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THE SQP-METHOD FOR TRACKING TYPE CONTROL OF THE
INSTATIONARY NAVIER-STOKES EQUATIONS*

MICHAEL HINZET

Abstract. The SQP-method is investigated for tracking-type optimal control of the instationary
Navier-Stokes equations. It is argued that the a-priori formidable SQP-step can be decomposed into
linear primal and linear adjoint systems, which is amenable for existing CFL-software. We report a
numerical test which demonstrates the feasibility of the approach. In addition the functional analytic
setting of the convergence analysis is presented.
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1. The optimal control problem. We consider the optimal control problem

((ming yewxv JW,u) =3 [ |y—z|dedt +§ [ |ul? dadt
subject to “ “
(1) { B 4(y-V)y—vAy+Vp=Bu in Q=(0,T)xQ,
div Yy = 0 in QJ
y(t,-) =0 on ¥ =(0,T) x 89,
L 5(0,-) =50 in Q.

where Q. := Q. x (0,7) and Q, := Q, x (0,T), with Q. and Q, subsets of Q = (0,1)?
denoting control and observation volumes, respectively. The first term in the cost
functional values the control gain which here is to track the state z, and the second
term measures the control cost, where a > 0 denotes a weighting factor. In this form
solving (1) appears at first to be a standard task. However, the formidable size of (1)
and the goal of analyzing second order methods necessitate an independent analysis.
One of the few contributions focusing on second order methods for optimal control of
fluids are given by Ghattas et al [3] and Heinkenschloss [4]. These works are restricted
to stationary problems, however. Among other things analytical investigations on
second order methods are given by the author in [5] and by Kunisch and the author
in [6], where also further references can be found.

To define the spaces and operators required for the investigation of (1) we intro-
duce the solenoidal spaces

H={velL)? dive=0} "2V ={ve 0 Q)? dive=0} "u,
with the superscripts denoting closures in the respective norms. Further we define
W ={veLl*(V):v € L*(V*)} and Z:=L*V)xH,
where W is endowed with the norm

folw = (032 + [oeai))'/?,
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and set (-, -) := (-,")L2(v+),02(v), With V* denoting the dual space of V. Here L2(V)is
an abbreviation for L?(0,7;V) and similarly L?>(V*) = L?(0,T;V*). Recall that up
to a set of measure zero in (0,T) elements v € W can be identified with elements in
C([0,T); H). In (1) further U = L?(Q.) denotes the Hilbert space of controls which
is identified with its dual U*. The state z is assumed to an element of L*(H). It is
not hard to show that the cost functional .J: L(H) x U — R is bounded from below,
weakly lower semi-continuous, twice Fréchet differentiable with locally Lipschitzean
second derivative, and radially unbounded in w, i.e. J(y,u) = oo as |uly = oo, for
every y € W. We define the nonlinear mapping

eWxU-—= Z*
by

e(y,u) = (& + (y - V)y — vAy — Bu,y(0) — o),

where Bu(t,-) denotes the Leray-projection of the extension by zero of u(t,-) to the
whole of Q and yo € H. In variational form the constraints in (1) can be equivalently
expressed as: given u € U find y € W such that y(0) = yo in H and

(2) (e, v) + (v - V)y,v) + v(Vy, Vo)r2(r2) = (Bu,v) Vv € L3(V).

It is well known, see Temam [8] that for every u € U (2) admits a unique solution
y(u) € W. Therefore, with respect to existence (1) can equivalently be rewritten as

(3) min J(u) = J(y(u),u) subject to u € U,

where y(u) € W satisfies e(y(u),u) = 0. It is proved by Abergel et al [1] that (3)
admits a solution (y*,u*) € W x U =: X.The Lagrangian L: X x Z — R is given by

(4) L(z,A) = J(z) + (e(x), N z+ 2,

and we anticipate that the SQP-method can be interpreted as Newton’s algorithm
applied to the equation

L'(z,\) = 0

with L'(z,\) denoting the gradient of the Lagrangian (4).

We shall frequently refer to the variational solution of the linearized Navier-Stokes
system and the adjoint equations in the solenoidal setting: Given f € L?(V*) and
vg € H, find the variational solution v € W of

{ v+ @-Vy+(y-Vo—vAv=f in L*(V*)

5) v(0) =wvo in H,

and, given g € W* N L*(V*)(« € [1,4/3]), find the variational solution w € L?(V') of

(©) { —w + (Vy)tw — (y- V)w —vAv =g in W*

w(T)=0 1in H.

The following proposition is proved in [5], compare also [6] for a similar analytic
framework. It is essential for the analysis of SQP, Newton and quasi-Newton methods.

PROPOSITION 1.1. Let = (y,u) € W xU. Then e, (z): W — Z* is a homeomor-
phism. Moreover, if the inverse of its adjoint e, * (x): W* — Z is applied to an element
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g € W*N L*(V*), where a € [1,4/3] then setting (w,wo) := e;*(z)g € L*(V) x H
we have wy € L*(V*), w(0) = wo and w is the variational solution to (6).

To apply the SQP-method to (1) we need second order information of the La-
grangian L. The basic ingredients are the derivatives of the operator e which were
characterized in [5], compare also [6]. For the convenience of the reader we state

PROPOSITION 1.2. The operator e = (e!,e?): X — Z* is twice continuously
differentiable with Lipschitz continuous second derivative. The action of the first two
derivatives of ! are given by

(ez(@)(w,5),0) = (W, d) + ((w- V)y,¢) +((y - V)w, ¢)
+v(Vw, v¢)L2(L2) — (Bs, ¢)L2(L2)a

where z = (y,u) € X, (w,s) € X and ¢ € L*(V), and

(7) (€32 (2)(w, 5)(v,7),8) = (e, (2)(w, ), $) =
(8) ((w-V)v,9) + ((v- VIwg,v) =: (v, H()w)w,w,

where (v,r) € X.

2. The algorithm. This section contains a description of the SQP-method to
solve (3). Throughout z* denotes a (local) solution to (3). The basic SQP-algorithm
consists in applying Newton’s method to the first order optimality system

) Ly(z,\)=0 in X*
La(z,\) =0 in Z*,

where the Lagrangian L is defined in (4). As a consequence of Proposition 1.1 e, (z*)
is surjective and there exists a unique Lagrange multiplier \* € Z such that (9) holds
with (z,X) = (z*,A*) [5, 6]. To formulate the algorithm we note that the second
derivative of L with respect to z is given by

Laa(z,)) = ( (ot e @), X5 Juuo(w) > € L(X, X").

Let B((z*,A\*)) denote a sufficiently small neighbourhood of (z*,\*). In algorithmic
form the method then can be formulated as follows.
ALGORITHM 2.1. (SQP-algorithm)
1. Choose (z°,)%) € B(z*, \*), set k = 0.
2. Do until convergence
i) solve

(10) ”’“ ei(g’“>H§§’;]:_[Jz<xk) +e§(m’°))\k]

ii) update (zFT1 A+L) = (zF XF) 4 (52F, 60F),
iii) set k =k + 1.
Now let us introduce the matrix operators

T(z) = [ ey l}zlf[)]eu(m) ] . Af) = [ ¢ (@) ]

and the reduced Hessian

H(w,\) = T*(%) Loy (z, \T ().
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Since by Proposition 1.1 e,(z) is a homeomorphism for every € X the SQP-step
(10) can be rewritten in Schur-complement form w.r.t. the control variable u.

ALGORITHM 2.2. (Modified SQP-step). Choose (2°,%) € B(z*,\*), set k = 0.

Do until convergence
i) solve H(z* A¥)duk = —T*(a*).J,(

ii) set 0y* = —e,(zF)"te(z?) — ey (aF

iii) set zF*1 = ok 4 §zk,

iv) set AMF! = A*(2*) {J,(2%) + Luo (2, %) { A(a¥)e(a*) + T (2F)6ur } },

v) k=k+1

Let us consider the linear system in i). Its dimension is that of the control space
U. Since the computation of the reduced Hessian H (z, ) would involve the inversion
of e, () together with its adjoint we conclude that this system for large dimensional
practical applications itself has to be solved iteratively, e.g. by a conjugate gradient
technique. This would correspond to an in-exact SQP-method. We shall then refer to
i) as the ”inner ” loop as opposed to the do-loop in 2. of Algorithm 2.1 which is the
?outer” loop of the SQP-algorithm. The inner loop at iteration level k of the outer
loop requires to

(i) evaluate —T*(z*)J, (x*) + T*(x*) Loy (2, A¥) A(zF)e(2*). Given (2, \F) this

amounts to solving system (5) with f = e!(z*), vy = €?(z*), and system (6)
twice with g = J,(z*) and g = Ly, (z*, \F)e, (z*) T e(zF).

(ii) iteratively evaluate the action of H(z*, \*) on 6%, the j-th iterate of the inner

loop on the k—th level of the outer loop.
The iterate ¢ = H(z*, \*)6¥ can be evaluated by successively applying the steps
a) solve (5) with vg = 0 and f = Bd¥ in L*(V*) forv e W,

b) evaluate Jy, (z*)v + (e}, (2*) (v, ), ALY,

c) solve (6) with g = Jy, (2%)v + (e}, (z*)(v, ), A"y in W* for w € LA(V),

d) and finally set q := Jy,0u + B*w.

It can be shown that the functional appearing in b) is an element of W* N L*/3(V*),
and hence (6) is meaningful in the sense of admitting a solution w in L?(V') with w; €
LA/3(V*). Summarizing, for the outer iteration of the SQP-method three linearized
Navier—Stokes solves are required. For the inner loop one forward (—in time) as well
as one backwards linearized Navier—Stokes solve per iteration is necessary.

REMARK 2.1. The performance of the conjugate gradient method depends on
the spectral condition number k(H) of the reduced Hessian H. Since H can be
decomposed as H = Jy, + K with a compact, selfadjoint and positive operator K
the spectral condition number of H satisfies £(H) < (Amax(Juu) + | K|)/ Amin (Juw)-
In our application J,, = ald holds, i.e. k(H) = O(1/a) (o — 0) which is worse for
small o > 0.

To prove local quadratic convergence of the method (with exact updates) we need
to impose a smallness assumption on the difference |y* — z|12(x). Due to the structure
of the cost functional J it guarantees second order sufficient optimality of the local
solution on z*. The proof of the following theorem can be found in [5], compare also
[6].

THEOREM 2.1. Let z* = (y*,u*) denote a solution to problem (1). Let |y* —
z|2(my be sufficiently small and let A* denote the Lagrange-multiplier associated to
x*. Then there exist a neighbourhood B(z*,\*) C X x Z such that for all (2°,\%) €
B(z*, A*) the SQP-algorithm 2.1 is well defined and its iterates {(z™, A\"™)}ner con-
verge quadratically to (z*, A*).

2?) 4+ T*(2%) Lya (x, \F) A(z )e(2*)
) Ley (zF)ouk,
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3. Numerical Example. In the numerical example we did not restrict the state
y to satisfy homogeneous boundary conditons, thus extending the computations be-
yond the theoretical treatment of problem (1). In what follows we present numerical
computations for the control of driven cavity flow in £ = (0,1)2. The uncontrolled
flow is driven by a non-zero tangential velocity component, i.e. y! = 1,42 = 0 at the
top wall, and satisfies homogeneous boundary conditions on the remaining part of the
boundary, compare Fig. 1. We note that with this boundary condition the state not
even is an element of H'(2)2.

The discretization of the Navier-Stokes equations, its linearization and adjoint
was carried out by using parts of the code developed by Bénsch [2], which is based on
Taylor-Hood finite elements for the spatial discretization. As time step size we took
6t = .00625, which resulted in 160 grid points for the time grid, and 545 pressure
and 2113 velocity nodes for the spatial discretization. This results in a total number
of unknowns (primal-, adjoint-, and control variables) of the optimization problem of
order 2.2x10%. The time horizon could still be increased or the mesh size decreased
by utilizing reduced storage techniques at the expense of additional cpu-time, but we
shall not pursue this aspect here. All computations were performed on a ORIGINTM
500.

We present the results for Q. = Q, = (0,1)%, @ = 1072 and 1/v = Re=400. As
initial guess for the SQP-algorithm we utilized the tuple (z°,A\°) where z° = (y°, u°)
is obtained from applying one step of Newton’s method with initial control equal to
zero to the numerical solution of problem (3), i.e. with u® computed by Newton’s
method y° denotes the solution of the Navier-Stokes equations in (1) with u = u°.
Finally, the initial guess for the Lagrange multiplier is set to A\° = —e,(2°)J,(2°).

’ k k
The termination criterion for the outer iteration is chosen as % < 1073. For

the iterative solution of i) in Algorithm 2.2 we utilize the conjugate gradient algorithm
whose termination criterion for the j-th iterate 6u;? is chosen as

[H(@* A )dus —r@ M) 1k, ) L2 L@ )]

[/, X0)] = <|L'<w°,A°)|) e [
where (2%, \F) denotes the right-hand-side in i) of Algorithm 2.2. This termination
criterion is motivated by stopping rules that are utilized for inexact Newton methods,
say, in the finite dimensional setting in order to guarantee superlinear convergence,
compare [7]. We therefore can only expect super-linear convergence of the SQP-
method which in fact is confirmed in Table 1 for the last five iterates. The numerical
computation of the optimal solution took about 90 minutes cpu-time on the worksta-
tion environment mentioned above. It is worth noting that Newton’s method applied
to (3) with initial control 4 = u® computes the numerical approximations to the
optimal control and the optimal state as twice as fast [6].

In Figure 2 the evolution of the cost functional and the control cost as a function
of time are documented. It can be observed that graphically there is no significant
change after the third iteration of the method. These comments hold for quite a wide
range of values for a. In Fig. 1 the target flow together with the uncontrolled flow, the
controlled flow and the control action at the end of the time interval are presented.

Note that different observation and control volumes result in smaller control and
observation volumes as in our example, and thus the primal and adjoint equations are
numerically simpler to solve. We refer to [5, 6] for a more detailed discussion of this
topic.
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TABLE 1
Performance of the SQP- method for Ezample 1

1ok R zF AR

Iteration | CG-steps ‘\i’((i":/k\"))ll |6(fx§_1 :ik)_‘f)t?(m J (@)

0 - - - 1.188772e-2
1 11 1.e0 1. 3.216904e-3
2 3 2.342777e-1 | 0.456 1.661840e-3
3 16 5.846246e-1 | 1.110 2.041436e-3
4 5 1.574504e-1 | 0.959 1.548152e-3
5 14 2.718657e-2 | 0.554 1.683024e-3
6 23 6.744024e-2 | 0.914 1.485434e-3
7 18 8.005254e-2 | 0.874 1.521882e-3
8 18 1.852064e-2 | 0.197 1.480751e-3
9 23 1.343532e-3 | 0.146 1.479234e-3
10 26 1.698641e-4 | 0.127 1.479219e-3
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FIG. 2. Re=400, a = 10~2: Evolution of cost functional (top) and control cost (bottom) for
different iteration levels and relative accuracy = 1.d-3



