AMGROUPS
M. A. IBRAHIM AND J. A. AWOLOLA

Abstract

Using the idea of mgroups introduced by Nazmul et al. [8], we redefine the concept of mgroups to allow flexibility of the identity element from a group X in delineating the mgroups and proved some related results.

1. Introduction

The theory of multisets is an extension of the set theory. Since inception, it has evoked a lot of research. For more details, the reader is referred to ([2],[3],[4],[5],[6],[7],[13],[14]). Theoretic study has included algebra aspect of fuzzy sets and multisets. Mordeson and Bhutani collaborated with Rosenfeld, the initiator of theory of fuzzy groups in order to estabish the algebraic structures of fuzzy sets, and worked extensively on this subject with some new results described [1]. Onasanya [11, 12] critically studied the notion and carried out some thorough reviews on fuzzy groups and anti fuzzy groups.

In [8], the underlying structure in group theory was replaced with multisets and some fundamental properties were presented. Moreover, as a suitable generalization of group theory, Awolola and Ibrahim [9], Awolola and Ejegwa [10] discussed the concept further and investigated their related properties.

In this paper, we introduce a new concept of mgroups called amgroups (EMGs) by redefining the concept of mgroups from a multiset space $[X]^{\infty}$ and obtain some related results.

2. Preliminaries

Definition 1. Let X be a set. A multiset (mset, for short) M drawn from X is represented by a count function C_{M} defined as $C_{M}: X \longrightarrow N_{0}=\{0,1,2, \ldots\}$.

For each $x \in X, C_{M}(x)$ denotes the number of occurrences of the element x in the mset M. The representation of the mset M drawn from $X=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$ will be as $M=\left[x_{1}, x_{2}, \ldots, x_{n}\right]_{m_{1}, m_{2}, \ldots, m_{n}}$ such that x_{i} appears m_{i} times $(i=1,2, \ldots, n)$ in M.

[^0]Key words and phrases. multiset, amgroup.

Let, for any positive integer $n,[X]^{n}$ be the set of all msets drawn from X such that no element in the mset occurs more than n times and $[X]^{\infty}$ be the set of all msets drawn from X such that there is no limit on the number of occurrences of an object in an mset. Therefore, $[X]^{n}$ and $[X]^{\infty}$ are referred to as mset spaces.
Definition 2. Let $M_{1}, M_{2}, M_{i} \in[X]^{n}, i \in I$. Then
(i) $M_{1} \subseteq M_{2} \Longleftrightarrow C_{M_{1}}(x) \leqslant C_{M_{2}}(x), \forall x \in X$,
(ii) $M_{1}=M_{2} \Longleftrightarrow C_{M_{1}}(x)=C_{M_{2}}(x), \forall x \in X$,
(iii) $\bigcap_{i \in I} M_{i}=\bigwedge_{i \in I} C_{M_{i}}(x), \forall x \in X$ (where \bigwedge is the minimum operation),
(iv) $\bigcup_{i \in I} M_{i}=\bigvee_{i \in I} C_{M_{i}}(x), \forall x \in X$ (where \bigvee is the maximum operation),
(v) $M_{i}^{c}=n-C_{M_{i}}(x), \forall x \in X, n \in \mathbb{Z}^{+}$.

Definition 3. Let X be a group. A multiset A over X is called amgroup if the count function of the elements of A or $C_{A}(x)$ satisfies the following conditions:
(i) $C_{A}(x y) \leqslant C_{A}(x) \vee C_{A}(y), \forall x, y \in X$,
(ii) $C_{A}\left(x^{-1}\right)=C_{A}(x), \forall x \in X$.

Example 1. Let $E=\left\langle a_{1} \mid a_{1}^{2}=1\right\rangle \times\left\langle a_{2} \mid a_{2}^{2}=1\right\rangle \times \ldots$ be an infinite elementary abelian 2-group, $\mu \in M G(E)^{\infty}$ an mgroup. Then in fact $\mu \in M G(E)^{\mu(1)}$ so μ is constant on some infinite $F \subseteq E$. On the other hand, setting $E_{0}=\emptyset, E_{i}=$ $\left\langle a_{1}\right\rangle \times \cdots \times\left\langle a_{i}\right\rangle, \mu(a)=i+1$ provided $a \in E_{i+1} \backslash E_{i}$ then $\mu \in E M G(E)^{\infty}$ is an amgroup with $\mu \notin M G(E)^{k}$ for any positive integer K. Hence, amgroups may provide valuable new tools in infinite group theory.
Definition 4. Let $A, B \in[X]^{n}$, we have the following definitions:
(i) $C_{A \circ B}(x)=\bigwedge\left\{C_{A}(y) \bigvee C_{B}(z): y, z \in X, y z=x\right\}$,
(ii) $C_{A^{-1}}(x)=C_{A}\left(x^{-1}\right)$.

We call $A \circ B$ the product of A and B and A^{-1} the inverse of A.
Definition 5. Let $A, B \in E M G(X)$. Then A is said to be a subamgroup of B if $A \subseteq B$.
Example 2. Let $X=\left\langle a, b \mid a^{2}=b^{2}=1, b a=a b\right\rangle, A=[1, a, b, a b]_{1,2,4,4}$, and $B=[1, a, b, a b]_{2,3,4,4}$. Clearly, $A, B \in E M G(X)$ and $A \subseteq B$. Thus, A is a subamgroup of B.
Definition 6. Let $A \in E M G(X)$. Then A is called an abelian amgroup over X if $C_{A}(x y)=C_{A}(y x), \forall x, y \in X$. The set of all abelian amgroups over X is denoted by $A E M G(X)$.

3. Main Results

Proposition 1. Let $A \in E M G(X)$.
(i) $C_{A}\left(x^{n}\right) \leqslant C_{A}(x), \forall x \in X$.
(ii) If $C_{A}\left(x^{-1}\right) \leqslant C_{A}(x)$, then $C_{A}\left(x^{-1}\right)=C_{A}(x)$.
(iii) If $C_{A}(x)<C_{A}(y)$, for some $x, y \in X$, then $C_{A}(x y)=C_{A}(y)=C_{A}(y x)$.
(iv) $C_{A}\left(x y^{-1}\right)=C_{A}(e)$ implies $C_{A}(x)=C_{A}(y)$.

Proof. (i) and (ii) follows immediately.
(iii): Let $C_{A}(x)<C_{A}(y)$ for some $x, y \in X$. Since $A \in E M G(X)$, then $C_{A}(x y) \leqslant C_{A}(x) \bigvee C_{A}(y)=C_{A}(y)$. Now,

$$
C_{A}(y)=C_{A}\left(x y x^{-1}\right) \leqslant C_{A}(x y) \bigvee C_{A}(x)=C_{A}(x y)
$$

since $C_{A}(x)<C_{A}(y)$ and $C_{A}(x)<C_{A}(x y)$. Therefore, $C_{A}(x y)=C_{A}(y)$. The equality $C_{A}(y x)=C_{A}(y)$ can be obtained similarly.
(iv): Given $A \in E M G(X)$ and $C_{A}\left(x y^{-1}\right)=C_{A}(e) \forall x, y \in X$. Then

$$
\begin{aligned}
C_{A}(x) & \left.=C_{A}\left(x\left(y^{-}\right) y\right)\right)=C_{A}\left(\left(x y^{-1}\right) y\right) \\
& \leqslant C_{A}\left(x y^{-1}\right) \bigvee C_{A}(y)=C_{A}(e) \bigvee C_{A}(y)=C_{A}(y)
\end{aligned}
$$

Now,

$$
\begin{aligned}
C_{A}(y) & =C_{A}\left(y^{-1}\right)=C_{A}\left(e y^{-1}\right)=C_{A}\left(\left(x^{-1} x\right) y^{-1}\right) \\
& \leqslant C_{A}\left(x^{-1}\right) \bigvee C_{A}\left(x y^{-1}\right)=C_{A}(x) \bigvee C_{A}(e)=C_{A}(x)
\end{aligned}
$$

Hence, $C_{A}(x)=C_{A}(y)$.
Proposition 2. Let $A \in[X]^{n}$. Then $A \in E M G(X)$ if and only if

$$
C_{A}\left(x y^{-1}\right) \leqslant C_{A}(x) \bigvee C_{A}(y)
$$

holds for all $x, y \in X$.
Proof. Let $A \in E M G(X)$. Then

$$
C_{A}\left(x y^{-1}\right) \leqslant C_{A}(x) \bigvee C_{A}\left(y^{-1}\right)=C_{A}(x) \bigvee C_{A}(y), \forall x, y \in X
$$

Conversely, let the given condition be satisfied, i.e.,

$$
C_{A}\left(x y^{-1}\right) \leqslant C_{A}(x) \bigvee C_{A}(y)
$$

Now,

$$
C_{A}(e)=C_{A}\left(x x^{-1}\right) \leqslant C_{A}(x) \bigvee C_{A}(x)=C_{A}(x)
$$

and

$$
C_{A}\left(x^{-1}\right)=C_{A}\left(e x^{-1}\right) \leqslant C_{A}(e) \bigvee C_{A}(x)=C_{A}(x)
$$

Hence $C_{A}(x y)=C_{A}\left(x\left(y^{-1}\right)^{-1}\right) \leqslant C_{A}(x) \bigvee C_{A}\left(y^{-1}\right)=C_{A}(x) \bigvee C_{A}(y)$, which completes the proof.

Proposition 3. Let $A \in[X]^{n}$. Then $A \in E M G(X)$ if and only if $A \leqslant A \circ A$ and $A^{-1}=A$.

Proof. Let $x, y \in X$. Since $A \in E M G(X)$, then $C_{A}(x y) \leqslant C_{A}(x) \bigvee C_{A}(y)$ and hence $C_{A \circ A}(z)=\bigwedge_{z=x y}\left\{C_{A}(x) \bigvee C_{A}(y)\right\} \geqslant \bigwedge_{z=x y} C_{A}(x y)=C_{A}(z)$. Therefore, $A \leqslant A \circ A$. On the other hand, $A \in E M G(X)$ thus $C_{A}\left(x^{-1}\right)=$ $C_{A}(x), \forall x \in X$. But by definition, $C_{A}\left(x^{-1}\right)=C_{A^{-1}}(x)$. Therefore, $A^{-1}=A$.

Conversely, let the given conditions be satisfied. If $A=A \circ A$ and $A^{-1}=A$, then it is sufficient to prove $A \in E M G(X)$. Now

$$
C_{A \circ A}(z)=\bigwedge_{z=x y}\left\{C_{A}(x) \bigvee C_{A}(y)\right\} \leqslant C_{A}(x) \bigvee C_{A}(y), \forall x, y \in X
$$

hence $C_{A}(x y) \leqslant C_{A}(x) \bigvee C_{A}(y), x y=z$. Since the equations $C_{A}(x)=C_{A^{-1}}(x)$ and $C_{A^{-1}}(x)=C_{A}\left(x^{-1}\right)$ hold, it follows that $C_{A}\left(x^{-1}\right)=C_{A}(x), \forall x \in X$. Therefore, $A \in E M G(X)$.
Proposition 4. Let $A, B \in E M G(X)$. Then $A \cup B \in E M G(X)$.
Proof. Let $x, y \in A \cup B \in E M G(X)$. Hence $x, y \in A$ or $x, y \in B$. Therefore, $C_{A}(x y) \leqslant C_{A}(x) \vee C_{A}(y)$ or $C_{B}(x y) \leqslant C_{B}(x) \vee C_{B}(y)$. Now

$$
\begin{aligned}
C_{A \cup B}(x y)=C_{A}(x y) \bigvee C_{B}(x y) & \leqslant\left[C_{A}(x) \bigvee C_{A}(y)\right] \bigvee\left[C_{B}(x) \bigvee C_{B}(y)\right] \\
& =\left[C_{A}(x) \bigvee C_{B}(x)\right] \bigvee\left[C_{A}(y) \bigvee C_{B}(y)\right] \\
& =C_{A \cup B}(x) \bigvee C_{A \cup B}(y)
\end{aligned}
$$

and $C_{A \cup B}\left(x^{-1}\right)=C_{A}\left(x^{-1}\right) \bigvee C_{B}\left(x^{-1}\right)=C_{A}(x) \bigvee C_{B}(x)=C_{A \cup B}(x)$. Therefore, $A \cup B \in E M G(X)$.
Remark 1. If $\left\{A_{i}\right\}_{i \in I}$ is a family of amgroups, then $\bigcap_{i \in I} A_{i}$ need not be an amgroup over X.
Remark 2. If $A \in E M G(X)$, then A^{c} need not be an $E M G(X)$. However, $A^{c} \in E M G(X)$ if and only if $C_{A}(x)=C_{A}(e), \forall x \in X$.
Proposition 5. Let $A \in E M G(X)$ and $x \in X$. Then $C_{A}(x y)=C_{A}(y) \forall y \in$ X if and only if $C_{A}(x)=C_{A}(e)$.
Proof. If $C_{A}(x y)=C_{A}(y) \forall y \in X$, then $y=e$.
Conversely, assume $C_{A}(x)=C_{A}(e)$. Then $C_{A}(x y) \leqslant C_{A}(x) \bigvee C_{A}(y)=$ $C_{A}(y)$ and on the other hand, $C_{A}(y) \leqslant C_{A}\left(x^{-1}\right) \bigvee C_{A}(x y)=C_{A}(x y)$.
Proposition 6. Let $A \in E M G(X)$. Then the non-empty sets defined as

$$
A^{n}=\left\{x \in X: C_{A}(x) \leqslant n, n \in \mathbb{Z}^{+}\right\}
$$

and

$$
A_{*}=\left\{x \in X: C_{A}(x)=C_{A}(e)\right\}
$$

are subgroups of X.
Proof. Let $x, y \in A^{n}$. It implies that $C_{A}(x) \leqslant n$ and $C_{A}(y) \leqslant n$. Then $C_{A}\left(x y^{-1}\right) \leqslant\left[C_{A}(x) \bigvee C_{A}(y)\right] \leqslant n$ and hence if $x, y \in A^{n}$, then $x y^{-1} \in A^{n}$. Hence $A^{n}, n \in \mathbb{Z}^{+}$are subgroups of X.

Again, let $x, y \in A_{*}$. Then $C_{A}(x)=C_{A}(y)=C_{A}(e)$. Now, $C_{A}\left(x y^{-1}\right) \leqslant$ $\left[C_{A}(x) \bigvee C_{A}(y)\right]=\left[C_{A}(e) \bigvee C_{A}(e)\right]=C_{A}(e)$. But $C_{A}(e) \leqslant C_{A}\left(x y^{-1}\right)$, i.e., $C_{A}\left(x y^{-1}\right)=C_{A}(e)$. Therefore, $x y^{-1} \in A_{*}$. Hence A_{*} is a subgroup of X.

Proposition 7. Let $A \in E M G(X)$. Then the following assertions are equivalent:
(i) $C_{A}(x y)=C_{A}(y x), \forall x, y \in X$,
(ii) $C_{A}\left(x y x^{-1}\right)=C_{A}(y), \forall x, y \in X$,
(iii) $C_{A}\left(x y x^{-1}\right) \leqslant C_{A}(y), \forall x, y \in X$,
(iv) $C_{A}\left(x y x^{-1}\right) \geqslant C_{A}(y), \forall x, y \in X$.

Proof. $(i) \Rightarrow(i i)$: Let $x, y \in X$. Then $C_{A}\left(x^{-1} x y\right)=C_{A}(e y)=C_{A}(y)$.
(ii) \Rightarrow (iii) Trivial.
(iii) $\Rightarrow(i v): C_{A}\left(x y x^{-1}\right) \geqslant C_{A}\left(x^{-1}\left[x y x^{-1}\right]\left(x^{-1}\right)^{-1}\right)=C_{A}(y)$.
$(i v) \Rightarrow(i):$ Let $x, y \in X$. Then $C_{A}(x y)=C_{A}\left(x[y x] x^{-1}\right) \geqslant C_{A}(y x)=$ $C_{A}\left(y[x y] y^{-1}\right) \geqslant C_{A}(x y)$. Hence, $C_{A}(x y)=C_{A}(y x)$.

Thus the above assertions are equivalent.
Proposition 8. Let $A \in \operatorname{AEMG}(X)$. Then $A_{*}, A^{n}, n \in \mathbb{Z}^{+}$are normal subgroups of X.

Proof. (i): Assume $C_{A}(e)=1$. Then $A_{*}=A^{1}$. Hence, it is not difficult to see that A_{*} is a normal subgroup of X.
(ii): Let $x \in X$ and $y \in A^{n}$, then $C_{A}(y) \leqslant n$. Since $A \in A E M G(X)$, then $C_{A}(x y)=C_{A}(y x) \forall x, y \in X$. By Proposition $7, C_{A}\left(x y x^{-1}\right)=C_{A}(y)$ and this implies $C_{A}\left(x y x^{-1}\right)=C_{A}(y) \leqslant n$. Thus, $x y x^{-1} \in A^{n}$ is a normal subgroup of X.

References

[1] J. N. Mordeson, K. R. Bhutani, A. Rosenfeld, Fuzzy groups theory, Springer-Verlag, Berlin, Heidelberg, New York, 2005.
[2] C. S. Claude, G. Paũn, G. Rozenberg, A. Salomaa (eds.), Multiset processing, Mathematical, computer science and molecular computing points of view, LNCS 2235, Springer, 2001.
[3] A. M. Ibrahim, J. A. Awolola, A. J. Alkali, An extension of the concept of n-level sets to multisets, Ann. Fuzzy Math. Inform., 11(6) (2016), 855-862.
[4] D. Singh, A. M. Ibrahim, T. Yohanna, J. N. Singh, An overview of the application of multisets, Novi Sad J. Math., 37(2) (2007), 73-92.
[5] D. Singh, A. M. Ibrahim, T. Yohanna, J. N. Singh, A systematization of fundamentals of multisets, Lect. Mat., 29 (2008), 33-48.
[6] J. L. Hickman, A note on the concept of multiset, Bull. Aust. Math. Soc., 22 (1980), 211-217.
[7] J. Lake, Sets, fuzzy sets, multisets and functions, J. Lond. Math. Soc., 12(2) (1976), 323-326.
[8] S. K. Nazmul, P. Majumdar, S. K. Samanta, On multisets and multigroups, Ann. Fuzzy Math. Inform., 6(3) (2013), 643-656.
[9] J. A. Awolola, A. M. Ibrahim, Some results on multigroups, Quasigroups and Related Systems, 24(2) (2016), 169-177.
[10] J. A. Awolola, P. A. Ejegwa, On some algebraic properties of order of an element of a Multigroup, Quasigroups Related Systems, 25(1) (2017), 1-6.
[11] B. O. Onasanya, Some reviews in fuzzy subgroups and anti fuzzy subgroups, Ann. Fuzzy Math. Inform., 11(3) (2016), 377-385.
[12] B. O. Onasanya, Review of some anti fuzzy properties of some fuzzy subgroups, Ann. Fuzzy Math. Inform., 11(6) (2016), 899-904.
[13] R. R. Yager, On the theory of bags, Int. J. of Gen. Systems, 13(1) (1986), 23-27.
[14] W. Blizard, The development of multiset theory, Modern Logic, 1 (1991), 319-352.

$$
\text { Received August 29, } 2017 .
$$

M. A. Ibrahim

Department of Mathematics, Ahmadu Bello University, Zaria, Nigeria
Email address: amibrahim@abu.edu.ng
J. A. Awolola

Department of Mathematics/Statistics/Computer Science, University of Agriculture,
Makurdi, Nigeria
Email address: remsonjay@yahoo.com, awolola.johnson@uam.edu.ng

[^0]: 2020 Mathematics Subject Classification. 03F72, 20N25, 20 N99.

