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STRONGLY P-INJECTIVE RINGS

ZHANMIN ZHU

Abstract. A ring R is called right strongly P-injective (or right SP-injective for short)
if, for any 0 ̸= a ∈ R , there exists a positive integer n such that an ̸= 0 , and for any
b ∈ R, every R-homomorphism from anR + bR to R extends to an endomorphism of
R. We study the properties of right strongly P-injective rings, several conditions under
which right strongly P-injective rings are quasi-Frobenius rings are given.

1. Introduction

Throughout this article, R is an associative ring with identity, and all modules are
unitary. As usual, J and Sl(resp., Sr) denote respectively the Jacobson radical and the
left (resp., right) socle of R. The left (resp., right) annihilator of a subset X of R is
denoted by l(X) (resp., r(X)) . If M is an R-module, the notation N ⊆max M means
that N is a maximal submodule of M , and we write N ⊆⊕ M if N is a direct summand
of M for convenience.

Recall that a ring R is called quasi-Frobenius, if it is one-sided artinian (or one-sided
noetherian), and one-sided self-injective. A ring R is called right P-injective [10] if, for
any principal right ideal I of R, every R-homomorphism from I to R extends to an
endomorphism of R. A ring R is called right GP-injective [3, 5, 9] if, for every 0 ̸= a ∈ R,
there exists a positive integer n such that an ̸= 0 and every R-homomorphism from anR
to R extends to an endomorphism of R . GP -injective rings are also called Y J-injective
rings in [19, 20, 21]. A ring R is called right mininjective [11] if for any minimal right
ideal I of R, every R-homomorphism from I to R extends to an endomorphism of R. The
following implications hold:

right self-injective ⇒ right P-injective ⇒ right GP-injective ⇒ right mininjective.

P-injective rings, GP-injective rings and the relations of them with quasi-Frobenius rings
have been studied by many authors. In this article, we introduce the concept of right
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strongly P-injective rings , some properties of them are studied, and several conditions
under which strongly P-injective rings are quasi-Frobenius rings are given.

2. Strongly P-injective rings

We start with the following definition.

Definition 1. A ring R is called right strongly P-injective (or right SP-injective for short)
if, for any 0 ̸= a ∈ R , there exists a positive integer n such that an ̸= 0, and for any
b ∈ R, every R-homomorphism from anR + bR to R extends to an endomorphism of R.

Let M be a right R-module. We call a submodule K of M extensive if every homomor-
phism from K to M extends to an endomorphism of M .

Lemma 2. Let M be a right R-module with S = End(MR) and K,K ′ be two submodules
of M.

(1) If K +K ′ is extensive then lS(K ∩K ′) = lS(K) + lS(K
′).

(2) If lS(K ∩K ′) = lS(K)+ lS(K
′) and K,K ′ are extensive, then K+K ′ is extensive.

Proof. (1). If s ∈ lS(K ∩K ′), then f : K +K ′ → M is well defined by f(k + k′) = sk,
so f = t· for some t ∈ S by hypothesis. Then s − t ∈ lS(K) and t ∈ lS(K

′), so
s = (s− t) + t ∈ lS(K) + lS(K

′). Hence lS(K ∩K ′) ⊆ lS(K) + lS(K
′); the other inclusion

always holds.

(2). Let f : K +K ′ → M be a right R-homomorphism. Then f |K= s· and f |K= t· for
some s, t ∈ S by hypothesis. Thus, s− t ∈ lS(K∩K ′) = lS(K)+ lS(K

′), say s− t = s′− t′,
where s′ ∈ lS(K) and t′ ∈ lS(K

′). Put a = s−s′ = t−t′. Then ak = (s−s′)k = sk = f(k)
and ak′ = (t − t′)k′ = tk′ = f(k′) for any k ∈ K and k′ ∈ K ′. It follows that f = a·, as
required. □

Theorem 3. The following statements are equivalent for a ring R:

(1) R is a right SP-injective ring.

(2) R is a right P-injective ring and for any 0 ̸= a ∈ R and any b ∈ R, there exists a
positive integer n such that an ̸= 0 and l(anR ∩ bR) = l(an) + l(b).

Proof. (1) ⇒ (2). For any 0 ̸= a ∈ R, since R is right SP-injective, there exists a positive
integer n such that an ̸= 0 and every R-homomorphism from anR + aR to R extends
to an endomorphism of R, and so every R-homomorphism from aR to R extends to
an endomorphism of R because aR = anR + aR. It shows that R is right P-injective.
Moreover, by Lemma 2(1), we have l(anR ∩ bR) = l(an) + l(b).

(2) ⇒ (1). It follows from Lemma 2(2). □

Recall that a ring R is called right Kasch if every simple right R-module embeds in
R, equivalently if l(T ) ̸= 0 for every maximal right ideal T of R; a ring R is called
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right minfull [11] if it is semiperfect, right mininjective and Soc(eR) ̸= 0 for each local
idempotent e ∈ R.

Theorem 4. Let R be a right SP-injective, right Kasch ring. Then

(1) R is left GP-injective, and hence right and left mininjective.

(2) Sr = Sl ⊴ RR.

(3) J = r(Sr) = rl(J).

(4) l(J) ⊴ RR.

(5) J = Zl = Zr.

(6) The map θ : T 7→ l(T ) gives a bijection from the set of maximal right ideals of R
to the set of minimal left ideals of R, whose inverse map is given by K 7→ r(K).
Moreover, if R is semilocal, then

(7) R is left Kasch.

(8) Sr = Sl⊴ RR.

(9) r(J) ⊴ RR.

Proof. (1) Let a ∈ R. Then by the hypothesis, there exists a positive integer n such
that an ̸= 0 and for every b ∈ R, every R-homomorphism from anR + bR to R extends
to an endomorphism of R. We always have anR ⊆ rl(an). If b ∈ rl(an) − anR, let
anR ⊆ T ⊆max (anR + bR). By the Kasch hypothesis, let σ : (anR + bR)/T → R be
monic, and define γ : anR + bR → R by γ(x) = σ(x + T ). Then γ = c· for some c ∈ R.
So can = γ(an) = 0. This gives cb = 0 because b ∈ rl(an). But cb = σ(b+ T ) ̸= 0 because
b ̸∈ T , this is a contradiction. Hence rl(an) = anR, it shows that R is left GP-injective
by [20, Lemma 3].

(2)-(5) follows from [3, Theorem 2.3].

(6). It follows from (1) and [11, Lemma 1.1, Theorem 2.3(2)].

(7) Since R is semilocal, then by (1), it is a semilocal, right and left mininjective right
Kasch ring. By [14, Lemma 5.49], R is a left Kasch ring.

(8). Since R is left GP-injective by (1) and left Kasch by (7), we have that Sr = Sl⊴
RR by [3, Theorem 2.3(2)].

(9). Since R is left GP-injective and left Kasch, by [3, Theorem 2.3(4)], r(J) ⊴ RR. □

By Theorem 3, we see that right SP-injective rings are right P-injective, our next example
shows that right P-injective rings need not be right SP-injective.

Example 5. Let K be a field and L be a proper subfield of K such that ρ : K → L
is an isomorphism, and let K[ρ;x] be the ring of twisted left polynomials over K where
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xk = ρ(k)x for all k ∈ K. Set R = K[ρ;x]/(x2). Then R is right P -injective, but R is
not right SP-injective.

Proof. By Rutter [16, Example 1], R is a right P -injective , left artinian ring but R is not
quasi-Frobenius. Hence R is right minfull. By [11, Theorem 3.7(1)], R is right Kasch .
If R is right SP-injective, then by Theorem 4(1), R is left and right mininjective and left
artinian. It follows that R is quasi-Frobenius by [11, Corollary 4.8], a contradiction. □

Corollary 6. Let R be a left perfect right SP-injective ring. Then

(1) R is right and left Kasch.

(2) R is two-sided mininjective and Sr = Sl is essential both as a right and a left ideal.

Proof. (1). Since R is left perfect, it is semilocal and right semiartinian by [14, Theorem
B.32], and so every nonzero right R-module has an essential socle by [14, Theorem B.31].
In particular, Sr ⊴RR and Soc(eR) ̸= 0 for every local e2 = e ∈ R. Therefore, R is right
minfull, which implies that R is right and left Kasch by [11, Theorem 3.7(1)].

(2). It follows from (1) and Theorem 4(1)(2)(8). □

Theorem 7. Let R be a right SP-injective right Kasch ring. Then the following conditions
are equivalent:

(1) R is semilocal.

(2) R is left finitely cogenerated.

(3) R is left finite dimensional.

(4) R is right finitely cogenerated and left Kasch.

(5) R is right finite dimensional.

(6) Sr is a finitely generated left ideal.

Proof. (1) ⇒ (2). By [3, Theorem 2.8], every right GP-injective right Kasch semilocal
ring is left finitely cogenerated.

(2) ⇒ (3), and (4) ⇒ (5) are obvious.

(3) ⇒ (1). By [6, Corollary 3.2], every right Kasch left finite dimensional ring is semilo-
cal.

(1) ⇒ (4). By Theorem 2.4(7), R is left Kasch. And so, by [3, Theorem 2.8], R is right
finitely cogenerated.

(5) ⇒ (1). By [10, Theorem 3.3(2)], every right P-injective right finite dimensional ring
is semilocal.

(2) ⇒ (6). It follows from Theorem 4(2).

(6) ⇒ (1). Since R is a right SP-injective right Kasch ring, by Theorem 2.4(2), Sr = Sl.
By (6), Sr is a finitely generated left ideal, so Sr = Sl = Ra1+Ra2+ · · ·+Ran, where Rai
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is a simple left ideal, i = 1, 2, · · · , n. Then, by Theorem 4(3), J = r(Sr) = ∩n
i=1r(ai). Note

that each r(ai) = r(Rai) is a maximal right ideal by Theorem 4(6), so R is semilocal. □

Recall that a module M is called C2 [14] if every submodule that is isomorphic to a
direct summand of M is itself a direct summand of M ; a module M is called C3 [14] if
N and K are both direct summands of M and N ∩K = 0, then N ⊕K is also a direct
summand of M ; a module M is called a min-CS module [11] if every simple submodule
of M is essential in a direct summand of M ; a ring R is called a left (right) min-CS ring
[11] if RR (RR) is a min-CS module; a ring R is called a left (right) C2 ring [10] if RR
(RR) is a C2 module.

Lemma 8. Let MR be a finitely cogenerated, min-CS , C2 module with S = End(MR).
Then S is semiperfect.

Proof. Since MR is finitely cogenerated, Soc(MR) is finitely cogenerated and Soc(MR)⊴
MR . Let Soc(MR) = K1 ⊕K2 ⊕ · · · ⊕Kn, where each Ki is a simple submodule of MR,
i = 1, 2, · · · , n. Since MR is min-CS, there exists idempotents ei ∈ S, i = 1, 2, · · · , n such
that Ki ⊴ eiM , i = 1, 2, · · · , n. This implies that the sum N =

∑n
i=1 eiM is also direct.

Note that MR is C2 and so it is C3, we have that N = ⊕n
i=1eiM is a direct summand

of MR. Since Soc(MR) ⊆ N ⊆ M and Soc(MR)⊴MR , N ⊴MR, and hence N = M , i.e.,
M = ⊕n

i=1eiM . Let 0 ̸= Ai be a submodule of eiM . Since Ki ⊴ eiM , Ki ∩Ai ̸= 0, and so
Ki ∩ Ai = Ki because Ki is simple. It shows that each eiM is uniform.

Since MR is finite dimensional and C2, by [12, Proposition 3.7(1)], every monomorphism
in End(MR) is epic. Therefore, by [14, Lemma 4.26], S is semiperfect. □

Theorem 9. Let R be a right SP-injective ring. Then the following conditions are equiv-
alent:

(1) R is semiperfect and right Kasch.

(2) R is semiperfect and Sr ⊴RR.

(3) R is semiperfect and Sr ⊴ RR.

(4) R is semiperfect and Soc(eR) ̸= 0 for every local idempotent e of R.

(5) R is left min-CS and right Kasch.

(6) R is right min-CS and right finitely cogenerated.

(7) R is semilocal, right Kasch and right min-CS.

(8) R is right min-CS, left mininjective and left Kasch.

Proof. (1) ⇒ (2). By Theorem 4(8) as R is semilocal.

(1) ⇒ (3). By Theorem 4(2).

(2) ⇒ (4), and (1), (6) ⇒ (7) are obvious .
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(3) ⇒ (1). Since Sr ⊴ RR, Sr ∩ Re ̸= 0 for every local idempotent e ∈ R. Let
0 ̸= a ∈ Sr ∩ Re, then a = ae ∈ Sre. Thus Sre ̸= 0, and then R is right Kasch by [11,
Proposition 3.3(2)].

(4) ⇒ (1). By hypothesis, R is right minfull, and so R is right Kasch by [11, Theorem
3.7(1)].

(1), (3) ⇒ (5). Firstly, by (1), R is right Kasch. Secondly, since R is semiperfect and
Sr⊴RR, by [14, Lemma 4.2(1)], lr(L) is essential in a summand of RR for each left ideal L
of R. Let Ra be a minimal left ideal. Then we have that lr(Ra) is essential in a summand
of RR . Since R is left mininjective by Theorem 4(1), aR is a minimal right ideal by
[11, Theorem 1.14(1)]. So, observing that R is right minimal injective, according to [11,
Lemma 1.1], we have lr(Ra) = Ra. Thus, Ra is essential in a summand of RR , that is,
R is left min-CS.

(5) ⇒ (1). Since R is right Kasch, right mininjective, by [14, Theorem 2.31], for every
maximal right ideal M of R, l(M) is a minimal left ideal, which implies that l(M) is
essential in a summand of RR because R is left min-CS. Therefore, R is semiperfect by
[14, Lemma 4.1].

(1) ⇒ (6). Assume (1). Then since R is right SP-injective, semiperfect and right Kasch,
by Theorem 7(4), R is right finitely cogenerated. And by Theorem 4(8), Sl ⊴RR. So, by
[14, Lemma 4.2(1)], rl(T ) is essential in a summand of RR for each right ideal T of R. Let
aR be a minimal right ideal. Then we have that rl(aR) is essential in a summand of RR .
Since R is right mininjective by Theorem 4(1), Ra is a minimal left ideal by [11, Theorem
1.14(1)]. So, observing that R is left minimal injective, according to [11, Lemma 1.1], we
have rl(aR) = aR. Thus, aR is essential in a summand of RR , that is, R is right min-CS.

(6) ⇒ (2). Assume (6). Then it is easy to see that Sr⊴RR. Since R is right SP-injective,
by Theorem 3, R is right P-injective, and so it is right C2 by [10, Theorem 1.2(1)]. Thus
, by hypothesis, R is right min-CS right C2 and right finitely cogenerated. Hence, by
Lemma 8, R is semiperfect.

(7) ⇒ (8). Since R is right SP-injective and right Kasch, by Theorem 4(1), it is left
mininjective. But R is also semilocal, by Theorem 4(7), it is left Kasch.

(8) ⇒ (1). Let L ⊆max
RR. we show that r(L) is essential in a summand of RR. Since

R is left Kasch, r(L) ̸= 0. Let La = 0, where 0 ̸= a ∈ R. Then L = l(a), and so Ra is
minimal. Note that R is left mininjective, we have that r(L) = rl(a) = aR. Moreover, the
left mininjectivity of R implies that aR is a minimal right ideal by [11, Theorem 1.14(1)].
But R is right min-CS, aR is essential in a summand of RR. This shows that r(L) is
essential in a summand of RR. Hence R is semiperfect by [14, Lemma 4.1]. Finally, R is
right Kasch by [14, Lemma 5.49]. □

3. Applications to quasi-Frobenius rings

In this section, we will give some new characterizations of quasi-Frobenius rings in terms
of strongly P-injective rings.
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Lemma 10. Let R be a left Kasch right SP-injective ring. If every closed right ideal of
R is cyclic , then R is semiperfect.

Proof. We show that every maximal left ideal of R has a supplement in R and apply [14,
Theorem B.28]. Let M be any maximal left ideal of R. Since R is a left Kasch ring, by
[14, Proposition 1.44(4)], there exists 0 ̸= a ∈ R such that M = l(a). Let C be a closed
right ideal which is maximal with respect to rl(a) ∩ C = 0. Then by hypothesis, C is
cyclic. Since R is right SP-injective, by Theorem 3, there exists a positive integer n such
that an ̸= 0 and l(anR∩C) = l(an)+ l(C). Observing that anR ⊆ rl(an) = rl(a), we have
M+l(C) = l(an)+l(C) = l(anR∩C) = l(0) = R. Now we claim that l(C) is a supplement
for M . To see this, let M +X = R, where X ⊆ l(C) is a left ideal. Then C ⊆ r(X). Take
x ∈ X −M , then M +Rx = R and C ⊆ r(x). So, since rl(a)∩ r(x) = r(l(a) +Rx) = 0 ,
the maximality of C implies that C = r(x). Hence l(C) = lr(x) = Rx because R is right
P-injective, and so l(C) = X. It shows that l(C) is a supplement for M . Therefore, by
[14, Theorem B.28], R is semiperfect. □

Recall that a ring R is said to be left (right) CS if every left (right) ideal of R is essential
in a summand of RR (RR); a ring R is said to be left (right) CF if every cyclic left (right)
R-module can be embedded in a free module; a ring R is said to be a right Goldie ring
if it has ACC on right annihilator and RR is finite dimensional; a ring R is said to be
a right min-PF ring if R is a semiperfect, right mininjective ring in which Sr ⊴ RR and
lr(K) = K for every simple left ideal K ⊆ Re, where e2 = e is local. These concepts can
be found in [14].

Theorem 11. The following statements are equivalent for a ring R:

(1) R is a quasi-Frobenius ring.

(2) R is a right artinian right SP-injective ring.

(3) R is a right noetherian right SP-injective ring.

(4) R is right SP-injective with the ascending chain condition on annihilator right
ideals.

(5) R is a left artinian right SP-injective ring.

(6) R is a right SP-injective semilocal ring with ACC on essential right ideals.

(7) R is a right SP-injective semilocal ring such that R/Sr is right Goldie.

(8) R is a left CF left CS right SP-injective ring.

(9) R is a left CF, right Kasch right SP-injective ring.

(10) R is a left noetherian right SP-injective, left Kasch ring, and every closed right
ideal of R is cyclic.

(11) R is a right SP-injective right CS ring with ACC on essential right ideals.
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Proof. (1) ⇒ (2)− (11) and (2) ⇒ (3) ⇒ (4) are obvious.

(4) ⇒ (5). Since R is right P-injective with the ascending chain condition on annihilator
right ideals, by [14, Proposition 5.15], it is left artinian.

(5) ⇒ (1). Since R is a left artinian right SP-injective ring, it is a semiperfect, right min-
injective ring with essential right socle, and so it is right minfull. By [11, Theorem 3.7(1)],
R is right Kasch. Then, by Theorem 4(1), it is left and right mininjective. Therefore R
is a quasi-Frobenius ring by [11, Corollary 4.8].

(6) ⇒ (7). Since R has ACC on essential right ideals, by [8, Lemma 3], R/Sr is right
noetherian and hence R/Sr is right Goldie.

(7) ⇒ (1). Since R/Sr has ACC on right annihilators, by [14, Lemma 4.20(2)], Zr is
nilpotent. Since R is right P-injective, by [10, Theorem 2.1], J = Zr. So, J is nilpotent,
and hence it is semiprimary as it is semilocal. Thus, R is semiperfect, right mininjective
and with essential right socle, it is right minfull. By [14, Theorem 3.12(1)], R is right
Kasch, and so, by Theorem 4(1), it is a two-sided min-PF ring and R/Sr is right Goldie,
by [14, Theorem 3.38], it is a quasi-Frobenius ring.

(8) ⇒ (5). By [7, Corollary 3.10], every left CF left CS ring is left artinian.

(9) ⇒ (5). By [7, Corollary 2. 6], every left CF right Kasch ring is left artinian.

(10) ⇒ (5) . By Lemma 10, R is semiperfect, and hence it is semilocal. Since R is left
noetherian and right P-injective, J is nilpotent by [14, Lemma 8.6], so R is semiprimary,
and thus it is left artinian.

(11) ⇒ (2). Since R is right SP-injective, it is right P-injective. So, by [14, Theorem
1.2(1)], it is right C2. Thus, R is right continuous and satisfies ACC on essential right
ideals, by [8, Theorem(ii)], it is right artinian. □

Corollary 12. The following statements are equivalent for a ring R:

(1) R is a quasi-Frobenius ring.

(2) R is a right artinian right 2-injective ring.

(3) R is a right noetherian right 2-injective ring.

(4) [16, Corollary 3] R is right 2-injective with the ascending chain condition on an-
nihilator right ideals.

(5) [23, Corollary 3(2)] R is a left artinian right 2-injective ring.

(6) R is a right 2-injective semilocal ring with ACC on essential right ideals.

(7) R is a right 2-injective semilocal ring such that R/Sr is right Goldie.

(8) [4, Corollary 2.15(4)] R is a left CF left CS right 2-injective ring.

(9) [4, Corollary 2.15(5)] R is a left CF, right Kasch right 2-injective ring.
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(10) R is a left noetherian right 2-injective, left Kasch ring, and every closed right ideal
of R is cyclic.

(11) R is a right 2-injective right CS ring with ACC on essential right ideals.

Recall that a ring R is called left GC2 [18] if every left ideal that is isomorphic to RR is
itself a direct summand of R. The following theorem improves the results in [23, Corollary
2.3]

Theorem 13. The following statements are equivalent for a ring R:

(1) R is a quasi-Frobenius ring.

(2) R is left noetherian right SP-injective and right Kasch.

(3) R is left noetherian right SP-injective and left C2.

(4) R is left noetherian right SP-injective and left GC2.

(5) R is a left noetherian right SP-injective semilocal ring.

(6) R is left noetherian right SP-injective and the ascending chain r(a1) ⊆ r(a2a1) ⊆
r(a3a2a1) ⊆ · · · terminates for every sequence {a1, a2, · · · } ⊆ R.

(7) R is left noetherian right SP-injective and right finite dimensional.

Proof. (1) ⇒ (2), (6), (7) is obvious. Since right Kasch ring is left C2, and left C2 ring is
left GC2, we have (2) ⇒ (3) ⇒ (4).

(4)⇒ (5). Since left noetherian ring is left finite dimensional, and left finite dimensional
left GC2 ring is semilocal [22, Lemma 1.1], so (5) follows from (4).

(5)⇒ (1). Since R is left noetherian right P-injective, By [14, Lemma 8.6(1)], J is
nilpotent. Thus R is left noetherian and semiprimary by hypothesis, and so it is left
aritinian. By Theorem 11(5), R is quasi-Frobenius.

(6)⇒ (5). Since R is right P-injective and the ascending chain r(a1) ⊆ r(a2a1) ⊆
r(a3a2a1) ⊆ · · · terminates for every sequence {a1, a2, · · · } ⊆ R, by [3, Theorem 3.4], R
is right perfect, and so it is semilocal .

(7)⇒ (3). Since R is right P-injective, by [10, Theorem 1.2(1)], R is right C2. □

Recall that a ring R is called right coherent if every finitely generated right ideal of R
is finitely presented. We call a ring R right min-coherent if every minimal right ideal of
R is finitely presented. We recall also that a ring R is called right AGP -injective [15] if
for any 0 ̸= a ∈ R, there exists a positive integer n such that an ̸= 0 and Ran is a direct
summand of lr(an).

Theorem 14. Let R be a right SP-injective ring. Then the following statements are
equivalent:

(1) R is a quasi-Frobenius ring.
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(2) R is a right artinian ring.

(3) R is left perfect and every cyclic right R-module is finite dimensional.

(4) R is left perfect, right min-coherent.

(5) R is right Kasch with left annihilators ACC.

(6) R is left GP -injective with left annihilators ACC.

(7) R is left AGP -injective with left annihilators ACC.

(8) R is semiprimary with left annihilators ACC.

(9) R is left perfect with left annihilators ACC.

Proof. (1) ⇒ (2)− (8) ; (6) ⇒ (7); and (8) ⇒ (9) are clear.

(2) ⇒ (1). By Theorem 11(2).

(3) ⇒ (2). Let I be any right ideal of R. Then R/I is finite dimensional by hypothesis,
so Soc(R/I) is finite dimensional and then finitely cogenerated. Since R is left perfect, it
is right semiartinian, and so Soc(R/I)⊴R/I . It follows that R/I is finitely cogenerated.
Therefore, R is right artinian .

(4) ⇒ (2). Suppose (4) holds. Then R is left perfect and right mininjective and right
min-coherent, so R is right Artinian by [13, Theorem 10].

(5) ⇒ (2). Since R is right Kasch, it is left GP -injective by Theorem 4(1). But R has
ACC on left annihilators , it is right artinian by [3, Theorem 3.7(1)] .

(7) ⇒ (8). By [22, Corollary 1.6].

(9) ⇒ (1). Since R is left perfect, right SP-injective, by Corollary 6(2), it is left and right
mininjective and Sl ⊴ RR, and thus R is quasi-Frobenius by [17, Theorem 2.5] because R
has left annihilators ACC. □

Recall that a ring R is called left pseudo-coherent [2] if the left annihilator of every
finite subsets of R is finitely generated. The following theorem improve the results of [24,
Theorem 2.8].

Theorem 15. The following statements are equivalent for a ring R:

(1) R is a quasi-Frobenius ring.

(2) R is a right SP-injective left perfect, left pseudo-coherent ring.

(3) R is a right SP-injective , semiprimary, left pseudo-coherent ring.

(4) R is a right SP-injective , right perfect, left pseudo-coherent ring.

(5) R is a right SP-injective left perfect, right pseudo-coherent ring.

Proof. (1)⇒ (2)-(5). It is clear.
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(2)⇒ (3). Since R is left perfect and right SP-injective, by Corollary 6(1), R is left and
right Kasch. Since R is left Kasch, we have J = lr(J) by [24, Lemma 2.6]. Since R is
right Kasch and right SP-injective, by Theorem 2.4(1), we have that it is left mininjective.
Note that R is semilocal, by [1, Proposition 15.17] and [14, Theorem 5.52], r(J) = Sl is a
finitely generated right ideal. But R is left pseudo-coherent, J is a finitely generated left
ideal, and so J is nilpotent by [14, Lemma 5.64] since J is left T-nilpotent. Thus, R is
semiprimary.

(3)⇒ (4) is clear.

(4)⇒ (1). Since R is right perfect, R has DCC on finitely generated left ideals. Note
that R is left pseudo-coherent, every left annihilator of a finite subset of R is a finitely
generated left ideal. So R has DCC on left annihilators of finite subsets of R. By [24,
Lemma 2.7], every left annihilator of a subset of R is a left annihilator of a finite subset
of R, and thus every left annihilator in R is a finitely generated left ideal. It follows that
R has DCC on left annihilators and so R has ACC on right annihilators. By Theorem
11(4), R is a quasi-Frobenius ring.

(5)⇒ (1). Since R is left perfect and right SP-injective, we have that R is two-sided
Kasch and two-sided mininjective by Corollary 6. Since R is right Kasch, we have J =
rl(J) by [24, Lemma 2.6]. Since R is semilocal and right mininjective, by [1, Proposition
15.17] and [14, Theorem 5.52], l(J) = Sr is a finitely generated left ideal. But R is right
pseudo-coherent, J is a finitely generated right ideal, and then J/J2 is a finitely generated
right R-module. Now, by Osofsky’s Lemma [14, Lemma 6.50], we have that R is right
artinian, and therefore R is a quasi-Frobenius ring by Theorem 11(2). □
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