold with scalar curvature opy > 0
and the Hessian of f is proportional to the metric tensor gc, then

NI

(i) (C,gc) is an (n — 1)-dimensional sphere of radius p = <Mﬁ)

(i1) (M, g) is a space of constant sectional curvature K = s

Motivated by the above study by Gebarowski and the paper by S. Sular and
C. Ozgur [21], in the present paper my aim is to study the above theorems for
N (k)-mixed quasi-Einstein manifolds.

3. N(k)-MIXED QUASI-EINSTEIN WARPED PRODUCTS

In this section, we consider N (k)-mixed quasi-Einstein warped product man-
ifolds and prove some results concerning these type of manifolds.
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Theorem 4. Let (M, g) be a warped product manifold I x s J, where dim [ =1
and dim J = n—1,(n > 3). If (M, g) is an N(k)-mized quasi-Einstein manifold
with associated scalars o, 8,7y, then J is also an N(k)-mized quasi-Einstein
manifold.

Proof. Suppose that (dt)? is the metric on I. Taking f = exp{4} and making
use of Lemma 2, we can write

o 0 n—1_, "o
(10 S (gr ) =~ B+ @)
and

(1) Su(VI0) = S5V, W) = 12" + (n = (Vg (V, W),

for all vector fields V,W on J. Since M is N(k)-mixed quasi-Einstein, from
(6) we have

ORI CORORORIONE
(g Su(V,W) = ag(V,W) + BA(V)B(W) +yB(V)A(W).

Now let U,U’" € x(M). Decomposing the vector fields U and U’ uniquely
into its components Uy, Uy, and Uy, U} on I and J, respectively, we can write
U=U;+U;and U' = U;+U. Since dim I = 1, we can take U; = §1% which
gives us U = flat +U; and U; = §2at which yields U’ = 52% + U’;, where &
and & are functions on M. Then we can write

9 .
(at7 U ) - 52-

o a(3)s(30)-en(2) -

On the other hand, by the use of (8) and (14), the equations (12) and (13)
reduce to

0 0
(15) S (815 815) = a+ 66 + 766

and
(16) Su(V,W) = aelg;(V,W) + BA(V)B(W) + yB(V)AW).
Comparing the right hand side of the equations (10) and (15) we get
-1
o+ P&i& + 768 = 4 ——[2¢" + (¢')].
Similarly, comparing the right hand sides of (11) and (16) we obtain
1
Sy(V,W) = 224"+ (n=1)(¢')* +4alg, (V. W)+ BA(V) B(W) +7B(V) A(W),

which implies that J is an N (k)-mixed quasi-Einstein manifold. This completes
the proof of the theorem. O



ON N(k) MIXED QUASI EINSTEIN WARPED PRODUCTS 145

Theorem 5. Let (M, g) be a warped product C X J of a complete connected
r-dimensional (1 < r < n) Riemannian manifold C' and an (n—r)-dimensional
Riemannian manifold J.

(i) If (M, g) is a space of N(k)-mized quasi-constant sectional curvature, the
Hessian of f is proportional to the metric tensor go and the associated
vector fields E and E' are the general vector ﬁeld on M or E, E' € x(C),
then C' is isometric to the sphere of radius f in the (r + 1) dimensional
Fuclidean space. Forr =2, C' is a 2-dimensional Einstein manifold.

(i1) If (M, g) is a space of N(k)-mized quasi-constant sectional curvature and
the associated vector fields E, E' € x(J), then C' is an Finstein manifold.

Proof. Assume that M is a space of N(k)-mixed quasi-constant sectional cur-
vature. Then from equation (7), we can write

R(X,Y, Z, W) =plg(Y, Z)g(X, W) — g(X, Z)g(Y,W)]
+alg(X, W)AY)B(Z) — (X, Z)A(Y)B(W)
(17) +9(X,W)A(Z)B(Y) — g(X, Z)A(W)B(Y)]
+slg(Y, Z)A(W)B(X) — g(Y,W)A(Z) B(X)
+9(Y, 2)A(X)B(W) — g(Y, W) A(X)B(Z)]
for all vector fields X,Y, Z, W on C.
Decomposing the vector fields F and E’ uniquely into its components F¢,

E;, and Ef, E’, on C and J, respectively, we can write £ = E¢ + E; and
E' = E}, + E;. Then we can write

A(X) =g(X, E) = g(X, Ec) = go(X, Ec),
B(X) =g(X,E') = g(X, E¢) = go(X, Eg).

In view of Lemma 1 and by using (8) and (18) in equation (17) and then
after a contraction over X and W (we put X =W =¢;), we get

(19) Sc(Y,Z) =p(r = 1)ge(Y, Z) + [qa(r — 1) = s][A(Y) B(Z) + B(Y)A(Z)],

which shows us that C' is a mixed quasi-Einstein manifold. Contracting from
(19) over Y and Z, we can write

(20) oc =p(r—1)r

Since M is a space of constant sectional curvature, in view of (9) and (17) we
get

(18)

(21) o _m

f 2
On the other hand, since the Hessian of f is proportional to the metric
tensor g¢, it can be written as follows

(22) HY(X,Y) = ggc(){, Y).
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Then by the use of (20) and (21) in (22) we obtain that
HI(X,Y) + K fgo(X,Y) = 0

holds on C', where K = —%.
So by Obata’s theorem [18], C' is isometric to the sphere of radius —= in the

VK
(r + 1)-dimensional Euclidean space. When r = 2 then since 5 # 0 and v # 0,

C' becomes a 2-dimensional Einstein manifold.

Assume that the associated vector fields E, E' € x(C). Then in view of
Lemma 1 and by making use of (8) and (17) and after a contraction over X
and W we obtain

Sc(Y,Z) = p(r = 1)ge(Y, Z) + [ (r — 1) = s][A(Y) B(Z) + B(Y)A(Z)],

which gives us that C' is an N(k)-mixed quasi-Einstein manifold. By a con-
traction from the above equation over Y and Z, we get

oc=p(r—1)r

Since M is a space of constant sectional curvature, in view of (9) and (17)
(for the case of E, E" € x(C')), we obtain

ANf pr
foo2
On the other hand, since the Hessian of f is proportional to the metric
tensor g¢, it can be written as follows

H(X) = “Lge(x,y)

Then by the use of above three equations we get
oc
HI(X,Y)+ Kfge(X,Y) =0, where K=-—"—
( ) )+ fgC( ) ) , where 27“(7”—]_)
holds on C'. So by Obata’s theorem [18], C' is isometric to the sphere of radius

\/—1? in the (r 4 1)-dimensional Euclidean space. For r = 2 and as 5 # 0, v # 0,

C'is a 2-dimensional Einstein manifold.
Assume that the associated vector fields E, E' € x(J), then equation (17)
reduces to

R(X,Y, Z,W) = plg(Y, Z)g(X, W) — g(X, Z)g(Y, W)].

In view of Lemma 1 and by making use of (8), the above equation can be
written as

R(X,Y, Z,W) = plgc(Y, Z)gc (X, W) — gc(X, Z)gc (Y, W)].
Again we use a contraction of the above equation over X and W, we get
Sc(Y,Z) = p(r —1)ge(Y, Z),

which implies that C' ia an Einstein manifold with scalar curvature oo =
pr(r — 1). Hence the proof of the theorem is completed. O
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Theorem 6. Let (M, g) be a warped product C x ¢ I of a complete connected
(n—1)-dimensional Riemannian manifold C' and a one-dimensional Riemann-
ian manifold I. If (M, g) is an N (k)-mized quasi-FEinstein manifold with con-
stant associated scalars o, 3, and v and the Hessian of f is proportional to
the metric tensor gc, then (C, gc) is an (n — 1)-dimensional sphere of radius

n—1
Voco+ta©
Proof. Assume that M is a warped product manifold. Then by using Lemma
2 we can write

Sc(X,Y) = Sy(X,Y) + %Hf (X,Y)

for any vector fields X, Y on C. On the other hand, since M is an N (k)-mixed
quasi-Einstein manifold we have

(23) Su(X,Y) =ag(X,Y)+ BAX)B(Y) +vB(X)A(Y).

When U, U" € x(M), decomposing the vector fields U and U’ uniquely into its
components Uy, Uy, and Uy, U} on B and I, respectively, we can write

U=Ug+U; and U =Ug+U;.
In view of (8) and the above three equations,

SC(X7 Y) - Oégc(X, Y) + BQC(X7 UC’)Q(Y7 U/C)

1
+79c(X,UL)ge (Y, Uc) + —H (X, Y).

f
By contraction from the above equation over XY, we get
A
(24) oc=a(n—1)+ Tf

On the other hand, we know from equation (23) that
(25) oM = Qan.

By using (25) in (24) we get 0c = oy — o + %.
In view of Lemma 2 we also know that

(26) 2L

The last two equations give us oo = "T_IJM — . On the other hand, since
the Hessian of f is proportional to the metric tensor g¢, it can be written as
follows

Af
n—1
As the consequence of equation (26) we have
that

HI(X,Y) =

gC<X7Y)'

A 1
n—1 "~ n(n-1)

on f, which implies

0 fen ) =0

Hf(X,Y) +(nT
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So, by Obata’s theorem C' is isometric to the (n — 1)-dimensional sphere of

: n—1
radius Jocta: ([l
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