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AMGROUPS

M. A. IBRAHIM AND J. A. AWOLOLA

Abstract. Using the idea of mgroups introduced by Nazmul et al. [8], we
redefine the concept of mgroups to allow flexibility of the identity element
from a group X in delineating the mgroups and proved some related results.

1. Introduction

The theory of multisets is an extension of the set theory. Since inception,
it has evoked a lot of research. For more details, the reader is referred to
([2],[3],[4],[5],[6],[7],[13],[14]). Theoretic study has included algebra aspect of
fuzzy sets and multisets. Mordeson and Bhutani collaborated with Rosen-
feld, the initiator of theory of fuzzy groups in order to estabish the algebraic
structures of fuzzy sets, and worked extensively on this subject with some
new results described [1]. Onasanya [11, 12] critically studied the notion and
carried out some thorough reviews on fuzzy groups and anti fuzzy groups.

In [8], the underlying structure in group theory was replaced with multisets
and some fundamental properties were presented. Moreover, as a suitable
generalization of group theory, Awolola and Ibrahim [9], Awolola and Ejegwa
[10] discussed the concept further and investigated their related properties.

In this paper, we introduce a new concept of mgroups called amgroups
(EMGs) by redefining the concept of mgroups from a multiset space [X]∞

and obtain some related results.

2. Preliminaries

Definition 1. Let X be a set. A multiset (mset, for short) M drawn from X is
represented by a count function CM defined as CM : X −→ N0 = {0, 1, 2, . . . }.
For each x ∈ X, CM(x) denotes the number of occurrences of the el-

ement x in the mset M . The representation of the mset M drawn from
X = {x1, x2, . . . , xn} will be as M = [x1, x2, . . . , xn]m1,m2,...,mn

such that xi

appears mi times (i = 1, 2, . . . , n) in M.
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Let, for any positive integer n, [X]n be the set of all msets drawn from X
such that no element in the mset occurs more than n times and [X]∞ be the
set of all msets drawn from X such that there is no limit on the number of
occurrences of an object in an mset. Therefore, [X]n and [X]∞ are referred to
as mset spaces.

Definition 2. Let M1,M2,Mi ∈ [X]n, i ∈ I. Then

(i) M1 ⊆ M2 ⇐⇒ CM1(x) ⩽ CM2(x), ∀x ∈ X,
(ii) M1 = M2 ⇐⇒ CM1(x) = CM2(x), ∀x ∈ X,
(iii)

⋂
i∈I Mi =

∧
i∈I CMi

(x), ∀x ∈ X (where
∧

is the minimum operation),
(iv)

⋃
i∈I Mi =

∨
i∈I CMi

(x), ∀x ∈ X (where
∨

is the maximum operation),
(v) M c

i = n− CMi
(x), ∀x ∈ X, n ∈ Z+.

Definition 3. Let X be a group. A multiset A over X is called amgroup if the
count function of the elements of A or CA(x) satisfies the following conditions:

(i) CA(xy) ⩽ CA(x) ∨ CA(y), ∀x, y ∈ X,
(ii) CA(x

−1) = CA(x), ∀x ∈ X.

Example 1. Let E = ⟨a1|a21 = 1⟩ × ⟨a2|a22 = 1⟩ × . . . be an infinite elementary
abelian 2-group, µ ∈ MG(E)∞ an mgroup. Then in fact µ ∈ MG(E)µ(1) so µ
is constant on some infinite F ⊆ E. On the other hand, setting E0 = ∅, Ei =
⟨a1⟩ × · · · × ⟨ai⟩, µ(a) = i + 1 provided a ∈ Ei+1\Ei then µ ∈ EMG(E)∞ is
an amgroup with µ /∈ MG(E)k for any positive integer K. Hence, amgroups
may provide valuable new tools in infinite group theory.

Definition 4. Let A,B ∈ [X]n, we have the following definitions:

(i) CA◦B(x) =
∧
{CA(y)

∨
CB(z) : y, z ∈ X, yz = x},

(ii) CA−1(x) = CA(x
−1).

We call A ◦B the product of A and B and A−1 the inverse of A.

Definition 5. Let A,B ∈ EMG(X). Then A is said to be a subamgroup of
B if A ⊆ B.

Example 2. Let X = ⟨a, b|a2 = b2 = 1, ba = ab⟩, A = [1, a, b, ab]1,2,4,4, and

B = [1, a, b, ab]2,3,4,4. Clearly, A,B ∈ EMG(X) and A ⊆ B. Thus, A is a
subamgroup of B.

Definition 6. Let A ∈ EMG(X). Then A is called an abelian amgroup over
X if CA(xy) = CA(yx), ∀x, y ∈ X. The set of all abelian amgroups over X is
denoted by AEMG(X).

3. Main results

Proposition 1. Let A ∈ EMG(X).

(i) CA(x
n) ⩽ CA(x), ∀x ∈ X.

(ii) If CA(x
−1) ⩽ CA(x), then CA(x

−1) = CA(x).
(iii) If CA(x) < CA(y), for some x, y ∈ X, then CA(xy) = CA(y) = CA(yx).
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(iv) CA(xy
−1) = CA(e) implies CA(x) = CA(y).

Proof. (i) and (ii) follows immediately.
(iii): Let CA(x) < CA(y) for some x, y ∈ X. Since A ∈ EMG(X), then

CA(xy) ⩽ CA(x)
∨

CA(y) = CA(y). Now,

CA(y) = CA(xyx
−1) ⩽ CA(xy)

∨
CA(x) = CA(xy)

since CA(x) < CA(y) and CA(x) < CA(xy). Therefore, CA(xy) = CA(y). The
equality CA(yx) = CA(y) can be obtained similarly.
(iv): Given A ∈ EMG(X) and CA(xy

−1) = CA(e) ∀x, y ∈ X. Then

CA(x) = CA(x(y
−)y)) = CA((xy

−1)y)

⩽ CA(xy
−1)

∨
CA(y) = CA(e)

∨
CA(y) = CA(y).

Now,

CA(y) = CA(y
−1) = CA(ey

−1) = CA((x
−1x)y−1)

⩽ CA(x
−1)

∨
CA(xy

−1) = CA(x)
∨

CA(e) = CA(x).

Hence, CA(x) = CA(y). □

Proposition 2. Let A ∈ [X]n. Then A ∈ EMG(X) if and only if

CA(xy
−1) ⩽ CA(x)

∨
CA(y)

holds for all x, y ∈ X.

Proof. Let A ∈ EMG(X). Then

CA(xy
−1) ⩽ CA(x)

∨
CA(y

−1) = CA(x)
∨

CA(y), ∀x, y ∈ X.

Conversely, let the given condition be satisfied, i.e.,

CA(xy
−1) ⩽ CA(x)

∨
CA(y).

Now,

CA(e) = CA(xx
−1) ⩽ CA(x)

∨
CA(x) = CA(x)

and
CA(x

−1) = CA(ex
−1) ⩽ CA(e)

∨
CA(x) = CA(x).

Hence CA(xy) = CA(x(y
−1)−1) ⩽ CA(x)

∨
CA(y

−1) = CA(x)
∨
CA(y), which

completes the proof. □

Proposition 3. Let A ∈ [X]n. Then A ∈ EMG(X) if and only if A ⩽ A ◦ A
and A−1 = A.

Proof. Let x, y ∈ X. Since A ∈ EMG(X), then CA(xy) ⩽ CA(x)
∨
CA(y) and

hence CA◦A(z) =
∧

z=xy{CA(x)
∨
CA(y)} ⩾

∧
z=xy CA(xy) = CA(z). There-

fore, A ⩽ A ◦ A. On the other hand, A ∈ EMG(X) thus CA(x
−1) =

CA(x), ∀x ∈ X. But by definition, CA(x
−1) = CA−1(x). Therefore, A−1 = A.
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Conversely, let the given conditions be satisfied. If A = A ◦A and A−1 = A,
then it is sufficient to prove A ∈ EMG(X). Now

CA◦A(z) =
∧
z=xy

{CA(x)
∨

CA(y)} ⩽ CA(x)
∨

CA(y), ∀x, y ∈ X,

hence CA(xy) ⩽ CA(x)
∨

CA(y), xy = z. Since the equations CA(x) = CA−1(x)
and CA−1(x) = CA(x

−1) hold, it follows that CA(x
−1) = CA(x), ∀x ∈ X.

Therefore, A ∈ EMG(X). □

Proposition 4. Let A,B ∈ EMG(X). Then A ∪B ∈ EMG(X).

Proof. Let x, y ∈ A ∪ B ∈ EMG(X). Hence x, y ∈ A or x, y ∈ B. Therefore,
CA(xy) ⩽ CA(x) ∨ CA(y) or CB(xy) ⩽ CB(x) ∨ CB(y). Now

CA∪B(xy) = CA(xy)
∨

CB(xy) ⩽
[
CA(x)

∨
CA(y)

]∨[
CB(x)

∨
CB(y)

]
=

[
CA(x)

∨
CB(x)

]∨[
CA(y)

∨
CB(y)

]
= CA∪B(x)

∨
CA∪B(y)

and CA∪B(x
−1) = CA(x

−1)
∨

CB(x
−1) = CA(x)

∨
CB(x) = CA∪B(x). There-

fore, A ∪B ∈ EMG(X). □

Remark 1. If {Ai}i∈I is a family of amgroups, then
⋂

i∈I Ai need not be an
amgroup over X.

Remark 2. If A ∈ EMG(X), then Ac need not be an EMG(X). However,
Ac ∈ EMG(X) if and only if CA(x) = CA(e), ∀x ∈ X.

Proposition 5. Let A ∈ EMG(X) and x ∈ X. Then CA(xy) = CA(y) ∀y ∈
X if and only if CA(x) = CA(e).

Proof. If CA(xy) = CA(y) ∀y ∈ X, then y = e.
Conversely, assume CA(x) = CA(e). Then CA(xy) ⩽ CA(x)

∨
CA(y) =

CA(y) and on the other hand, CA(y) ⩽ CA(x
−1)

∨
CA(xy) = CA(xy). □

Proposition 6. Let A ∈ EMG(X). Then the non-empty sets defined as

An = {x ∈ X : CA(x) ⩽ n, n ∈ Z+}
and

A∗ = {x ∈ X : CA(x) = CA(e)}
are subgroups of X.

Proof. Let x, y ∈ An. It implies that CA(x) ⩽ n and CA(y) ⩽ n. Then
CA(xy

−1) ⩽ [CA(x)
∨

CA(y)] ⩽ n and hence if x, y ∈ An, then xy−1 ∈ An.
Hence An, n ∈ Z+ are subgroups of X.
Again, let x, y ∈ A∗. Then CA(x) = CA(y) = CA(e). Now, CA(xy

−1) ⩽
[CA(x)

∨
CA(y)] = [CA(e)

∨
CA(e)] = CA(e). But CA(e) ⩽ CA(xy

−1), i.e.,
CA(xy

−1) = CA(e). Therefore, xy
−1 ∈ A∗. Hence A∗ is a subgroup of X. □
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Proposition 7. Let A ∈ EMG(X). Then the following assertions are equiv-
alent:

(i) CA(xy) = CA(yx), ∀x, y ∈ X,
(ii) CA(xyx

−1) = CA(y), ∀x, y ∈ X,
(iii) CA(xyx

−1) ⩽ CA(y), ∀x, y ∈ X,
(iv) CA(xyx

−1) ⩾ CA(y), ∀x, y ∈ X.

Proof. (i) ⇒ (ii): Let x, y ∈ X. Then CA(x
−1xy) = CA(ey) = CA(y).

(ii) ⇒ (iii) Trivial.
(iii) ⇒ (iv): CA(xyx

−1) ⩾ CA (x−1 [xyx−1] (x−1)−1) = CA(y).
(iv) ⇒ (i): Let x, y ∈ X. Then CA(xy) = CA(x [yx]x

−1) ⩾ CA(yx) =
CA(y [xy] y

−1) ⩾ CA(xy). Hence, CA(xy) = CA(yx).
Thus the above assertions are equivalent. □

Proposition 8. Let A ∈ AEMG(X). Then A∗, A
n, n ∈ Z+ are normal

subgroups of X.

Proof. (i): Assume CA(e) = 1. Then A∗ = A1. Hence, it is not difficult to see
that A∗ is a normal subgroup of X.

(ii): Let x ∈ X and y ∈ An, then CA(y) ⩽ n. Since A ∈ AEMG(X), then
CA(xy) = CA(yx) ∀x, y ∈ X. By Proposition 7, CA(xyx

−1) = CA(y) and this
implies CA(xyx

−1) = CA(y) ⩽ n. Thus, xyx−1 ∈ An is a normal subgroup of
X. □
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