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A NOTE ON SOME WEIGHTED MAXIMAL OPERATORS OF
PARTIAL SUMS OF WALSH-FOURIER SERIES

DAVID BARAMIDZE

Abstract. In this paper we introduce some new weighted maximal operators of the
partial sums of the Walsh-Fourier series. We prove that for some ”optimal” weights
these new operators indeed are bounded from the martingale Hardy space H1(G) to the
space weak− L1(G), but is not bounded from H1(G) to the space L1(G).

1. Introduction

All symbols used in this introduction can be found in Section 2.

It is well-known that the Walsh system does not form a basis in the space L1 (see e.g. [2]).
Moreover, there exists a function in the dyadic Hardy space H1(G), such that the partial
sums of f are not bounded in the L1-norm. Uniform and pointwise convergence and some
approximation properties of partial sums in L1(G) norms were investigated by Avdispahić
and Memić [1], Gát, Goginava and Tkebuchava [19, 20], Nagy [24, 25], Onneweer [26] and
Persson, Schipp, Tephnadze and Weisz [29]. Fine [16] obtained sufficient conditions for
the uniform convergence which are completely analogous to the Dini-Lipschits conditions.
Gulicev [21] estimated the rate of uniform convergence of a Walsh-Fourier series by using
Lebesgue constants and modulus of continuity. These problems for Vilenkin groups were
investigated by Blahota, Nagy, Persson and Tephnadze [10] (see also [6, 7, 8, 9, 27]),
Blahota and G. Tephnadze and Toledo [15] (see also [12, 13, 14]), Fridli [17], Gát [18] and
Memić [23].

In study of convergence of subsequences of partial sums and their restricted maximal
operators on the martingale Hardy spaces Hp for 0 < p ≤ 1, the central role is played by
the fact that any natural number n ∈ N can be uniquely expressed as

n =
∞∑
k=0

nj2
j, nj ∈ Z2 (j ∈ N),
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where only a finite numbers of nj differ from zero and their important characters [n] , |n| ,
ρ (n) and V (n) are defined by

[n] := min{j ∈ N, nj ̸= 0}, |n| := max{j ∈ N, nj ̸= 0}, ρ (n) = |n| − [n] ,

V (n) := n0 +
∞∑
k=1

|nk − nk−1| , for all n ∈ N

Moreover, every n ∈ N can be also represented as

n =
r∑

i=1

2ni , n1 > n2 > ... > nr ≥ 0

and for any {nsj}, j = 1, 2, . . . , r, satisfying

2s ≤ ns1 ≤ ns2 ≤ ... ≤ nsr < 2s+1, s ∈ N,

we define numbers

(1) s− := min{
[
nsj

]
}, s+ := max{

∣∣nsj

∣∣} = s, ρs
(
nsj

)
:= s+ − s−.

In particular, (see [11], [22] and [30])

V (n) /8 ≤ ∥Dn∥1 ≤ V (n)

Hence, for any f ∈ H1 (see [34])

∥SnF∥H1
≤ cV (n) ∥F∥H1

.

For 0 < p < 1 in [32, 33] the weighted maximal operator
∼
S
∗,p
, defined by

(2)
∼
S
∗,p
F := sup

n∈N

|SnF |
(n+ 1)1/p−1

was investigated and it was proved that the following inequalities hold:∥∥∥∥∼
S
∗
F

∥∥∥∥
p

≤ Cp ∥F∥Hp

Moreover, it was also proved that the rate of the sequence {(n+ 1)1/p−1} given in the
denominator of (2) can not be improved.

In [34] and [35] it was proved that if F ∈ Hp, then there exists an absolute constant cp,
depending only on p, such that

∥SnF∥Hp
≤ Cp2

ρ(n)(1/p−1) ∥F∥Hp
.

In [5] it was proved that the maximal operator

(3) sup
n∈N

|SnF |
2ρ(n)(1/p−1)
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is bounded from Hp to weak − Lp. Moreover, it was also proved that the rate of the
sequence {2ρ(n)(1/p−1)} given in the denominator of (2) can not be improved.

In [5] it was also proved that the weighted maximal operator (3) is not bounded from
Hp(G) to the Lebesgue space Lp(G), for 0 < p < 1.

In [3] it was proved that if 0 < p < 1, f ∈ Hp, {nk : k ≥ 0} is a sequence of positive
integers and {nsi : 1 ≤ i ≤ r} ⊂ {nk : k ≥ 0} are integers such that 2s ≤ ns1 ≤ ns2 ≤
... ≤ nsr ≤ 2s+1, s ∈ N, then the weighted maximal operator S̃∗,∇,1, defined by

S̃∗,∇,1F := sup
s∈N

sup
2s≤nsi<2s+1

|SnF |
2ρs(nsi)(1/p−1)

,

where ρs (nsi) are defined by (1), is bounded from the Hardy space Hp to the Lebesgue
space Lp. Moreover, if 0 < p < 1, {nk : k ≥ 0} is a sequence of positive numbers and
{nsi : 1 ≤ i ≤ r} ⊂ {nk : k ≥ 0} is a subsequence satisfying the condition

2s ≤ ns1 ≤ ns2 ≤ ... ≤ nsr ≤ 2s+1, s ∈ N,

then, for any nonnegative, nondecreasing function φ : N+ → R satisfying condition

sup
s∈N

sup
2s≤nsi<2s+1

2ρs(nsi)(1/p−1)

φ(nsi)
= ∞,

the maximal operator, defined by

sup
s∈N

sup
2s≤nsi<2s+1

|SnF |
φ (nsi)

,

is not bounded from the Hardy space Hp to the Lebesgue space Lp.

In [4] it was proved that if 0 < p < 1, F ∈ Hp (G) and φ : N+ → R+ be any nonnegative
and nondecreasing function satisfying the condition

∞∑
n=1

1

φp(n)
< c < ∞,

then, for any sequence {nk : k ≥ 0} of positive integers, the weighted maximal operator

S̃∗,∇,2, defined by

(4) S̃∗,∇,2F = sup
k∈N

|Snk
F |

2ρ(nk)(1/p−1)φ(ρ (nk))
,

is bounded from the Hardy space Hp to the Lebesgue space Lp. Moreover, for any 0 <
p < 1 and any sequence {nk : k ≥ 0} of positive numbers and φ : N+ → R+ be any
nonnegative and nondecreasing function satisfying the condition

∞∑
n=1

1

φp(n)
= ∞,
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the weighted maximal operator S̃∗,∇,2, defined by (4), is not bounded from the Hardy space
Hp(G) to the Lebesgue space Lp(G). Hence, we get that if 0 < p < 1 and F ∈ Hp (G),

then the weighted maximal operator S̃∗,∇,ε,2, defined by

S̃∗,∇,ε,2F := sup
n∈N

|SnF |
2ρ(n)(1/p−1)

(
ρ (n) log1+ε ρ (n)

)1/p , ε > 0,

is bounded from the Hardy space Hp(G) to the Lebesgue space Lp(G) for ε > 0 and is
not bounded from the Hardy space Hp(G) to the Lebesgue space Lp(G) for ε = 0.

In this paper we introduce some new weighted maximal operators of the partial sums of
the Walsh-Fourier series. We prove that for some ”optimal” weights these new operators
indeed are bounded from the martingale Hardy space H1(G) to the space weak− L1(G),
but is not bounded from H1(G) to the space L1(G).

2. Preliminaries

Let N+ denote the set of the positive integers, N := N+∪{0}. Denote by Z2 the discrete
cyclic group of order 2, that is Z2 := {0, 1}, where the group operation is the modulo 2
addition and every subset is open. The Haar measure on Z2 is given so that the measure
of a singleton is 1/2. Define the group G as the complete direct product of the group Z2,
with the product of the discrete topologies of Z2‘s. The elements of G are represented by
sequences x := (x0, x1, · · · , xj, · · · ), where xj = 0 ∨ 1.

It is easy to give a base for the neighborhood of x ∈ G :

I0 (x) := G, In(x) := {y ∈ G : y0 = x0, ..., yn−1 = xn−1} (n ∈ N).

Denote In := In (0) , In := G\In. Then, it is easy to prove that

(5) IM =
M−1⋃
s=0

Is\Is+1.

Let define the Walsh system w := (wn : n ∈ N) on G by

wn(x) :=
∞
Π
k=0

rnk
k (x) = (−1)

|n|∑
k=0

nkxk

(n ∈ N) .

The Walsh system is orthonormal and complete in L2 (G) (see e.g. [30] and [36, 28]).

If f ∈ L1 we define Fourier coefficients, partial sums of the Fourier series, Dirichlet
kernels with respect to the Walsh system by

f̂ (k) :=

∫
G

fwkdµ (k ∈ N) , Snf :=
n−1∑
k=0

f̂ (k)wk, Dn :=
n−1∑
k=0

wk (n ∈ N+) .
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Recall that (see [28] and [30])

(6) D2n (x) =

{
2n, if x ∈ In,
0, if x /∈ In,

and

(7) Dn = wn

∞∑
k=0

nkrkD2k = wn

∞∑
k=0

nk (D2k+1 −D2k) , for n =
∞∑
i=0

ni2
i.

The σ-algebra generated by the intervals {In (x) : x ∈ G} will be denoted by ζn (n ∈ N) .
Denote by F = (Fn, n ∈ N) martingale with respect to ζn (n ∈ N) (see e.g. [36, 37]). The
maximal function F ∗ of a martingale F is defined by

F ∗ := sup
n∈N

|Fn| .

For 0 < p < ∞ the Hardy martingale spaces Hp (G) consists of all martingales for which

∥F∥Hp
:= ∥F ∗∥p < ∞.

It is easy to prove that for every martingale F = (Fn, n ∈ N) and every k ∈ N the

limit F̂ (k) := limn→∞
∫
G
Fn (x)wk (x) dµ (x) exists and it is called the k-th Walsh-Fourier

coefficients of F.

If F := (S2nf : n ∈ N) is a regular martingale, generated by f ∈ L1, then F̂ (k) =

f̂ (k) , k ∈ N.
A bounded measurable function a is called p-atom, if there exists a dyadic interval I,

such that ∫
I

adµ = 0, ∥a∥∞ ≤ µ (I)−1/p , supp (a) ⊂ I.

The dyadic Hardy martingale spaces Hp(G) for 0 < p ≤ 1 have an atomic characteriza-
tion. Namely, the following holds (see [28], [36, 37]):

Lemma 1. A martingale F = (Fn, n ∈ N) belongs to Hp(G) (0 < p ≤ 1) if and only if
there exists a sequence (ak, k ∈ N) of p-atoms and a sequence (µk, k ∈ N) of real numbers
such that for every n ∈ N,

(8)
∞∑
k=0

µkS2nak = Fn,
∞∑
k=0

|µk|p < ∞,

Moreover, ∥F∥Hp
∽ inf (

∑∞
k=0 |µk|p)1/p , where the infimum is taken over all decomposition

of F of the form (8).
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3. The main result

Our main result reads:

Theorem 2. a) Let F ∈ H1. Then the weighted maximal operator S̃∗,∇, defined by

(9) S̃∗,∇F := sup
n∈N

|SnF |
V (n)

is bounded from the Hardy space H1 to the space weak− L1.

b) Let F ∈ H1. Then the weighted maximal operator S̃∗,∇, defined by (9) is not bounded
from the Hardy space H1 to the space L1.

Proof. Since Sn/V (n) is bounded from L∞ to L∞, by Lemma 1, the proof of Theorem 2
will be complete, if we prove that

(10) tµ
{
x ∈ IM : S̃∗,∇a(x) ≥ t

}
≤ C < ∞, t ≥ 0

for every 1-atom a. In this paper C denotes a positive constant but which can be different
in different places.

We may assume that a is an arbitrary 1-atom, with support I, µ (I) = 2−M and I = IM .
It is easy to see that Sna (x) = 0, when n < 2M . Therefore, we can suppose that n ≥ 2M .
Since ∥a∥∞ ≤ 2M , we obtain that

|Sna (x)|
V (n)

≤ 1

V (n)
∥a∥∞

∫
IM

|Dn (x+ t)|µ (t) ≤ 2M
∫
IM

|Dn (x+ t)|µ (t) .

Let x ∈ Is\Is+1. Then, it is easy to see that x + t ∈ Is\Is+1 for t ∈ IM and if we again
combine (6) and (7) we find that Dn (x+ t) ≤ c2s, for t ∈ IM and

|Sna (x)|
V (n)

≤ C2M2s−M ≤ C2s.(11)

By applying (11) for any x ∈ Is\Is+1, 0 ≤ s < M, we find that

S̃∗,∇a (x) ≤ C2s.(12)

It immediately follows that for s ≤ M we have the following estimate

S̃∗,∇a (x) ≤ C2M for any x ∈ Is\Is+1, s = 0, 1, · · · ,M
and also that

(13) µ
{
x ∈ Is\Is+1 : S̃

∗,∇a (x) > C2k
}
= 0, k = M,M + 1, . . .

By combining (5) and (12) we get that{
x ∈ IN : S̃∗,∇a (x) ≥ C2k

}
⊂

M−1⋃
s=k

{
x ∈ Is\Is+1 : S̃

∗,∇a (x) ≥ C2k
}
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and

µ
{
x ∈ IM : S̃∗,∇a (x) ≥ C2k

}
≤

M−1∑
s=k

1

2s
≤ 2

2k
.(14)

In view of (13) and (14) we can conclude that

2kµ
{
x ∈ IN : S̃∗,∇a (x) ≥ C2k

}
< C < ∞,

which shows that (10) holds and the proof of part a) is complete.

Set

fn (x) = D2n+1 (x)−D2n (x) , n ≥ 3.

In [5] it was proved that ∥fn∥H1
≤ 1 and |S2n+2sfn (x)| ≥ C2s, for x ∈ Is+1 (es) ,

s = 0, · · · , n− 1. Hence,∫
G

sup
n∈N

|Snfn|
V (n)

dµ ≥
nk−1∑
s=0

∫
Is+1(es)

|S2n+2sfn|
V (2n + 2s)

dµ ≥ C
n−1∑
s=0

1

2s
2s ≥ Cn.

Finally, we get that∫
G

(
supn∈N

|Snfn(x)|
V (n)

)
dµ (x)

∥fn∥H1

≥ Cn → ∞, as n → ∞,

so also part b) is proved and the proof is complete. □

4. Further results

We finalize this paper with another natural conjecture related to Theorem 2. For this
we need some new characterization of n ∈ N.
Let

2s ≤ ns1 ≤ ns2 ≤ ... ≤ nsr ≤ 2s+1, s ∈ N.

For such nsj , which can be written as nsj =
rsj∑
i=1

t
sj
i∑

k=l
sj
i

2k, where

0 ≤ l
sj
1 ≤ t

sj
1 ≤ l

sj
2 − 2 < l

sj
2 ≤ t

sj
2 ≤ ... ≤ lsjrsj − 2 < lsjrsj ≤ tsjrsj ,

we define

As :=
{
ls1, l

s
2, ..., l

s
r1s

}⋃{
ts1, t

s
2, ..., t

s
r2s

}
=

{
us
1, u

s
2, ..., u

s
r3s

}
,

where us
1 < us

2 < ... < us
r3s
. We note that t

sj
rsj

= s ∈ As, for j = 1, 2, ..., r.

We denote the cardinality of the set As by |As|, that is
card(As) := |As|.
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By this definition we can conclude that

|As| = r3s ≤ r1s + r2s .

It is evident that sups∈N |As| < ∞ if and only if the sets {ns1 , ns2 , ..., nsr} are uniformly
finite for all s ∈ N+ and each nsj has bounded variation

V (nsj) < c < ∞, for each j = 1, 2, . . . , r.

Conjecture 3. a) Let f ∈ H1 and {nk : k ≥ 0} is a sequence of positive numbers. Then

the weighted maximal operator S̃∗,∇, defined by

S∗,∇,3F := sup
k∈N

|Snk
F |

A|nk|
,

is bounded from the Hardy space H1 to the Lebesgue space L1.

b) (Sharpness) Let

supk∈N|Ank
| = ∞

and {φn} is a nondecreasing sequence satisfying the condition

limk→∞
(
A|nk|/φ|nk|

)
= ∞.

Then there exists a martingale f ∈ H1, such that the maximal operator, defined by

sup
k∈N

|Snk
F |

φ|nk|

is not bounded from the Hardy space H1 to the Lebesgue space L1.
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13 (1992), 35–39.

[8] I. Blahota and K. Nagy, Approximation by θ-means of Walsh-Fourier series, Anal. Math., 44 (2018),
57–71.

[9] I. Blahota, K. Nagy and G. Tephnadze, Approximation by Marcinkiewicz θ-means of double Walsh-
Fourier series, Math. Inequal. Appl., 22(3) (2019), 837–853.



PARTIAL SUMS 59

[10] I. Blahota, K. Nagy, L. E. Persson and G. Tephnadze, A sharp boundedness result concerning maximal
operators of Vilenkin-Fourier series on martingale Hardy spaces, Georgian Math. J. 26(3) (2019),
351–360.

[11] I. Blahota, L. E. Persson and G. Tephnadze, Two-sided estimates of the Lebesgue constants with
respect to Vilenkin systems and applications, Glasg. Math. J. 60 (1) (2018), 17–34.

[12] I. Blahota, L.E. Persson and G. Tephnadze, On the Nörlund means of Vilenkin-Fourier series, Czech.
Math J. 65 (4) (2015), 983–1002.

[13] I. Blahota and G. Tephnadze, On the (C,α)-means with respect to the Walsh system, Anal. Math.
40 (2014), 161–174.

[14] I. Blahota and G. Tephnadze, Strong convergence theorem for Vilenkin-Fejér means, Publ. Math.
Debrecen 85 (1–2) (2014), 181–196.

[15] I. Blahota, G. Tephnadze, R. Toledo, Strong convergence theorem of (C,α)-means with respect to
the Walsh system, Tohoku Math. J. 67(4) (2015), 573–584.

[16] N. I. Fine, On Walsh function, Trans. Amer. Math. Soc. 65 (1949), 372–414.
[17] S. Fridli, Approximation by Vilenkin-Fourier series, Acta Math. Hung. 47(1–2) (1986), 33–44.
[18] G. Gát, Best approximation by Vilenkin-like systems, Acta Acad. Paed. Nyireg. 17 (2001), 161–169.
[19] G. Gát, U. Goginava and G. Tkebuchava, Convergence in measure of logarithmic means of quadratical

partial sums of double Walsh-Fourier series, J. Math. Appl. 323(1) (2006), 535–549.
[20] U. Goginava and G. Tkebuchava, Convergence of subsequence of partial sums and logarithmic means

of Walsh-Fourier series, Acta Sci. Math. 72 (2006), 159–177.
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