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M. A. IBRAHIM AND J. A. AWOLOLA

ABSTRACT. Using the idea of mgroups introduced by Nazmul et al. [8], we
redefine the concept of mgroups to allow flexibility of the identity element
from a group X in delineating the mgroups and proved some related results.

1. INTRODUCTION

The theory of multisets is an extension of the set theory. Since inception,
it has evoked a lot of research. For more details, the reader is referred to
(121,[3],[4],15],[6],]7],[13],[14]). Theoretic study has included algebra aspect of
fuzzy sets and multisets. Mordeson and Bhutani collaborated with Rosen-
feld, the initiator of theory of fuzzy groups in order to estabish the algebraic
structures of fuzzy sets, and worked extensively on this subject with some
new results described [1]. Onasanya [11, 12] critically studied the notion and
carried out some thorough reviews on fuzzy groups and anti fuzzy groups.

In [8], the underlying structure in group theory was replaced with multisets
and some fundamental properties were presented. Moreover, as a suitable
generalization of group theory, Awolola and Ibrahim [9], Awolola and Ejegwa
[10] discussed the concept further and investigated their related properties.

In this paper, we introduce a new concept of mgroups called amgroups
(EMGSs) by redefining the concept of mgroups from a multiset space [X]™
and obtain some related results.

2. PRELIMINARIES

Definition 1. Let X be a set. A multiset (mset, for short) M drawn from X is
represented by a count function C); defined as Cy; : X — Ny ={0,1,2,...}.

For each z € X, Cy(x) denotes the number of occurrences of the el-
ement x in the mset M. The representation of the mset M drawn from
X = {x1,29,...,2,} will be as M = [z, 29, .. such that z;
appears m; times (i = 1,2,...,n) in M.
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Let, for any positive integer n, [X]™ be the set of all msets drawn from X
such that no element in the mset occurs more than n times and [X]* be the
set of all msets drawn from X such that there is no limit on the number of
occurrences of an object in an mset. Therefore, [X]|™ and [X]> are referred to
as mset spaces.

Definition 2. Let M, My, M; € [X]",i € I. Then
(1> Ml - M2 <~ CMl(x) < CM2<x)7 Vo € X7
(H> Ml = M2 <~ CM1<:C) = CMQ(Q:)7 Vi € X7
(iii) N;es Mi = Nje; Cum, (), Yo € X (where A is the minimum operation),
(1iv) User Mi = Vs O (), Vo € X (where \/ is the maximum operation),
(v) Mf =n—Cy,(z), Ve € X, n € Z".

Definition 3. Let X be a group. A multiset A over X is called amgroup if the
count function of the elements of A or Cy(z) satisfies the following conditions:
(1) CA(xy) < CA(x> \ OA(y)> \V/ZE,y € X7
(ii) Ca(z™1) = Ca(z), Vr € X.
Ezample 1. Let E = (a1|a? = 1) X {as|a3 = 1) x ... be an infinite elementary
abelian 2-group, p € MG(E)> an mgroup. Then in fact u € MG(E)*Y so p
is constant on some infinite /' C E. On the other hand, setting Ey = 0, E; =
(a) x -+ x (a;), p(a) =i+ 1 provided a € E;1\E; then u € EMG(E)™ is
an amgroup with p ¢ MG(E)* for any positive integer K. Hence, amgroups
may provide valuable new tools in infinite group theory.

Definition 4. Let A, B € [X]", we have the following definitions:
(i) Caop(z) = N{Ca(y) VCB(2) :y,z € X, yz = x},
(ii) Cy (SC) = CA(l‘_l).

We call A o B the product of A and B and A~! the inverse of A.

Definition 5. Let A, B € EMG(X). Then A is said to be a subamgroup of
Bif AC B.

Example 2. Let X = (a,bla* = b* = 1,ba = ab), A = [1,a,b, ab]1727474, and
B = [1,a,b,ablys,,. Clearly, A,B € EMG(X) and A C B. Thus, A is a
subamgroup of B.

Definition 6. Let A € EMG(X). Then A is called an abelian amgroup over
X if Cy(zy) = Ca(yz), Va,y € X. The set of all abelian amgroups over X is
denoted by AEMG(X).

3. MAIN RESULTS

Proposition 1. Let A € EMG(X).
(i) Ca(2") < Ca(x), Vo € X.
(i) If Ca(z™) < Ca(x), then Ca(x™t) = Ca(x).
(ili) If Ca(z) < Caly), for some z,y € X, then Ca(zy) = Ca(y) = Ca(yz).
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(iv) Ca(zy™') = Ca(e) implies Ca(z) = Caly).

Proof. (i) and (ii) follows immediately.
(iii): Let Ca(z) < Ca(y) for some z,y € X. Since A € EMG(X), then

Ca(zy) < Ca(z) V Caly) = Cay). Now,
Ca(y) = Calzyz™") < Calzy) \/ Ca(z) = Ca(zy)

since Cy(z) < Cy(y) and Ca(x) < Ca(xy). Therefore, Cy(zy) = Ca(y). The
equality Ca(yz) = C4(y) can be obtained similarly.
(iv): Given A € EMG(X) and Ca(xy™') = Ca(e) Vz,y € X. Then

Ca(z) = Calz(y )y)) = Cal(zy™")y)
< Calzy™) \/ Caly) = Cale) \/ Caly) =

Now,
Caly) = Caly™) = Caley™) = Ca((z""2)y™")
< Opx? \/CA ry ) = C’A(x)\/CA(e) =
Hence, Cy(z) = Ca(y). O
Proposition 2. Let A € [X]|". Then A € EMG(X ) if and only if
Ca(zy™! \/ Ca(y
holds for all x,y € X.
Proof. Let A € EMG(X). Then
Calzy™) < Calz)\/ Caly™) = Calz) \/ Caly), Va,y € X.
Conversely, let the given condition be satisfied, i.e.,
Ca(zy™! \/ Ca(y
Now,
Cule) = Ca(zz™") < Ca(z) \/ Ca(z) = Ca(x)
and
Ca(z™") = Calex™) < Caule \/CA (z).
Hence Ca(zy) = Caz(y™")™") < Cal2)VCaly™) = ( )V Ca(y), which
completes the proof. O

Proposition 3. Let A € [X]|". Then A€ EMG(X) if and only if A< Ao A
and A~ = A.

Proof. Let z,y € X. Since A € EMG(X), then Cy(zy) < Ca(z) V Ca(y) and
hence Caon(z) = A, {Ca(z)VCa(y)} = A._,, Calzy) = Ca(z). There-
fore, A < Ao A. On the other hand, A € EMG(X) thus Cu(z™!) =
Ca(z), Yr € X. But by definition, Cy(z7!) = C4-1(z). Therefore, A~! = A.
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Conversely, let the given conditions be satisfied. If A = Ao A and A~ = A,
then it is sufficient to prove A € EM G( ) Now

CAoA /\{CA \/CA A(x)\/C’A(y), Vw,yEX,

z=xy

hence Cy(zy) < Ca(z) V Ca(y), xy = 2. Since the equations Cy(z) = Cy-1(x)
and Cy-1(x) = Ca(z™!) hold, it follows that Ca(x™!) = Cyu(x), Vo € X.
Therefore, A € EMG(X). O

Proposition 4. Let A,B € EMG(X). Then AUB € EMG(X).

Proof. Let z,y € AUB € EMG(X). Hence 2,y € A or x,y € B. Therefore,
Ca(zy) < Ca(z) V Caly) or Cp(xy) < Cp(x) vV Cp(y). Now

Cauley) = Calay) \/ Cilry) < [CA DV )]V [Cs@)\ C)]
Ca(x \/OB } \/ [CA(?J) \/CB(ZJ)]

= Caus(z) \/ Caus(y)

and Caup(z™) = Ca(x™h)\/ Cp(z™) = Ca(z)\ Cp(z) = Caup(x). There-
fore, AUB € EMG(X). O

Remark 1. If {A;}icr is a family of amgroups, then (1),.; A; need not be an
amgroup over X.

Remark 2. If A € EMG(X), then A° need not be an EMG(X). However,
A° € EMG(X) if and only if Cy(z) = Ca(e), Vx € X.
Proposition 5. Let A € EMG(X) and x € X. Then Ca(xy) = Ca(y) Yy €
X if and only if Ca(x) = Cale).
Proof. 1t Ca(zy) = Ca(y) Yy € X, then y = e.

Conversely, assume Cy(x) = Cy(e). Then Ca(zy) < Ca(x)V Caly) =
C(y) and on the other hand, Cx(y) < Ca(z™) V Ca(zy) = Ca(zy). O

Proposition 6. Let A € EMG( ). Then the non-empty sets defined as
={z € X :Cu(x)<n, neZ*}
and
A, ={x € X : Cu(z) =Cale)}

are subgroups of X.
Proof. Let z,y € A™. It implies that Cs(z) < n and Cyu(y) < n. Then
Ca(zy™") < [Ca(z)\/ Ca(y)] < n and hence if z,y € A", then zy~! € A"
Hence A", n € Z* are subgroups of X.

Again, let 7,y € A,. Then Ca(z) = Ca(y) = Ca(e). Now, Ca(xy™') <

[Ca(z)V Ca(y)] = [Cale)V Cale)] = Cale). But Cale) < Ca(zy™), ie.,
Ca(zy™') = C4(e). Therefore, zy~' € A,. Hence A, is a subgroup of X. [
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Proposition 7. Let A € EMG(X). Then the following assertions are equiv-
alent:

(i4) = (iii) Trivial.

(ii1) = (iv): Ca(zyzr™) = Ca (z7 1 [xyz™ ] (271) 7)) = Caly).

(iv) = (i): Let z,y € X. Then Ca(zy) = Ca(x[yz]z™') > Cu(yz) =
Ca(y[zy]y™) = Calzy). Hence, Ca(zy) = Calyz).

Thus the above assertions are equivalent. 0

Proposition 8. Let A € AEMG(X). Then A,, A", n € Z* are normal
subgroups of X.

Proof. (i): Assume Cy(e) = 1. Then A, = A'. Hence, it is not difficult to see
that A, is a normal subgroup of X.

(ii): Let x € X and y € A™, then Cs(y) < n. Since A € AEMG(X), then
Ca(zy) = Ca(yz) Vz,y € X. By Proposition 7, Ca(zyz~') = C4(y) and this
implies Cy(zyz~') = Cx(y) < n. Thus, xyz~! € A" is a normal subgroup of
X. U
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