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A NOTE ON SOME WEIGHTED MAXIMAL OPERATORS OF
PARTIAL SUMS OF WALSH-FOURIER SERIES

DAVID BARAMIDZE

ABSTRACT. In this paper we introduce some new weighted maximal operators of the
partial sums of the Walsh-Fourier series. We prove that for some ”optimal” weights
these new operators indeed are bounded from the martingale Hardy space H;(G) to the
space weak — L1 (G), but is not bounded from H;(G) to the space L1 (G).

1. INTRODUCTION

All symbols used in this introduction can be found in Section 2.

It is well-known that the Walsh system does not form a basis in the space L; (see e.g. [2]).
Moreover, there exists a function in the dyadic Hardy space H;(G), such that the partial
sums of f are not bounded in the L;-norm. Uniform and pointwise convergence and some
approximation properties of partial sums in L;(G) norms were investigated by Avdispahié
and Memi¢ [1], Gét, Goginava and Tkebuchava [19, 20], Nagy [24, 25], Onneweer [26] and
Persson, Schipp, Tephnadze and Weisz [29]. Fine [16] obtained sufficient conditions for
the uniform convergence which are completely analogous to the Dini-Lipschits conditions.
Gulicev [21] estimated the rate of uniform convergence of a Walsh-Fourier series by using
Lebesgue constants and modulus of continuity. These problems for Vilenkin groups were
investigated by Blahota, Nagy, Persson and Tephnadze [10] (see also [6l [7, [8 @, 27]),
Blahota and G. Tephnadze and Toledo [15] (see also [12}, 13} [14]), Fridli [17], Gat [18] and
Memié [23].

In study of convergence of subsequences of partial sums and their restricted maximal
operators on the martingale Hardy spaces H, for 0 < p < 1, the central role is played by
the fact that any natural number n € N can be uniquely expressed as

n = an2j, n; S Z2 (] S N),
k=0
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where only a finite numbers of n; differ from zero and their important characters [n], |n|,
p(n) and V(n) are defined by

[n] := min{j € N,n; # 0}, |n| := max{j € N,n; # 0}, p(n)=|n| —[n],

o
Vi(n):=mny+ Z |ng —ng_1|, for all neN
k=1
Moreover, every n € N can be also represented as

r

n:ZQ"i,nl >nNg>...>n, >0
i=1

and for any {n,},j =1,2,...,r, satisfying
2% <ny, <ny, < ... <n, <257 s €N,
we define numbers
(1) s_:=min{[n, ]}, s;:=max{|ng|} =35, p(ns) =55 —s_.
In particular, (see [11], [22] and [30])

Vi(n) /8 < ||[Dnll <V (n)
Hence, for any f € H; (see [34])

IS0 E |, < V() [|F]] g, -

~*,D
For 0 < p < 1 in 32 133] the weighted maximal operator S, defined by
~*,D SnF
(2) S F .= sup ‘—11_1
neN (TL + ].) P

was investigated and it was proved that the following inequalities hold:

S F

<G lIFlg,
p

1/p—

Moreover, it was also proved that the rate of the sequence {(n + 1)/?~'} given in the

denominator of can not be improved.
In [34] and [35] it was proved that if F' € H,, then there exists an absolute constant c,,
depending only on p, such that
150 Fll gy, < G2 WPV || F |,
In [5] it was proved that the maximal operator

|[SnFl

(3) SUD Do (1/p1)
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is bounded from H, to weak — L,. Moreover, it was also proved that the rate of the
sequence {2’)(")(1/ ”_1)} given in the denominator of can not be improved.

In [5] it was also proved that the weighted maximal operator is not bounded from
H,(G) to the Lebesgue space L,(G), for 0 < p < 1.

In [3] it was proved that if 0 < p < 1, f € H,, {ny : kK > 0} is a sequence of positive
integers and {n,, : 1 <i<r} C {ny: k> 0} are integers such that 2° < ny, < n,, <
.. <n, <2571 s €N, then the weighted maximal operator S*V:1, defined by

= Sy F
S*VIEF :=sup  sup B :
seN 25Snsi<28+1 QPs (nsi)(l/p—l)

where p; (ng;) are defined by , is bounded from the Hardy space H, to the Lebesgue
space L,. Moreover, if 0 < p < 1, {n; : k> 0} is a sequence of positive numbers and
{ns,: 1 <i<r} C{ng: k> 0} is a subsequence satisfying the condition

25 <y, <y, <...<n, <2TH s €N,
then, for any nonnegative, nondecreasing function ¢ : Ny — R satisfying condition
ops(ns; ) (1/p=1)

sup  sup

= OO’
s€N 25<n,, <25+1 p(ns,)

the maximal operator, defined by

|S, F|
sup  sup ;
sEN 25<n, <2s5+1 (ns,)

is not bounded from the Hardy space H), to the Lebesgue space L.
In [4] it was proved that if 0 < p < 1, F' € H, (G) and ¢ : N, — R, be any nonnegative
and nondecreasing function satisfying the condition
= 1
Sl e
= ¢P(n)

then, for any sequence {ny : k > 0} of positive integers, the weighted maximal operator
S*V:2 defined by

ox V.21 _ ’SnkF‘
@) R 20 1/P=Vp(p (ng))’
is bounded from the Hardy space H, to the Lebesgue space L,. Moreover, for any 0 <
p < 1 and any sequence {ny :k > 0} of positive numbers and ¢ : N, — R, be any
nonnegative and nondecreasing function satisfying the condition

e}

1
2 ey =

n=1
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the weighted maximal operator S “V:2_defined by , is not bounded from the Hardy space
H,(G) to the Lebesgue space L,(G). Hence, we get that if 0 < p < 1 and F' € H, (G),

then the weighted maximal operator S*V-*2, defined by

~ F
S VE2E = sup |5 F| v
neN 20 (1/p=1) (p (n)log'*® p (n)) v

e >0,

is bounded from the Hardy space H,(G) to the Lebesgue space L,(G) for ¢ > 0 and is
not bounded from the Hardy space H,(G) to the Lebesgue space L,(G) for € = 0.

In this paper we introduce some new weighted maximal operators of the partial sums of
the Walsh-Fourier series. We prove that for some ”optimal” weights these new operators
indeed are bounded from the martingale Hardy space H;(G) to the space weak — L1 (G),
but is not bounded from H;(G) to the space Li(G).

2. PRELIMINARIES

Let N, denote the set of the positive integers, N := N, U{0}. Denote by Z5 the discrete
cyclic group of order 2, that is Zs := {0, 1}, where the group operation is the modulo 2
addition and every subset is open. The Haar measure on Z is given so that the measure
of a singleton is 1/2. Define the group G as the complete direct product of the group Zs,
with the product of the discrete topologies of Z5‘s. The elements of G are represented by
sequences x := (g, L1, ,%j,---), where z; =0V L.

It is easy to give a base for the neighborhood of x € G :
Iy(z) =G, I,(x) ={yeG:yo=2z0, e, Yn-1=Tp_1} (n €N).

Denote I, := I,, (0), I, := G\I,. Then, it is easy to prove that

M-1

(5) o= UL\

Let define the Walsh system w := (w,, : n € N) on G by

In|
wa() = I (@) = (~1)i=

(n € N).

The Walsh system is orthonormal and complete in Ly (G) (see e.g. [30] and [36], 28]).

If f € Ly we define Fourier coefficients, partial sums of the Fourier series, Dirichlet
kernels with respect to the Walsh system by

~

n—1 n—1
Fk) = / Fugdp (K €N), Suf =3 Fhywe, D=3 wi (neN,).
G k=0 k=0
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Recall that (see [28] and [30])

it zel,
(6) Don (z) = { 0, if ¢ 1,
and
(7) D, = wnanmDQk = wnan (Dok+1 — Do), for n = anZ’
k=0 k=0 =0

The o-algebra generated by the intervals {I,, (z) : € G} will be denoted by ¢, (n € N).
Denote by F' = (F,,n € N) martingale with respect to ¢, (n € N) (see e.g. [36, 37]). The
maximal function F* of a martingale F'is defined by

F* :=sup|F,|.

neN

For 0 < p < oo the Hardy martingale spaces H, (G) consists of all martingales for which

1E0 g, = [[E]l, < oo

It is easy to prove that for every martingale F' = (F,,,n € N) and every k € N the
limit F (k) := lim,,_,e0 Jo Fr (z) wy () dp () exists and it is called the k-th Walsh-Fourier
coefficients of F.

If FF:= (Sonf:n€N) is a regular martingale, generated by f € Li, then ﬁ(k,‘) =
F(k), keN.

A bounded measurable function a is called p-atom, if there exists a dyadic interval I,
such that

/“dﬂ:o’ lall, < p(1)™*, supp(a) C I.
I

The dyadic Hardy martingale spaces H,(G) for 0 < p < 1 have an atomic characteriza-
tion. Namely, the following holds (see [28§], [36} 37]):

Lemma 1. A martingale F = (F,,,n € N) belongs to H,(G) (0 <p <1) if and only if
there exists a sequence (ax, k € N) of p-atoms and a sequence (ug, k € N) of real numbers
such that for every n € N,

(8) > mSaar = Fo, Y |ul” < oo,
k=0 k=0

Moreover, || F||y - inf (32,2, |1elP)P, where the infimum is taken over all decomposition

of F' of the form (@
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3. THE MAIN RESULT

Our main result reads:

Theorem 2. a) Let F € H,. Then the weighted maximal operator S’v*’v, defined by
~ S F|

9 SV = su [

s bounded from the Hardy space Hy to the space weak — L.

b) Let F' € Hy. Then the weighted mazximal operator §*’V, defined by @ 15 not bounded
from the Hardy space Hy to the space L.

Proof. Since S,,/V(n) is bounded from Ly, to L, by Lemma (1} the proof of Theorem
will be complete, if we prove that

(10) tu{xem:g*’va(:c)zt}§0<oo, t>0
for every 1-atom a. In this paper C denotes a positive constant but which can be different
in different places.

We may assume that a is an arbitrary 1-atom, with support I, p (1) =2 and I = I);.
It is easy to see that S,a () =0, when n < 2M. Therefore, we can suppose that n > 2M.
Since ||all,, < 2™ we obtain that

[Sna (2)| 1 / M /
< D, ) <2 D, INAGE
o < ol | IDa0ln® <2 [ 1D+ 0lut)

Iy Ine

Let x € I,\Is 1. Then, it is easy to see that z + ¢ € I\l for t € I, and if we again
combine () and (7)) we find that D, (z +¢) < 2%, for t € I and

|Sna (2)] Mos—M
11 —— <2727 < (C2%
(1) ol < <
By applying for any x € I,\Is11, 0 < s < M, we find that
(12) SVa (z) < C2°.

It immediately follows that for s < M we have the following estimate
SV () < C2M  for any z € I\I1y, s=0,1,---, M
and also that
(13) i {x e I\ : S°Va(z) > CQ’f} —0, k=MM+1,...

By combining and we get that

M—1
{x ely:5Va(z) > C'Zk} C U {x €I\ : S*Va(z) > C’2k}
s=k
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and
M- 11 5
9s _k

25
s=k

(14) ,u{x €Ty :5Va(z) > C’2k}

In view of and we can conclude that
2’% {x ely: §*’Va(a:) > C’2k} < (C < o0,

which shows that holds and the proof of part a) is complete.
Set

fn () = Don+1 () — Dan (), n > 3.

57

In [5] it was proved that | f.lly, < 1 and [Sonyosfn (z)| > C2° for @ € Iy (ey),

s=0,---,n— 1. Hence,

Suful o N Sorgorful o R

nJn 2425 /n s

sup du > E / ————du>C g 2 > Cn.
/GnEN V ( ) s=0 v Is+1(es) V (2n + 28)

Finally, we get that

S fn(x
Ji (S0 Z26L ) dp ()
1l

so also part b) is proved and the proof is complete.

>Cn—o00, as n— o0,

4. FURTHER RESULTS

We finalize this paper with another natural conjecture related to Theorem [2 For this

we need some new characterization of n € N.

Let
1
2° <n,, <m,, <...<n, <2°7' seN.

For such n,;, which can be written as n,, = Z S° 2% where

0<Iy <ty <y —2<ly <ty <..<IP —2<19 <,
55 Sj S5

we define

P s 78 S S s S _ S s S
AS P {l17 ,...,ZT%}U{ 17 27..., ,,,g} -_— {U1’U27...’u7§}’

where ui < uj < ... <ul;. We note that tf{j =se€A, for =12, ..,r
We denote the cardinality of the set As by |A|, that is
card(Ay) = | Ayl
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By this definition we can conclude that
[As| =71 <y 4L

It is evident that sup,.y|As| < oo if and only if the sets {ns,, ns,, ..., ns, } are uniformly
finite for all s € Ny and each n,; has bounded variation

V(ns,) <c<oo, foreach j =1,2,... 7.

Conjecture 3. a) Let f € Hy and {n; : £ > 0} is a sequence of positive numbers. Then

the weighted maximal operator S*V, defined by
Sp F
S*,V,?:F — Supl k ‘ ’
keN |nk|

is bounded from the Hardy space H; to the Lebesgue space L.

b) (Sharpness) Let
SUPen| An, | = 00

and {p,} is a nondecreasing sequence satisfying the condition

im0 (Ajn,1/@pnil) = 00
Then there exists a martingale f € H;, such that the maximal operator, defined by

Sy |
sup———
keN §0|nk|

is not bounded from the Hardy space H; to the Lebesgue space L;.
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