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ALMOST BALCOBALANCING NUMBERS II

AHMET TEKCAN AND MERYEM YILDIZ

Abstract. In [24], we defined almost balcobalancing numbers, almost Lucas-balcoba-
lancing numbers and almost balcobalancers of first and second type and determined the
general terms of them in terms of balancing and Lucas-balancing numbers. In this work,
we derive some new algebraic relations on them.

1. Introduction

A positive integer n is called a balancing number ([1]) if the Diophantine equation

(1) 1 + 2 + · · ·+ (n− 1) = (n+ 1) + (n+ 2) + · · ·+ (n+ r)

holds for some positive integer r which is called balancer corresponding to n. If n is a
balancing number with balancer r, then from (1)

(2) r =
−2n− 1 +

√
8n2 + 1

2
.

Though the definition of balancing numbers suggests that no balancing number should be
less than 2. But based on (2), the authors of [1] noted that 8(0)2+1 = 1 and 8(1)2+1 = 32

are perfect squares. So they accepted 0 and 1 to be balancing numbers.

Panda and Ray ([10]) defined that a positive integer n is called a cobalancing number
if the Diophantine equation

(3) 1 + 2 + · · ·+ n = (n+ 1) + (n+ 2) + · · ·+ (n+ r)

holds for some positive integer r which is called cobalancer corresponding to n. If n is a
cobalancing number with cobalancer r, then from (3)

(4) r =
−2n− 1 +

√
8n2 + 8n+ 1

2
.
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From (4), the authors of [10] noted that 8(0)2 + 8(0) + 1 = 1 is a perfect square. So they
accepted 0 to be a cobalancing number, just like Behera and Panda accepted 0 and 1 to
be balancing numbers.

Let Bn denote the balancing number and let bn denote the cobalancing number. Then
from (2), Bn is a balancing number if and only if 8B2

n + 1 is a perfect square and from
(4), bn is a cobalancing number if and only if 8b2n + 8bn + 1 is a perfect square. Thus

Cn =
√

8B2
n + 1 and cn =

√
8b2n + 8bn + 1

are integers which are called Lucas-balancing number and Lucas-cobalancing number,
respectively (see also [8, 9, 14]).

Balancing numbers and their generalizations have been investigated by several authors
from many aspects. In [6], Liptai proved that there is no Fibonacci balancing number
except 1 and in [7] he proved that there is no Lucas-balancing number. In [17], Szalay
considered the same problem and obtained some nice results by a different method. In [4],
Kovács, Liptai, Olajos extended the concept of balancing numbers to the (a, b)-balancing
numbers defined as follows: Let a > 0 and b ≥ 0 be coprime integers. If

(a+ b) + · · ·+ (a(n− 1) + b) = (a(n+ 1) + b) + · · ·+ (a(n+ r) + b)

for some positive integers n and r, then an+b is an (a, b)-balancing number. The sequence

of (a, b)-balancing numbers is denoted by B
(a,b)
m for m ≥ 1. In [5], Liptai, Luca, Pintér

and Szalay generalized the notion of balancing numbers to numbers defined as follows:
Let y, k, l ∈ Z+ with y ≥ 4. A positive integer x with x ≤ y − 2 is called a (k, l)-power
numerical center for y if

1k + · · ·+ (x− 1)k = (x+ 1)l + · · ·+ (y − 1)l.

They studied the number of solutions of the equation above and proved several effective
and ineffective finiteness results for (k, l)-power numerical centers. For positive integers
k, x, let Πk(x) = x(x + 1) . . . (x + k − 1). Then it was proved in [4] that the equation
Bm = Πk(x) for fixed integer k ≥ 2 has only infinitely many solutions and for k ∈ {2, 3, 4}
all solutions were determined. In [26] Tengely, considered the case k = 5 and proved that
this Diophantine equation has no solution for m ≥ 0 and x ∈ Z. In [12], Panda, Komatsu
and Davala considered the reciprocal sums of sequences involving balancing and Lucas-
balancing numbers. In [15], Ray considered the sums of balancing and Lucas-balancing
numbers by matrix methods. In [2], Dash, Ota, Dash considered the t-balancing numbers
for an integer t ≥ 1. They called that a positive integer n is a t-balancing number if the
Diophantine equation

1 + 2 + · · ·+ n− 1 = (n+ 1 + t) + (n+ 2 + t) + · · ·+ (n+ r + t)

holds for some positive integer r which is called t-balancer. A positive integer n is called
a t-cobalancing number if the Diophantine equation

1 + 2 + · · ·+ n = (n+ 1 + t) + (n+ 2 + t) + · · ·+ (n+ r + t)



26 A. TEKCAN AND M. YILDIZ

holds for some positive integer r which is called t-cobalancer. In [21], Tekcan and Aydın
determined the general terms of t-balancing and Lucas t-balancing numbers, and in [20],
Tekcan and Erdem determined the general terms of t-cobalancing and Lucas t-cobalancing
numbers in terms of balancing and Lucas-balancing numbers. In [11], Panda and Panda
defined that a positive integer n is called an almost balancing number if the Diophantine
equation

(5) |[(n+ 1) + (n+ 2) + · · ·+ (n+ r)]− [1 + 2 + · · ·+ (n− 1)]| = 1

holds for some positive integer r which is called the almost balancer. From (5), they have
two cases: If [(n+1)+ (n+2)+ · · ·+(n+ r)]− [1+2+ · · ·+(n− 1)] = 1, then n is called
an almost balancing number of first type and r is called an almost balancer of first type
and if [(n + 1) + (n + 2) + · · · + (n + r)]− [1 + 2 + · · · + (n− 1)] = −1, then n is called
an almost balancing number of second type and r is called an almost balancer of second
type. In [13], Panda defined that a positive integer n is called an almost cobalancing
number if the Diophantine equation

(6) |[(n+ 1) + (n+ 2) + · · ·+ (n+ r)]− (1 + 2 + · · ·+ n)| = 1

holds for some positive integer r which is called an almost cobalancer. From (6), he has
two cases: If [(n+1)+ (n+2)+ · · ·+ (n+ r)]− (1 + 2+ · · ·+ n) = 1, then n is called an
almost cobalancing number of first type and r is called an almost cobalancer of first type
and if [(n+1)+(n+2)+ · · ·+(n+ r)]− (1+2+ · · ·+n) = −1, then n is called an almost
cobalancing number of second type and r is called an almost cobalancer of second type.
In [25], Tekcan and Erdem determined the general terms of all almost balancing numbers
and almost cobalancing numbers in terms of balancing and Lucas-balancing numbers. In
[18], Tekcan considered the sums and spectral norms of all almost balancing numbers and
in [19], Tekcan derived some results on almost balancing numbers, triangular numbers
and square triangular numbers. In [22] and [23], we defined balcobalancing numbers,
Lucas-balcobalancing numbers and balcobalancers and determined the general terms of
them.

In [24], we defined that a positive integer n is called an almost balcobalancing number
if the Diophantine equation

(7)

∣∣∣∣ [1 + 2 + · · ·+ (n− 1) + 1 + 2 + · · ·+ (n− 1) + n]
−2[(n+ 1) + (n+ 2) + · · ·+ (n+ r)]

∣∣∣∣ = 1

holds for some positive integer r which is called almost balcobalancer. From (7), we have
two cases: If [1+2+· · ·+(n−1)+1+2+· · ·+(n−1)+n]−2[(n+1)+(n+2)+· · ·+(n+r)] = 1,
then n is called an almost balcobalancing number of first type, r is called an almost
balcobalancer of first type and in this case

(8) r =
−2n− 1 +

√
8n2 + 4n− 3

2
.

If [1+2+ · · ·+(n−1)+1+2+ · · ·+(n−1)+n]−2[(n+1)+(n+2)+ · · ·+(n+r)] = −1,
then n is called an almost balcobalancing number of second type, r is called an almost
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balcobalancer of second type and in this case

(9) r =
−2n− 1 +

√
8n2 + 4n+ 5

2
.

Let Bbc∗
n denote the almost balcobalancing number of first type and let Bbc∗∗

n denote
the almost balcobalancing number of second type. Then from (8), Bbc∗

n is an almost
balcobalancing number of first type if and only if 8(Bbc∗

n )2 +4Bbc∗
n − 3 is a perfect square.

So

(10) Cbc∗
n =

√
8(Bbc∗

n )2 + 4Bbc∗
n − 3

is an integer which is called almost Lucas-balcobalancing number of first type, and from
(9), Bbc∗∗

n is an almost balcobalancing number of second type if and only if 8(Bbc∗∗
n )2 +

4Bbc∗∗
n + 5 is a perfect square. So

(11) Cbc∗∗
n =

√
8(Bbc∗∗

n )2 + 4Bbc∗∗
n + 5

is an integer which is called almost Lucas-balcobalancing number of second type. We
denote the almost balcobalancer of first type by Rbc∗

n and denote the almost balcobalancer
of second type by Rbc∗∗

n . We proved in [24, Theorem 2.2] that the general terms of almost
balcobalancing numbers, almost Lucas-balcobalancing numbers and almost balcobalancers
of first type are

Bbc∗
2n−1 =

−4B2n−1 + 3C2n−1 − 1

4
(12)

Bbc∗
2n =

4B2n−1 + 3C2n−1 − 1

4
Cbc∗

2n−1 = 6B2n−1 − C2n−1

Cbc∗
2n = 6B2n−1 + C2n−1

Rbc∗
2n−1 =

16B2n−1 − 5C2n−1 − 1

4

Rbc∗
2n =

8B2n−1 − C2n−1 − 1

4

for n ≥ 1, and proved in [24, Theorem 2.4] that the general terms of almost balcobalancing
numbers, almost Lucas-balcobalancing numbers and almost balcobalancers of second type
are

Bbc∗∗
n =

12B2n−1 + 3C2n−1 − 1

4
(13)

Cbc∗∗
n = 6B2n−1 + 3C2n−1

Rbc∗∗
n =

3C2n−1 − 1

4

for n ≥ 1.
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2. Binet Formulas and Recurrence Relations.

Theorem 1. Binet formulas for almost balcobalancing numbers, almost Lucas-balcobalancing
numbers and almost balcobalancers of first type are

Bbc∗
2n−1 =

(3−
√
2)α4n−2 + (3 +

√
2)β4n−2 − 2

8

Bbc∗
2n =

(3 +
√
2)α4n−2 + (3−

√
2)β4n−2 − 2

8

Cbc∗
2n−1 =

(3−
√
2)α4n−2 − (3 +

√
2)β4n−2

2
√
2

Cbc∗
2n =

(3 +
√
2)α4n−2 − (3−

√
2)β4n−2

2
√
2

Rbc∗
2n−1 =

(−5 + 4
√
2)α4n−2 − (5 + 4

√
2)β4n−2 − 2

8

Rbc∗
2n =

(−1 + 2
√
2)α4n−2 − (1 + 2

√
2)β4n−2 − 2

8

for n ≥ 1, and of second type are

Bbc∗∗
n =

(3 + 3
√
2)α4n−2 + (3− 3

√
2)β4n−2 − 2

8

Cbc∗∗
n =

(3 + 3
√
2)α4n−2 − (3− 3

√
2)β4n−2

2
√
2

Rbc∗∗
n =

3(α4n−2 + β4n−2)− 2

8

for n ≥ 1, where α = 1 +
√
2 and β = 1−

√
2.

Proof. Since Bn = α2n−β2n

4
√
2

and Cn = α2n+β2n

2
by [14], we deduce from (12) that

Bbc∗
2n−1 =

−4B2n−1 + 3C2n−1 − 1

4

=
−4(α

4n−2−β4n−2

4
√
2

) + 3(α
4n−2+β4n−2

2
)− 1

4

=
α4n−2(−1√

2
+ 3

2
) + β4n−2( 1√

2
+ 3

2
)− 1

4

=
(3−

√
2)α4n−2 + (3 +

√
2)β4n−2 − 2

8
.

The others can be proved similarly. □
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Recall that balancing numbers satisfy recurrence relation

Bn = 6Bn−1 −Bn−2

for n ≥ 2. Similarly we can give the following result.

Theorem 2. Almost balcobalancing numbers, almost Lucas-balcobalancing numbers and
almost balcobalancers of first type satisfy the recurrence relations

Bbc∗
n = Bbc∗

n−1 + 34Bbc∗
n−2 − 34Bbc∗

n−3 −Bbc∗
n−4 +Bbc∗

n−5

Cbc∗
n = Cbc∗

n−1 + 34Cbc∗
n−2 − 34Cbc∗

n−3 − Cbc∗
n−4 + Cbc∗

n−5

Rbc∗
n = Rbc∗

n−1 + 34Rbc∗
n−2 − 34Rbc∗

n−3 −Rbc∗
n−4 +Rbc∗

n−5

for n ≥ 6, and of second type satisfy the recurrence relations

Bbc∗∗
n = 35Bbc∗∗

n−1 − 35Bbc∗∗
n−2 +Bbc∗∗

n−3

Cbc∗∗
n = 35Cbc∗∗

n−1 − 35Cbc∗∗
n−2 + Cbc∗∗

n−3

Rbc∗∗
n = 35Rbc∗∗

n−1 − 35Rbc∗∗
n−2 +Rbc∗∗

n−3

for n ≥ 4.

Proof. Let n be even, say n = 2k for some positive integer k. Then from (12), we get

Bbc∗
2k−1 + 34Bbc∗

2k−2−34Bbc∗
2k−3 −Bbc∗

2k−4 +Bbc∗
2k−5

= (
−4B2k−1 + 3C2k−1 − 1

4
) + 34(

4B2k−3 + 3C2k−3 − 1

4
)

− 34(
−4B2k−3 + 3C2k−3 − 1

4
)− (

4B2k−5 + 3C2k−5 − 1

4
)

+ (
−4B2k−5 + 3C2k−5 − 1

4
)

=
−4B2k−1 + 272B2k−3 − 8B2k−5 + 3C2k−1 − 1

4
.

Here we notice that −4B2k−1 + 272B2k−3 − 8B2k−5 = 4B2k−1. So we get

Bbc∗
2k−1 + 34Bbc∗

2k−2−34Bbc∗
2k−3 −Bbc∗

2k−4 +Bbc∗
2k−5

= (
−4B2k−1 + 3C2k−1 − 1

4
) + 34(

4B2k−3 + 3C2k−3 − 1

4
)

− 34(
−4B2k−3 + 3C2k−3 − 1

4
)− (

4B2k−5 + 3C2k−5 − 1

4
)

+ (
−4B2k−5 + 3C2k−5 − 1

4
)

=
−4B2k−1 + 272B2k−3 − 8B2k−5 + 3C2k−1 − 1

4

=
4B2k−1 + 3C2k−1 − 1

4
= Bbc∗

2k .
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Thus

Bbc∗
n = Bbc∗

n−1 + 34Bbc∗
n−2 − 34Bbc∗

n−3 −Bbc∗
n−4 +Bbc∗

n−5.

The others can be proved similarly. □

3. Balancing Numbers and Almost Balcobalancing Numbers

In this subsection, we give the general terms of all balancing numbers in terms of almost
balcobalancing number of first and of second type.

Theorem 3. The general terms of all balancing numbers are

B2n−1 =
Bbc∗

2n −Bbc∗
2n−1

2

B2n =
Bbc∗

2n+1 −Bbc∗
2n

6

b2n−1 =
Rbc∗

2n −Rbc∗
2n−1 − 1

2

b2n =
Rbc∗

2n+1 −Rbc∗
2n − 3

6

C2n−1 =
Cbc∗

2n − Cbc∗
2n−1

2

C2n =
Cbc∗

2n+1 − Cbc∗
2n

6
c2n−1 = Bbc∗

2n −Bbc∗
2n−1 −Rbc∗

2n +Rbc∗
2n−1

c2n =
Bbc∗

2n+1 −Bbc∗
2n −Rbc∗

2n+1 +Rbc∗
2n

3

for n ≥ 1, or

B2n−1 =
Bbc∗∗

n −Rbc∗∗
n

3

B2n =
Bbc∗∗

n + Cbc∗∗
n −Rbc∗∗

n

3

b2n−1 =
Bbc∗∗

n − Cbc∗∗
n + 5Rbc∗∗

n

3

b2n =
Cbc∗∗

n − 3

6

C2n−1 =
4Bbc∗∗

n − 2Cbc∗∗
n + 8Rbc∗∗

n + 3

3

C2n =
2Bbc∗∗

n + 3Cbc∗∗
n − 2Rbc∗∗

n

3
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c2n−1 =
2Cbc∗∗

n − 12Rbc∗∗
n − 3

3

c2n =
2Bbc∗∗

n + Cbc∗∗
n − 2Rbc∗∗

n

3

for n ≥ 1.

Proof. Since Bn = α2n−β2n

4
√
2

, we get

B2n−1 =
α4n−2 − β4n−2

4
√
2

=
α4n−2(2

√
2)− β4n−2(2

√
2)

16

=
α4n−2(3 +

√
2− 3 +

√
2) + β4n−2(3−

√
2− 3−

√
2)

16

=
(3+

√
2)α4n−2+(3−

√
2)β4n−2−2

8
− (3−

√
2)α4n−2+(3+

√
2)β4n−2−2

8

2

=
Bbc∗

2n −Bbc∗
2n−1

2

by Theorem 1. The others can be proved similarly. □

4. Almost Balcobalancing Numbers and Balcobalancing Numbers.

In this section, we give the general terms of all almost balcobalancing numbers of first
and of second type in terms of balcobalancing numbers and conversely we give the general
terms of all balcobalancing numbers in terms of almost balcobalancing numbers of first
and of second type.

Theorem 4. The general terms of almost balcobalancing numbers, almost Lucas–balcobal-
ancing numbers and almost balcobalancers of first type are

Bbc∗
2n−1 =

−Bbc
n + 5Bbc

n−1 + 3Cbc
n−1 + 2Rbc

n + 1

2

Bbc∗
2n =

Bbc
n + 7Bbc

n−1 + 3Cbc
n−1 − 2Rbc

n + 1

2
Cbc∗

2n−1 = 3Bbc
n −Bbc

n−1 − 2Cbc
n−1 − 6Rbc

n − 1

Cbc∗
2n = 3Bbc

n + 7Bbc
n−1 + 2Cbc

n−1 − 6Rbc
n + 1

Rbc∗
2n−1 =

4Bbc
n − 6Bbc

n−1 − 5Cbc
n−1 − 8Rbc

n − 3

2

Rbc∗
2n =

2Bbc
n − Cbc

n−1 − 4Rbc
n − 1

2
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for n ≥ 2, and of second type are

Bbc∗∗
n =

3Bbc
n + 9Bbc

n−1 + 3Cbc
n−1 − 6Rbc

n + 1

2
Cbc∗∗

n = 3Bbc
n + 15Bbc

n−1 + 6Cbc
n−1 − 6Rbc

n + 3

Rbc∗∗
n =

6Bbc
n−1 + 3Cbc

n−1 + 1

2

for n ≥ 2.

Proof. Recall that Bbc
n = α4n+1+β4n+1

8
− 1

4
, Cbc

n = α4n+1−β4n+1

2
√
2

and Rbc
n = α4n+β4n

8
− 1

4
by [22,

Theorem 3.6]. So we get from (12) that

Bbc∗
2n−1 =

−4B2n−1 + 3C2n−1 − 1

4

=
−4(α

4n−2−β4n−2

4
√
2

) + 3(α
4n−2+β4n−2

2
)− 1

4

=
α4n−2(−1√

2
+ 3

2
) + β4n−2( 1√

2
+ 3

2
)− 1

4

= α4n−2(
3−

√
2

8
) + β4n−2(

3−
√
2

8
)− 1

4

=

{
α4n−2(−α3

8
+ 5α−1

8
+ 3α−1

2
√
2
+ 2α2

8
)

+β4n−2(−β3

8
+ 5β−1

8
− 3β−1

2
√
2
+ 2α2

8
)− 1

2

}
2

=

{
−(α

4n+1+β4n+1

8
− 1

4
) + 5(α

4n−3+β4n−3

8
− 1

4
) + 3(α

4n−3−β4n−3

2
√
2

)

+2(α
4n+β4n

8
− 1

4
) + 1

}
2

=
−Bbc

n + 5Bbc
n−1 + 3Cbc

n−1 + 2Rbc
n + 1

2
.

The others can be proved similarly. □

Conversely, we give the general terms of all balcobalancing numbers in terms of almost
balcobalancing numbers of first and of second type as follows.

Theorem 5. The general terms of all balcobalancing numbers are

Bbc
n = Bbc∗

2n−1 + Cbc∗
2n

Cbc
n = Rbc∗

2n+2 −Rbc∗
2n+1

Rbc
n =

Cbc∗
2n+1 − Cbc∗

2n − 6

24
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for n ≥ 1, or

Bbc
n =

Cbc∗∗
n+1 − 6Rbc∗∗

n+1 − 3

6

Cbc
n =

2Bbc∗∗
n+1 − 2Cbc∗∗

n+1 + 10Rbc∗∗
n+1 + 3

3

Rbc
n =

2Bbc∗∗
n + 3Cbc∗∗

n − 2Rbc∗∗
n − 3

12

for n ≥ 1.

Proof. Applying [22, Theorem 3.6], we get

Bbc
n =

α4n+1 + β4n+1

8
− 1

4

=
α4n−2(7 + 5

√
2) + β4n−2(7− 5

√
2)

8
− 1

4

=
α4n−2(3−

√
2 + 4 + 6

√
2) + β4n−2(3 +

√
2 + 4− 6

√
2)

8
− 1

4

=
(3−

√
2)α4n−2 + (3 +

√
2)β4n−2 − 2

8
+

(3 +
√
2)α4n−2 − (3−

√
2)β4n−2

2
√
2

= Bbc∗
2n−1 + Cbc∗

2n

by Theorem 1. The others can be proved similarly. □

5. Relationship with Pell and Pell-Lucas Numbers.

Recall that general terms of all balancing numbers can be given in terms of Pell numbers

Bn =
P2n

2
, bn =

P2n−1 − 1

2
, Cn = P2n + P2n−1 and cn = P2n−1 + P2n−2.

Similarly we can give general terms of almost balcobalancing numbers, almost Lucas-bal-
cobalancing numbers and almost balcobalancers of first and of second type in terms of
Pell numbers as follows.

Theorem 6. The general terms of almost balcobalancing numbers, almost Lucas-balcoba-
lancing numbers and almost balcobalancers of first type are

Bbc∗
2n−1 =

P4n−2 + 3P4n−3 − 1

4

Bbc∗
2n =

5P4n−2 + 3P4n−3 − 1

4
Cbc∗

2n−1 = 2P4n−2 − P4n−3

Cbc∗
2n = 4P4n−2 + P4n−3
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Rbc∗
2n−1 =

3P4n−2 − 5P4n−3 − 1

4

Rbc∗
2n =

3P4n−2 − P4n−3 − 1

4

for n ≥ 1, and of second type are

Bbc∗∗
n =

9P4n−2 + 3P4n−3 − 1

4
Cbc∗∗

n = 6P4n−2 + 3P4n−3

Rbc∗∗
n =

3P4n−2 + 3P4n−3 − 1

4

for n ≥ 1.

Proof. From Theorem 1, we deduce that

Bbc∗
2n−1 =

α4n−2(3−
√
2) + β4n−2(3 +

√
2)− 2

8

=
α4n−2(−2 + 3

√
2) + β4n−2(2 + 3

√
2)

8
√
2

− 1

4

=
α4n−2(1+3α−1

2
√
2

) + β4n−2(−1−3β−1

2
√
2

)

4
− 1

4

=

α4n−2−β4n−2

2
√
2

+ 3
(

α4n−3−β4n−3

2
√
2

)
− 1

4

=
P4n−2 + 3P4n−3 − 1

4

since Pn = αn−βn

2
√
2
. The others can be proved similarly. □

Conversely, we can give the general terms of Pell numbers in terms of almost balcobal-
ancing numbers, almost Lucas-balcobalancing numbers and almost balcobalancers of first
and of second type as follows.

Theorem 7. The general term of Pell numbers is

P2n =


Bbc∗

n+1 −Bbc∗
n

3
n ≥ 2 even

Bbc∗
n+1 −Bbc∗

n n ≥ 1 odd

P2n−1 =


Rbc∗

n+1 −Rbc∗
n

3
n ≥ 2 even

Rbc∗
n+1 −Rbc∗

n n ≥ 1 odd
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or

P2n =


2(Bbc∗∗

n
2

+ Cbc∗∗
n
2

−Rbc∗∗
n
2

)

3
n ≥ 2 even

2(Bbc∗∗
n+1
2

−Rbc∗∗
n+1
2

)

3
n ≥ 1 odd

P2n−1 =


Cbc∗∗

n
2

3
n ≥ 2 even

2Bbc∗∗
n+1
2

− 2Cbc∗∗
n+1
2

+ 10Rbc∗∗
n+1
2

+ 3

3
n ≥ 1 odd.

Proof. Let n be even, say n = 2k for some positive integer k. Then

P4k =
α4k − β4k

2
√
2

=
6
√
2(α4k − β4k)

24

=
α4k[(3−

√
2)α2 − (3 +

√
2)α−2] + β4k[(3 +

√
2)β2 − (3−

√
2)β−2]

24

=
(3−

√
2)α4k+2+(3+

√
2)β4k+2−2

8
− (3+

√
2)α4k−2+(3−

√
2)β4k−2−2

8

3

=
Bbc∗

2k+1 −Bbc∗
2k

3

by Theorem 1. So P2n =
Bbc∗

n+1−Bbc∗
n

3
. The others can be proved similarly. □

Similarly the general terms of all balancing numbers can be given in terms of Pell-Lucas
numbers

Bn =
Q2n +Q2n−1

8
, bn =

Q2n −Q2n−1 − 4

8
, Cn =

Q2n

2
and cn =

Q2n−1

2
.

As in Theorem 6, we can give general terms of almost balcobalancing numbers, almost
Lucas-balcobalancing numbers and almost balcobalancers of first and of second type in
terms of Pell-Lucas numbers as follows.
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Theorem 8. The general terms of almost balcobalancing numbers, almost Lucas-balcoba-
lancing numbers and almost balcobalancers of first type are

Bbc∗
2n−1 =

2Q4n−2 −Q4n−3 − 2

8

Bbc∗
2n =

4Q4n−2 +Q4n−3 − 2

8

Cbc∗
2n−1 =

Q4n−2 + 3Q4n−3

4

Cbc∗
2n =

5Q4n−2 + 3Q4n−3

4

Rbc∗
2n−1 =

−Q4n−2 + 4Q4n−3 − 2

8

Rbc∗
2n =

Q4n−2 + 2Q4n−3 − 2

8

for n ≥ 1, and of second type are

Bbc∗∗
n =

6Q4n−2 + 3Q4n−3 − 2

8

Cbc∗∗
n =

9Q4n−2 + 3Q4n−3

4

Rbc∗∗
n =

3Q4n−2 − 2

8

for n ≥ 1.

Proof. It can be proved in the same way that Theorem 6 was proved. □

Conversely, we can give the general terms of Pell-Lucas numbers in terms of almost
balcobalancing numbers, almost Lucas-balcobalancing numbers and almost balcobalancers
of first and of second type as follows.

Theorem 9. The general term of Pell-Lucas numbers is

Q2n =


2(Bbc∗

n+1 −Bbc∗
n +Rbc∗

n+1 −Rbc∗
n )

3
n ≥ 2 even

2(Bbc∗
n+1 −Bbc∗

n +Rbc∗
n+1 −Rbc∗

n ) n ≥ 1 odd

Q2n−1 =


2(Bbc∗

n+1 −Bbc∗
n −Rbc∗

n+1 +Rbc∗
n )

3
n ≥ 2 even

2(Bbc∗
n+1 −Bbc∗

n −Rbc∗
n+1 +Rbc∗

n ) n ≥ 1 odd
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or

Q2n =


4Bbc∗∗

n
2

+ 6Cbc∗∗
n
2

− 4Rbc∗∗
n
2

3
n ≥ 2 even

8Bbc∗∗
n+1
2

− 4Cbc∗∗
n+1
2

+ 16Rbc∗∗
n+1
2

+ 6

3
n ≥ 1 odd

Q2n−1 =


4Bbc∗∗

n
2

+ 2Cbc∗∗
n
2

− 4Rbc∗∗
n
2

3
n ≥ 2 even

4Cbc∗∗
n+1
2

− 24Rbc∗∗
n+1
2

− 6

3
n ≥ 1 odd.

Proof. It can be proved as in the same way that Theorem 7 was proved. □

Thus we construct one-to-one correspondence between all almost balcobalancing num-
bers and Pell and Pell-Lucas numbers.

6. Relationship with Triangular and Square Triangular Numbers.

Recall that triangular numbers denoted by Tn are the numbers of the form

Tn =
n(n+ 1)

2
.

It is known that there is a correspondence between balancing numbers and triangular
numbers. Indeed from (1), we note that n is a balancing number if and only if n2 is a
triangular number since

(n+ r)(n+ r + 1)

2
= n2.

So

TBn+Rn = B2
n.

For triangular and balcobalancing numbers, we proved in [22, Theorem 5.12] that

(14) TBbc
n +Rbc

n
= (Bbc

n )
2 +

Bbc
n

2
.

As in (14), we can give the following result.

Theorem 10. Bbc∗
n is a almost balcobalancing number of first type if and only if 2Bbc∗

n Rbc∗
n +

(Rbc∗
n )2 + Bbc∗

n

2
+Rbc∗

n + 1
2
is a triangular number, that is,

TBbc∗
n +Rbc∗

n
= 2Bbc∗

n Rbc∗
n + (Rbc∗

n )2 +
Bbc∗

n

2
+Rbc∗

n +
1

2
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and Bbc∗∗
n is a almost balcobalancing number of second type if and only if 2Bbc∗∗

n Rbc∗∗
n +

(Rbc∗∗
n )2 + Bbc∗∗

n

2
+Rbc∗∗

n − 1
2
is a triangular number, that is,

TBbc∗∗
n +Rbc∗∗

n
= 2Bbc∗∗

n Rbc∗∗
n + (Rbc∗∗

n )2 +
Bbc∗∗

n

2
+Rbc∗∗

n − 1

2
.

Proof. From (7), we get n2 − 2nr − r2 − r − 1 = 0 and hence

(n+ r)(n+ r + 1)

2
= 2nr + r2 +

n

2
+ r +

1

2
.

So

TBbc∗
n +Rbc∗

n
= 2Bbc∗

n Rbc∗
n + (Rbc∗

n )2 +
Bbc∗

n

2
+Rbc∗

n +
1

2

as we claimed. The other case can be proved similarly. □

There are infinitely many triangular numbers that are also square numbers which are
called square triangular numbers and is denoted by Sn. Notice that

Sn = s2n =
tn(tn + 1)

2
,

where sn and tn are the sides of the corresponding square and triangle. We can give the
general terms of Sn, sn and tn in terms of balancing and cobalancing numbers, namely,
Sn = B2

n, sn = Bn and tn = Bn + bn. Their Binet formulas are

Sn =
α4n + β4n − 2

32
,

sn =
α2n − β2n

4
√
2

, and

tn =
α2n + β2n − 2

4

(15)

for n ≥ 1. We can give the general terms of almost balcobalancing numbers of first and
of second type in terms of sn and tn as follows.
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Theorem 11. The general terms of almost balcobalancing numbers, almost Lucas-balco-
balancing numbers and almost balcobalancers of first type are

Bbc∗
2n−1 =

−2s2n−1 + 3t2n−1 + 1

2

Bbc∗
2n =

2s2n−1 + 3t2n−1 + 1

2
Cbc∗

2n−1 = 6s2n−1 − 2t2n−1 − 1

Cbc∗
2n = 6s2n−1 + 2t2n−1 + 1

Rbc∗
2n−1 =

8s2n−1 − 5t2n−1 − 3

2

Rbc∗
2n =

4s2n−1 − t2n−1 − 1

2

for n ≥ 1, and of second type are

Bbc∗∗
n =

6s2n−1 + 3t2n−1 + 1

2
Cbc∗∗

n = 6s2n−1 + 6t2n−1 + 3

Rbc∗∗
n =

3t2n−1 + 1

2

for n ≥ 1.

Proof. From (12), we get

Bbc∗
2n−1 =

−4B2n−1 + 3C2n−1 − 1

4

=
−4(α

4n−2−β4n−2

4
√
2

) + 3(α
4n−2+β4n−2

2
)− 1

4

=
α4n−2(3−

√
2) + β4n−2(3 +

√
2)− 2

8

=
α4n−2(−2 + 3

√
2) + β4n−2(2 + 3

√
2)− 2

√
2

8
√
2

=
−2(α

4n−2−β4n−2

4
√
2

) + 3(α
4n−2+β4n−2−2

4
) + 1

2

=
−2s2n−1 + 3t2n−1 + 1

2

by (15). The others can be proved similarly. □

Conversely, we can give the general terms of Sn, sn and tn in terms of almost balcobal-
ancing numbers of first and of second type as follows.
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Theorem 12. The general terms of Sn, sn and tn are

Sn =


(
Bbc∗

n+1 −Bbc∗
n

6
)2 n ≥ 2 even

(
Bbc∗

n+1 −Bbc∗
n

2
)2 n ≥ 1 odd

sn =


Bbc∗

n+1 −Bbc∗
n

6
n ≥ 2 even

Bbc∗
n+1 −Bbc∗

n

2
n ≥ 1 odd

tn =


Bbc∗

n+1 −Bbc∗
n +Rbc∗

n+1 −Rbc∗
n − 3

6
n ≥ 2 even

Bbc∗
n+1 −Bbc∗

n +Rbc∗
n+1 −Rbc∗

n − 1

2
n ≥ 1 odd

or

Sn =


(
Bbc∗∗

n
2

+ Cbc∗∗
n
2

−Rbc∗∗
n
2

3
)2 n ≥ 2 even

(
Bbc∗∗

n+1
2

−Rbc∗∗
n+1
2

3
)2 n ≥ 1 odd

sn =


Bbc∗∗

n
2

+ Cbc∗∗
n
2

−Rbc∗∗
n
2

3
n ≥ 2 even

Bbc∗∗
n+1
2

−Rbc∗∗
n+1
2

3
n ≥ 1 odd

tn =


2Bbc∗∗

n
2

+ 3Cbc∗∗
n
2

− 2Rbc∗∗
n
2

− 3

6
n ≥ 2 even

2Bbc∗∗
n+1
2

− Cbc∗∗
n+1
2

+ 4Rbc∗∗
n+1
2

3
n ≥ 1 odd.

Proof. Let n be even, say n = 2k for some positive integer k ≥ 1. Then from (15)

S2k =
α8k + β8k − 2

32
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= (
α4k − β4k

4
√
2

)2

=

[
6
√
2(α4k − β4k)

48

]2

=

[{
α4k[(3−

√
2)α2 − (3 +

√
2)α−2]+

β4k[(3 +
√
2)β2 − (3−

√
2)β−2]

}
/48

]2
=

[
(3−

√
2)α4k+2+(3+

√
2)β4k+2−2

8
− (3+

√
2)α4k−2+(3−

√
2)β4k−2−2

8

6

]2

= (
Bbc∗

2k+1 −Bbc∗
2k

6
)2.

So Sn = (
Bbc∗

n+1−Bbc∗
n

6
)2 for even n ≥ 2. The other cases can be proved similarly. □

Thus we construct one-to-one correspondence between all almost balcobalancing num-
bers and square triangular numbers.

Finally, we want to construct a correspondence between triangular and square triangular
numbers via almost balcobalancing numbers, that is, we want to find out that for which
almost balcobalancing numbers m, the equation

Tm = Sn

holds. The answer is given below.

Theorem 13. For triangular numbers Tn and square triangular numbers Sn, we have

(1) T3Bbc∗
2n −Bbc∗

2n−1
= S2n

(2) TCbc∗
2n−1−Rbc∗

2n −Rbc∗
2n−1−1 = S2n−1

(3) T2Bbc∗
2n−1+2Cbc∗

2n +Rbc∗
2n+2−Rbc∗

2n+1
= S2n+1

(4) T−2Bbc∗
2n−1−2Cbc∗

2n +Rbc∗
2n+2−Rbc∗

2n+1−1 = S2n

(5) T 2Bbc∗∗
n+1−Cbc∗∗

n+1+4Rbc∗∗
n+1

3

= S2n+1

(6) T 2Bbc∗∗
n+1−3Cbc∗∗

n+1+16Rbc∗∗
n+1+3

3

= S2n

for n ≥ 1.

Proof. (1) Notice that 3Bbc∗
2n −Bbc∗

2n−1 =
(3+2

√
2)α4n−2+(3−2

√
2)β4n−2−2

4
. Since (3+2

√
2)2 = α4

and (3− 2
√
2)2 = β4, we get from (15) that

T3Bbc∗
2n −Bbc∗

2n−1
=

(3Bbc∗
2n −Bbc∗

2n−1)(3B
bc∗
2n −Bbc∗

2n−1 + 1)

2

=

[
(3+2

√
2)α4n−2+(3−2

√
2)β4n−2−2

4

] [
(3+2

√
2)α4n−2+(3−2

√
2)β4n−2−2

4
+ 1
]

2
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=

[
(3 + 2

√
2)α4n−2 + (3− 2

√
2)β4n−2

]2 − 4

32

=
(3 + 2

√
2)2α8n−4 + (3− 2

√
2)2β8n−4 − 2

32

=
α8n + β8n − 2

32
= S2n.

The others can be proved similarly. □

7. Sums of Almost Balcobalancing Numbers.

Recall that the sum of the first n-terms of all balancing numbers can be given in terms
of same balancing numbers, that is,

n∑
i=1

Bi =
5Bn −Bn−1 − 1

4
,

n∑
i=1

bi =
5bn − bn−1 + 2− 2n

4

n∑
i=1

Ci =
5Cn − Cn−1 − 2

4
,

n∑
i=1

ci =
5cn − cn−1 − 2

4
.

Similarly we can give the following result.

Theorem 14. The sum of the first n-terms of Bbc∗
n , Cbc∗

n and Rbc∗
n is

n∑
i=1

Bbc∗
i =

33Bbc∗
n + 33Bbc∗

n−1 −Bbc∗
n−2 −Bbc∗

n−3 − 8n+ 16

32

n∑
i=1

Cbc∗
i =

33Cbc∗
n + 33Cbc∗

n−1 − Cbc∗
n−2 − Cbc∗

n−3 − 24

32

n∑
i=1

Rbc∗
i =

33Rbc∗
n + 33Rbc∗

n−1 −Rbc∗
n−2 −Rbc∗

n−3 − 8n+ 4

32

for n ≥ 4, and of Bbc∗∗
n , Cbc∗∗

n and Rbc∗∗
n is

n∑
i=1

Bbc∗∗
i =

33Bbc∗∗
n −Bbc∗∗

n−1 − 8n+ 2

32

n∑
i=1

Cbc∗∗
i =

33Cbc∗∗
n − Cbc∗∗

n−1 − 12

32

n∑
i=1

Rbc∗∗
i =

33Rbc∗∗
n −Rbc∗∗

n−1 − 8n+ 8

32

for n ≥ 2.
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Proof. It can be proved easily from (12) and Theorem 1. □

We also note that

n∑
i=1

(−1)iBi =

{
2B2

n
2
+Bn

2
Cn

2
n ≥ 2 even

−2Bn+1
2
(bn+1

2
+ 1

2
) n ≥ 1 odd

n∑
i=1

(−1)ibi =

{
2B2

n
2

n ≥ 2 even

−2b2n+1
2

− 2bn+1
2

n ≥ 1 odd

n∑
i=1

(−1)iCi =

{
Bn + 8B2

n
2

n ≥ 2 even

−Bn − 8(bn+1
2

+ 1
2
)2 n ≥ 1 odd

n∑
i=1

(−1)ici =

{
Bn n ≥ 2 even
−Bn n ≥ 1 odd.

Similarly we can give the following theorem.

Theorem 15. For all almost balcobalancing numbers of first and of second type, we get

n∑
i=1

(−1)iBbc∗
i =

1

32

{
33Bbc∗

n − 33Bbc∗
n−1 −Bbc∗

n−2 +Bbc∗
n−3 − 4 n ≥ 4 even

−33Bbc∗
n + 33Bbc∗

n−1 +Bbc∗
n−2 −Bbc∗

n−3 + 4 n ≥ 5 odd

n∑
i=1

(−1)iCbc∗
i =

1

32

{
33Cbc∗

n − 33Cbc∗
n−1 − Cbc∗

n−2 + Cbc∗
n−3 n ≥ 4 even

−33Cbc∗
n + 33Cbc∗

n−1 + Cbc∗
n−2 − Cbc∗

n−3 n ≥ 5 odd

n∑
i=1

(−1)iRbc∗
i =

1

32

{
33Rbc∗

n − 33Rbc∗
n−1 −Rbc∗

n−2 +Rbc∗
n−3 + 4 n ≥ 4 even

−33Rbc∗
n + 33Rbc∗

n−1 +Rbc∗
n−2 −Rbc∗

n−3 + 12 n ≥ 5 odd

and

n∑
i=1

(−1)iBbc∗∗
i =

1

36

{
35Bbc∗∗

n −Bbc∗∗
n−1 + 4 n ≥ 2 even

−35Bbc∗∗
n +Bbc∗∗

n−1 − 4 n ≥ 3 odd

n∑
i=1

(−1)iCbc∗∗
i =

1

36

{
35Cbc∗∗

n − Cbc∗∗
n−1 − 18 n ≥ 2 even

−35Cbc∗∗
n + Cbc∗∗

n−1 − 18 n ≥ 3 odd

n∑
i=1

(−1)iRbc∗∗
i =

1

36

{
35Rbc∗∗

n −Rbc∗∗
n−1 + 4 n ≥ 2 even

−35Rbc∗∗
n +Rbc∗∗

n−1 − 4 n ≥ 3 odd.

Proof. It can be proved similarly. □
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8. Sums of Pell and Balancing Numbers.

Panda and Ray proved in [9, Theorem 3.4] that the sum of first 2n− 1 Pell numbers is
equal to the sum of nth balancing number and its balancer, that is,

(16)
2n−1∑
i=1

Pi = Bn + bn.

Later Gözeri, Özkoç and Tekcan proved in [3, Theorem 2.5] that the sum of Pell-Lucas
numbers from 0 to 2n − 1 is equal to the the sum of nth Lucas-balancing and the nth

Lucas-cobalancing number, that is,

2n−1∑
i=0

Qi = Cn + cn.

Since Rn = bn, (16) becomes

(17)
2n−1∑
i=1

Pi = Bn +Rn.

As in (17), we can give the following result.

Theorem 16. For the sum of Pell numbers, we have

2n−1∑
i=1

P2i = Bbc∗
2n−1 +Rbc∗

2n

for n ≥ 1.

Proof. Notice that Pn = αn−βn

2
√
2
. So we get

2n−1∑
i=1

P2i =
2n−1∑
i=1

(
α2i − β2i

2
√
2

)

=

α4n−α2

α2−1
− β4n−β2

β2−1

2
√
2

=
α(α4n−2−1)

2
− β(β4n−2−1)

2

2
√
2

=
α4n−1 − β4n−1 − 2

√
2

4
√
2

=
(α− 1)α4n−1 − (1− β)β4n−1 − 4

8

=
(α2 − α)α4n−2 + (β2 − β)β4n−2 − 4

8
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=
(2 +

√
2)α4n−2 + (2 +

√
2)β4n−2 − 4

8

=
(3−

√
2)α4n−2 + (3 +

√
2)β4n−2 − 2

8

+
(−1 + 2

√
2)α4n−2 − (1 + 2

√
2)β4n−2 − 2

8
= Bbc∗

2n−1 +Rbc∗
2n

as we wanted. □

Apart from Theorem 16, we can give the following theorem which can be proved simi-
larly.

Theorem 17. For the sum of Pell numbers, we have

2n∑
i=1

P2i−1 = Rbc∗
2n+2 −Bbc∗

2n+1

and also

P4n−1 +
2n−1∑
i=1

P2i = Bbc∗∗
n +Rbc∗∗

n

P4n−2 +
2n−1∑
i=1

P2i−1 = Bbc∗∗
n −Rbc∗∗

n

for n ≥ 1.

For the sums of Pell-Lucas number, we can give the following theorem.

Theorem 18. For the sum of Pell-Lucas numbers, we have

4n+1∑
i=0

Qi =
Cbc∗

2n+2 + Cbc∗
2n+1

3

4n∑
i=1

Qi = 2Rbc∗
2n+2 − 2Rbc∗

2n+1 − 2

or
4n+1∑
i=0

Qi =
4(Bbc∗∗

n+1 −Rbc∗∗
n+1)

3

4n∑
i=1

Qi =
12Rbc∗∗

n+1 − 4Bbc∗∗
n+1 − 4

3

for n ≥ 1.
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In [16, Lemma 1], Santana and Diaz Barrero proved that the sum of first nonzero 4n+1
terms of Pell numbers is a perfect square, that is,

4n+1∑
i=1

Pi =

[
n∑

i=0

(
2n+ 1
2i

)
2i

]2
.

In fact this sum equals to c2n+1, that is,

4n+1∑
i=1

Pi = c2n+1.

Similarly we can give the following result.

Theorem 19. The sum of Pell numbers from 1 to 8n+ 1 is a perfect square and

8n+1∑
i=1

Pi = (4Bbc∗
2n−1 + 4Cbc∗

2n + 1)2

or
8n+1∑
i=1

Pi = (
2Cbc∗∗

n+1 − 12Rbc∗∗
n+1 − 3

3
)2

for n ≥ 1.

Proof. Since Pn = αn−βn

2
√
2
, we get

8n+1∑
i=1

Pi =
8n+1∑
i=1

(
αi − βi

2
√
2

)

=

α8n+2−α
α−1 − β8n+2−β

β−1

2
√
2

=
α8n+2 + β8n+2 − 2

4

= (
α4n+1 + β4n+1

2
)2

= (
α3α4n−2 + β3β4n−2

2
)2

=

(
(7 + 5

√
2)α4n−2 + (7− 5

√
2)β4n−2

2

)2

=

(
(3−

√
2)α4n−2+(3+

√
2)β4n−2−2

2

+ (4+6
√
2)α4n−2+(4−6

√
2)β4n−2+2

2

)2
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=

 4
(

(3−
√
2)α4n−2+(3+

√
2)β4n−2−2

8

)
+4
(

(3+
√
2)α4n−2−(3−

√
2)β4n−2

2
√
2

)
+ 1

2

= (4Bbc∗
2n−1 + 4Cbc∗

2n + 1)2.

The other case can be proved similarly. □

As in Theorem 19, we can give the following theorem which can be proved similarly.

Theorem 20. For the sums of Pell, Pell-Lucas, balancing and Lucas-cobalancing num-
bers, we have

1 +
8n+3∑
i=1

Pi = (
2Bbc∗

2n+2 + 2Bbc∗
2n+1 + 1

3
)2

4n+2∑
i=1

Q2i−1 = (
Cbc∗

2n+2 + Cbc∗
2n+1

3
)2

4n∑
i=0

Q2i+1

2
= (

2Rbc∗
2n+2 + 2Rbc∗

2n+1 + 1

3
)2

2n+1∑
i=1

B2i−1 = (
Cbc∗

2n+2 + Cbc∗
2n+1

12
)2

1 +
4n+2∑
i=1

ci = (
Cbc∗

2n+2 − Cbc∗
2n+1

2
)2

or

1 +
8n+3∑
i=1

Pi = (
4Rbc∗∗

n+1 + 1

3
)2

4n+2∑
i=1

Q2i−1 = (
4Bbc∗∗

n+1 − 4Rbc∗∗
n+1

3
)2

4n∑
i=0

Q2i+1

2
= (

4Bbc∗∗
n+1 − 8Rbc∗∗

n+1 − 1

3
)2

2n+1∑
i=1

B2i−1 = (
Cbc∗∗

n+1 − 4Rbc∗∗
n+1 − 1

6
)2

1 +
4n+2∑
i=1

ci = (
4Rbc∗∗

n+1 + 1

3
)2

for n ≥ 1.
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9. Concluding Remark.

In [24], we said that a positive integer n is called an almost balcobalancing number if
the Diophantine equation

(18)

∣∣∣∣ 1 + 2 + · · ·+ (n− 1) + 1 + 2 + · · ·+ (n− 1) + n
−2[(n+ 1) + (n+ 2) + · · ·+ (n+ r)]

∣∣∣∣ = 1

holds for some positive integer r which is called almost balcobalancer and deduced all
results by considering this Diophantine equation. One can also consider the Diophantine
equation

(19)

∣∣∣∣ 2[(n+ 1) + (n+ 2) + · · ·+ (n+ r)]−
[1 + 2 + · · ·+ (n− 1) + 1 + 2 + · · ·+ (n− 1) + n]

∣∣∣∣ = 1

instead of (18). Then there is no problem. If we consider the Diophantine equation in
(19), then (only) all almost balcobalancing numbers of first type can be of second type,
that is,

Bbc∗
n → Bbc∗∗

n , Cbc∗
n → Cbc∗∗

n and Rbc∗
n → Rbc∗∗

n ,

and all almost balcobalancing numbers of second type can be of first type, that is,

Bbc∗∗
n → Bbc∗

n , Cbc∗∗
n → Cbc∗

n and Rbc∗∗
n → Rbc∗

n .

For instance, if we consider the Diophantine equation in (19), then the general terms of
almost balcobalancing numbers, almost Lucas-balcobalancing numbers and almost bal-
cobalancers of first type are

Bbc∗
n =

12B2n−1 + 3C2n−1 − 1

4
Cbc∗

n = 6B2n−1 + 3C2n−1

Rbc∗
n =

3C2n−1 − 1

4

by (13), and of second type are

Bbc∗∗
2n−1 =

−4B2n−1 + 3C2n−1 − 1

4

Bbc∗∗
2n =

4B2n−1 + 3C2n−1 − 1

4
Cbc∗∗

2n−1 = 6B2n−1 − C2n−1

Cbc∗∗
2n = 6B2n−1 + C2n−1

Rbc∗∗
2n−1 =

16B2n−1 − 5C2n−1 − 1

4

Rbc∗∗
2n =

8B2n−1 − C2n−1 − 1

4

by (12). So all results obtained in [24] and also in this paper are correct. One can take
Bbc∗∗

n ↔ Bbc∗
n , Cbc∗∗

n ↔ Cbc∗
n and Rbc∗∗

n ↔ Rbc∗
n if necessary.
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